Situating the left-lateralized language network in the bispecialized large-scale distributed networks

Journal of Neurophysiology 124, 1415-1448 DOI: 10.1152/jn.00753.2019

Citation Report

#	Article	IF	CITATIONS
1	Situating the left-lateralized language network in the broader organization of multiple specialized large-scale distributed networks. Journal of Neurophysiology, 2020, 124, 1415-1448.	0.9	124
2	No evidence for differences among language regions in their temporal receptive windows. NeuroImage, 2020, 219, 116925.	2.1	40
3	The detailed organization of the human cerebellum estimated by intrinsic functional connectivity within the individual. Journal of Neurophysiology, 2021, 125, 358-384.	0.9	70
5	Functional specialization within the inferior parietal lobes across cognitive domains. ELife, 2021, 10, .	2.8	65
6	Network variants are similar between task and rest states. NeuroImage, 2021, 229, 117743.	2.1	41
7	Infective Messages. Journal of Nervous and Mental Disease, 2021, 209, 474-480.	0.5	2
8	Incremental Language Comprehension Difficulty Predicts Activity in the Language Network but Not the Multiple Demand Network. Cerebral Cortex, 2021, 31, 4006-4023.	1.6	49
13	Fronto-parietal homotopy in resting-state functional connectivity predicts task-switching performance. Brain Structure and Function, 2022, 227, 655-672.	1.2	10
15	The default mode network in cognition: a topographical perspective. Nature Reviews Neuroscience, 2021, 22, 503-513.	4.9	368
16	Altered sense of self during seizures in the posteromedial cortex. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	29
17	Three types of individual variation in brain networks revealed by single-subject functional connectivity analyses. Current Opinion in Behavioral Sciences, 2021, 40, 79-86.	2.0	20
18	The early origins and the growing popularity of the individual-subject analytic approach in human neuroscience. Current Opinion in Behavioral Sciences, 2021, 40, 105-112.	2.0	58
20	Precision estimates of parallel distributed association networks: evidence for domain specialization and implications for evolution and development. Current Opinion in Behavioral Sciences, 2021, 40, 120-129.	2.0	26
21	Light through the fog: using precision fMRI data to disentangle the neural substrates of cognitive control. Current Opinion in Behavioral Sciences, 2021, 40, 19-26.	2.0	22
22	Correspondence between functional connectivity and task-related activity patterns within the individual. Current Opinion in Behavioral Sciences, 2021, 40, 178-188.	2.0	15
23	Dissecting the neurobiology of linguistic disorganisation and impoverishment in schizophrenia. Seminars in Cell and Developmental Biology, 2022, 129, 47-60.	2.3	21
24	The "Narratives―fMRI dataset for evaluating models of naturalistic language comprehension. Scientific Data, 2021, 8, 250.	2.4	50
27	Investigating Language and Domain-General Processing in Neurotypicals and Individuals With Aphasia — A Functional Near-Infrared Spectroscopy Pilot Study. Frontiers in Human Neuroscience, 2021, 15, 728151.	1.0	8

#	Article	IF	CITATIONS
30	Brain parcellation selection: An overlooked decision point with meaningful effects on individual differences in resting-state functional connectivity. NeuroImage, 2021, 243, 118487.	2.1	46
31	Individualized Functional Subnetworks Connect Human Striatum and Frontal Cortex. Cerebral Cortex, 2022, 32, 2868-2884.	1.6	20
33	Comprehension of computer code relies primarily on domain-general executive brain regions. ELife, 2020, 9, .	2.8	58
34	The Domain-General Multiple Demand Network Is More Active in Early Balanced Bilinguals Than Monolinguals During Executive Processing. Neurobiology of Language (Cambridge, Mass), 2021, 2, 647-664.	1.7	3
35	Is it time to put rest to rest?. Trends in Cognitive Sciences, 2021, 25, 1021-1032.	4.0	114
36	Breakdown of specific functional brain networks in clinical variants of Alzheimer's disease. Ageing Research Reviews, 2021, 72, 101482.	5.0	21
38	The many timescales of context in language processing. Psychology of Learning and Motivation - Advances in Research and Theory, 2021, , 201-243.	0.5	2
41	White matter association tracts underlying language and theory of mind: An investigation of 809 brains from the Human Connectome Project. NeuroImage, 2022, 246, 118739.	2.1	18
44	Task-specific network interactions across key cognitive domains. Cerebral Cortex, 2022, 32, 5050-5071.	1.6	8
45	Missing links: The functional unification of language and memory (Lâ^ªM). Neuroscience and Biobehavioral Reviews, 2022, 133, 104489.	2.9	21
48	Lacking social support is associated with structural divergences in hippocampus–default network co-variation patterns. Social Cognitive and Affective Neuroscience, 2022, 17, 802-818.	1.5	2
49	Modelling brain representations of abstract concepts. PLoS Computational Biology, 2022, 18, e1009837.	1.5	4
53	Frontal language areas do not emerge in the absence of temporal language areas: A case study of an individual born without a left temporal lobe. Neuropsychologia, 2022, 169, 108184.	0.7	14
55	Shared and unique brain network features predict cognitive, personality, and mental health scores in the ABCD study. Nature Communications, 2022, 13, 2217.	5.8	67
57	Differential Tracking of Linguistic vs. Mental State Content in Naturalistic Stimuli by Language and Theory of Mind (ToM) Brain Networks. Neurobiology of Language (Cambridge, Mass), 2022, 3, 413-440.	1.7	14
59	An investigation across 45 languages and 12 language families reveals a universal language network. Nature Neuroscience, 2022, 25, 1014-1019.	7.1	90
60	BOLD cofluctuation â€~events' are predicted from static functional connectivity. NeuroImage, 2022, 260, 119476.	2.1	21
61	A voice without a mouth no more: The neurobiology of language and consciousness. Neuroscience and Biobehavioral Reviews, 2022, 140, 104772.	2.9	6

CITATION REPORT

#	Article	IF	Citations
63	Robust Effects of Working Memory Demand during Naturalistic Language Comprehension in Language-Selective Cortex. Journal of Neuroscience, 2022, 42, 7412-7430.	1.7	23
64	The organization of individually mapped structural and functional semantic networks in aging adults. Brain Structure and Function, 2022, 227, 2513-2527.	1.2	3
65	Person-specific and precision neuroimaging: Current methods and future directions. Neurolmage, 2022, 263, 119589.	2.1	20
66	Symbols and mental programs: a hypothesis about human singularity. Trends in Cognitive Sciences, 2022, 26, 751-766.	4.0	38
67	Probabilistic atlas for the language network based on precision fMRI data from >800 individuals. Scientific Data, 2022, 9, .	2.4	40
68	The Angular Gyrus as a Hub for Modulation of Language-related Cortex by Distinct Prefrontal Executive Control Regions. Journal of Cognitive Neuroscience, 2022, 34, 2275-2296.	1.1	7
69	Physical distance to sensory-motor landmarks predicts language function. Cerebral Cortex, 2023, 33, 4305-4318.	1.6	5
70	Causal Contributions of the Domain-General (Multiple Demand) and the Language-Selective Brain Networks to Perceptual and Semantic Challenges in Speech Comprehension. Neurobiology of Language (Cambridge, Mass), 2022, 3, 665-698.	1.7	3
71	Precision fMRI reveals that the language-selective network supports both phrase-structure building and lexical access during language production. Cerebral Cortex, 2023, 33, 4384-4404.	1.6	15
72	Functional specialization of parallel distributed networks revealed by analysis of trial-to-trial variation in processing demands. Journal of Neurophysiology, 2023, 129, 17-40.	0.9	9
73	Hippocampus and temporal pole functional connectivity is associated with age and individual differences in autobiographical memory. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	14
75	Language Network Dysfunction and Formal Thought Disorder in Schizophrenia. Schizophrenia Bulletin, 2023, 49, 486-497.	2.3	6
76	Hemispheric Asymmetries of Individual Differences in Functional Connectivity. Journal of Cognitive Neuroscience, 2023, 35, 200-225.	1.1	6
77	Language abnormalities in schizophrenia: binding core symptoms through contemporary empirical evidence. , 2022, 8, .		5
79	ALFF response interaction with learning during feedback in individuals with multiple sclerosis. Multiple Sclerosis and Related Disorders, 2023, 70, 104510.	0.9	0
80	No evidence of theory of mind reasoning in the human language network. Cerebral Cortex, 2023, 33, 6299-6319.	1.6	7
82	Intersecting distributed networks support convergent linguistic functioning across different languages in bilinguals. Communications Biology, 2023, 6, .	2.0	1
86	Non-literal language processing is jointly supported by the language and theory of mind networks: Evidence from a novel meta-analytic fMRI approach. Cortex, 2023, 162, 96-114.	1.1	8

CITATION REPORT

~		<u> </u>	
		Repc	DT
<u> </u>	IIAI	NLPU	VIC I

#	Article	IF	CITATIONS
87	Neural Correlates of Formal Thought Disorder Dimensions in Psychosis. Schizophrenia Bulletin, 2023, 49, S104-S114.	2.3	4
89	Bayesian stroke modeling details sex biases in the white matter substrates of aphasia. Communications Biology, 2023, 6, .	2.0	3
90	The human language system, including its inferior frontal component in "Broca's area,―does not support music perception. Cerebral Cortex, 2023, 33, 7904-7929.	1.6	12
118	Precision neuroimaging. , 2023, , .		0