Influence of Oxygen-Containing Functional Groups on t Transformations, and Toxicity of Carbon Nanotubes

Chemical Reviews 120, 11651-11697

DOI: 10.1021/acs.chemrev.0c00351

Citation Report

#	Article	IF	CITATIONS
1	All carbon hybrid N-doped carbon dots/carbon nanotube structures as an efficient catalyst for the oxygen reduction reaction. RSC Advances, 2021, 11, 12520-12530.	3.6	19
2	DNA cleavage and chemical transformation of nano-plastics mediated by surface ligand and size. Chemical Communications, 2021, 57, 9740-9743.	4.1	3
3	Emerging investigator series: a multispecies analysis of the relationship between oxygen content and toxicity in graphene oxide. Environmental Science: Nano, 2021, 8, 1543-1559.	4.3	1
4	Recent advancements in transparent carbon nanotube films: chemistry and imminent challenges. Journal of Nanostructure in Chemistry, 2021, 11, 93-130.	9.1	35
5	Effect of multiwalled carbon nanotubes on densification behaviour of multiwalled carbon nanotube and fly ash reinforced aluminium composites. Materials Today: Proceedings, 2021, , .	1.8	0
6	In situ H2O2 generation methods in the context of enzyme biocatalysis. Enzyme and Microbial Technology, 2021, 145, 109744.	3.2	25
7	Sorption and Desorption Analysis of Nitrobenzene on Differently Functionalized Multiwalled Carbon Nanotubes and Implications on the Stability. Water (Switzerland), 2021, 13, 1426.	2.7	1
8	Synthesis of Phosphonated Carbon Nanotubes: New Insight into Carbon Nanotubes Functionalization. Materials, 2021, 14, 2726.	2.9	9
9	Formation, Stability, and Coagulation of Fullerene Organosols: C ₇₀ in Acetonitrile–Toluene Solutions and Related Systems. Langmuir, 2021, 37, 7156-7166.	3.5	6
10	Investigating the effect of edge and basal plane surface functionalisation of carbonaceous anodes for alkali metal (Li/Na/K) ion batteries. Carbon, 2021, 177, 226-243.	10.3	19
11	Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chemical Reviews, 2021, 121, 9243-9358.	47.7	162
12	A comparative study of superhydrophobicity of 0D/1D/2D thermally functionalized carbon nanomaterials. Ceramics International, 2021, 47, 30331-30342.	4.8	16
13	The aggregation behaviour and mechanism of commercial graphene oxide in surface aquatic environments. Science of the Total Environment, 2022, 806, 150942.	8.0	14
14	Recent Advances in Functional Carbon Quantum Dots for Antitumour. International Journal of Nanomedicine, 2021, Volume 16, 7195-7229.	6.7	14
15	Attaching a Dipeptide to Fullerene as an Antioxidant Hybrid against DNA Oxidation. Chemical Research in Toxicology, 2021, 34, 2366-2374.	3.3	8
17	Difference in deprotonation for oxygen-containing groups on sp ² and sp ³ carbons. Fullerenes Nanotubes and Carbon Nanostructures, 2022, 30, 106-112.	2.1	1
18	Modern Carbon–Based Materials for Adsorptive Removal of Organic and Inorganic Pollutants from Water and Wastewater. Molecules, 2021, 26, 6628.	3.8	37
19	Interaction of aqueous suspensions of single-walled oxidized carbon nanotubes with inorganic and organic electrolytes. Journal of Molecular Liquids, 2021, , 117948.	4.9	3

#	Article	IF	CITATIONS
20	The detection and characterization techniques for the interaction between graphene oxide and natural colloids: A review. Science of the Total Environment, 2021, , 151906.	8.0	2
21	Fabrication of highly-conductive porous capacitor electrodes by the insertion of Cu-nanoparticles into N-doped flocculated carbon catalysts. Journal of Colloid and Interface Science, 2022, 610, 106-115.	9.4	1
22	A critical review on the role of abiotic factors on the transformation, environmental identity and toxicity of engineered nanomaterials in aquatic environment. Environmental Pollution, 2022, 296, 118726.	7.5	22
23	Carbon nanotubes/nanorods in biocatalysis. , 2022, , 339-376.		O
24	Mechanism of biochar functional groups in the catalytic reduction of tetrachloroethylene by sulfides. Environmental Pollution, 2022, 300, 118921.	7.5	9
25	Carbon Nanomaterials (CNMs) and Enzymes: From Nanozymes to CNM-Enzyme Conjugates and Biodegradation. Materials, 2022, 15, 1037.	2.9	13
26	Controllability of Graphene Oxide Doxorubicin Loading Capacity Based on Density Functional Theory. Nanomaterials, 2022, 12, 479.	4.1	3
27	Estimation of the Spatial Distribution of Carbon Edge Sites in a Carbon Structure Using H2 Desorption Kinetics in Temperature Programmed Desorption. SSRN Electronic Journal, 0, , .	0.4	0
28	Versatile carbon nanoplatforms for cancer treatment and diagnosis: strategies, applications and future perspectives. Theranostics, 2022, 12, 2290-2321.	10.0	31
29	Hydroxyl-Enriched Core/Shell Carbon Nanotubes for Catalytic Hydrolysis of Regenerated Cellulose to Glucose. ACS Applied Nano Materials, 2022, 5, 5364-5372.	5.0	6
30	Carbon nanotube-based materials for environmental remediation processes., 2022,, 475-513.		7
31	Antibacterial and Cytotoxic Effects of Multi-Walled Carbon Nanotubes Functionalized with Iodine. Nanobiotechnology Reports, 2022, 17, 184-192.	0.6	2
32	Estimation of the spatial distribution of carbon edge sites in a carbon structure using H2 desorption kinetics in temperature programmed desorption. Carbon, 2022, 196, 1054-1062.	10.3	7
33	Interfacial-interaction-induced fabrication of biomass-derived porous carbon with enhanced intrinsic active sites. Chinese Journal of Catalysis, 2022, 43, 2231-2239.	14.0	6
34	Nano-Fe1â^'xS embedded BCAA/Fe3O4 as the stabilized catalyst for simultaneous quinclorac oxidation and Cr(VI) reduction. Separation and Purification Technology, 2022, 297, 121422.	7.9	7
35	Functionalization of carbon nanotubes with bovine plasma biowaste by forming a protein corona enhances copper removal from water and ecotoxicity mitigation. Environmental Science: Nano, 2022, 9, 2887-2905.	4.3	5
36	Conductive and Semiconductive Nanocompositeâ€Based Hydrogels for Cardiac Tissue Engineering. Advanced Healthcare Materials, 2022, 11, .	7.6	22
37	Toxicity mitigation and biodistribution of albumin corona coated graphene oxide and carbon nanotubes in Caenorhabditis elegans. NanoImpact, 2022, 27, 100413.	4.5	4

#	Article	IF	CITATIONS
38	Mechanism for selective binding of aromatic compounds on oxygen-rich graphene nanosheets based on molecule size/polarity matching. Science Advances, 2022, 8, .	10.3	5
39	Significance of m6A regulation in environmental health and safety (EHS) assessment: MWCNTs induced pulmonary toxicity through m6A modifications of mitophagy-related genes. Nano Today, 2022, 46, 101624.	11.9	2
40	Effect of glycerol microemulsion on coal seam wetting and moisturizing performance. Journal of Molecular Liquids, 2022, 367, 120405.	4.9	8
41	Pyrolysis-free and universal synthesis of metal-NC single-atom nanozymes with dual catalytic sites for cytoprotection. Carbon, 2023, 201, 439-448.	10.3	9
42	Novel ($Pt\hat{a}\in O< i>>)\hat{a}\in (Co\hat{a}\in O< i>y) Nonbonding Active Structures on Defective Carbon from Oxygen\hat{a}\in Rich Coal Tar Pitch for Efficient HER and ORR. Advanced Materials, 2022, 34, .$	21.0	35
43	Stability of Aqueous Suspensions of COOH-Decorated Carbon Nanotubes to Organic Solvents, Esterification, and Decarboxylation. Journal of Physical Chemistry Letters, 2022, 13, 10126-10131.	4.6	1
44	Types of Surface Modifications of Carbon Nanotubes. ACS Symposium Series, 0, , 67-90.	0.5	1
45	Biophysicochemical transformations of ENMs in water. , 2023, , 115-141.		0
46	Engineering approaches for CO2 converting to biomass coupled with nanobiomaterials as biomediated towards circular bioeconomy. Journal of CO2 Utilization, 2023, 67, 102295.	6.8	25
47	Phosphorus grafted chitosan functionalized graphene oxide-based nanocomposite as a novel flame-retardant material for textile and wood. Reaction Chemistry and Engineering, 2023, 8, 804-814.	3.7	4
48	Decomposition of carbon-based catalysts in advanced oxidation processes: A neglected but noteworthy problem. Chemical Engineering Journal, 2023, 456, 141086.	12.7	5
49	Effect of Cellulose Material-Based Additives on Dispersibility of Carbon Nanotubes. Energies, 2022, 15, 8822.	3.1	O
50	Preparation and characterization of forward osmosis cellulose acetate butyrate/ <scp>OH</scp> â€functionalized multiwalled carbon nanotube membrane for the concentration of bitter orange juice. Journal of Food Process Engineering, 0, , .	2.9	0
51	Carbonâ€Hybridized Hydroxides for Energy Conversion and Storage: Interface Chemistry and Manufacturing. Advanced Materials, 2023, 35, .	21.0	5
52	Toxic risk assessment of engineered nanoparticles used in ink formulations., 2023,, 159-194.		0
53	Recent advances in new generation nanocomposite materials for adsorption of pharmaceuticals from aqueous environment. Environmental Science and Pollution Research, 2023, 30, 39377-39417.	5. 3	21
54	Electrospun Cellulose Nanofiber Membranes as Multifunctional Separators for High Energy and Stable Lithium-Sulfur Batteries. International Journal of Energy Research, 2023, 2023, 1-17.	4.5	0
55	Transport of Microplastic and Dispersed Oil Co-contaminants in the Marine Environment. Environmental Science & Environmental S	10.0	8

#	Article	IF	CITATIONS
56	Low-pressure carbon nanotube membrane with different surface properties for the removal of organic dyes and PPCPs. Journal of Environmental Chemical Engineering, 2023, 11, 110131.	6.7	2
57	Recent Advances and Perspectives on Supported Catalysts for Heterogeneous Hydrogen Production from Ammonia Borane. Advanced Science, 2023, 10, .	11.2	20
58	Three-Dimensional Electrochemical Sensors for Food Safety Applications. Biosensors, 2023, 13, 529.	4.7	2
59	Review of the synthesis and applications of deep eutectic solvent-functionalized adsorbents for water treatment. Journal of Environmental Chemical Engineering, 2023, 11, 110214.	6.7	13
60	Antibiofilm Activities of Carbon-Based Nanoparticles and Nanocomposites: A Comparative Review. Journal of Inorganic and Organometallic Polymers and Materials, 2023, 33, 3961-3983.	3.7	1
61	The nature of interaction between Au and heteroatoms-doped carbon nanotubes: Size and electronic effects on CO2 electroreduction. Applied Surface Science, 2023, 635, 157692.	6.1	3
62	Microwave-assisted synthesis of carbon-based nanomaterials from biobased resources for water treatment applications: emerging trends and prospects. , 0, 2, .		3
63	Influence of activating and supporting oxygen in M–N–C electrocatalysts for oxygen reduction. Electrochimica Acta, 2023, 466, 143001.	5.2	1
64	Enhanced water retention in carbon nanotube sheets-sandwiched gas diffusion layer in polymer electrolyte membrane fuel cells operated under low humidity conditions. Journal of Power Sources, 2023, 584, 233609.	7.8	0
65	Carbon Nanotube Hybrid Materials: Efficient and Pertinent Platforms for Antifungal Drug Delivery. Advanced Materials Technologies, 2023, 8, .	5. 8	0
66	Controllable design of N-doped carbon nanotubes with assembled Pt nanoparticles for methanol oxidation reaction. Molecular Catalysis, 2023, 551, 113612.	2.0	0
67	The effect of the active site and substrate structure in preparation of substituted tetrahydropyrans via intramolecular cyclization. Catalysis Today, 2024, 429, 114465.	4.4	0
68	Amorphous nanosphere self-supporting electrode based on filter paper for efficient water splitting. Journal of Alloys and Compounds, 2024, 972, 172854.	5 . 5	0
69	Fully flexible impedance-based pressure sensing via nanocomposites of polyvinyl alcohol filled with multiwalled carbon nanotubes, graphene nanoplatelets and silver nanoparticles. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	0
70	Bottomâ€Up Magnesium Deposition Induced by Paperâ€Based Tripleâ€Gradient Scaffolds toward Flexible Magnesium Metal Batteries. Advanced Materials, 2024, 36, .	21.0	3
71	SnO2/SnS heterojunction anchoring on CMK-3 mesoporous network improves the reversibility of conversion reaction for lithium/sodium ions storage. Nanotechnology, 0, , .	2.6	0
72	Effects of copper metal organic decomposition ink on properties of single-walled carbon nanotube based flexible transparent electrodes. Synthetic Metals, 2024, 301, 117528.	3.9	0
73	Utilization of carbon-based nanomaterials for wastewater treatment and biogas enhancement: A state-of-the-art review. Chemosphere, 2024, 350, 141008.	8.2	0

#	Article	IF	CITATIONS
74	Nanoplastics prepared with uniformly distributed metal-tags: a novel approach to quantify size distribution and particle number concentration of polydisperse nanoplastics by single particle ICP-MS. Environmental Science: Nano, 2024, 11, 911-923.	4.3	0
75	Industrial wastewater treatment using carbon nanotube membranes—a brief review. , 2024, , 179-207.		O
76	Interfacial chemistry regulation using functional frameworks for stable metal batteries. Journal of Materials Chemistry A, 2024, 12, 5080-5099.	10.3	0
77	Improved discharge capacities for lithium-ion batteries containing needle cokes doped with oxygen via ozonation. Journal of Materials Science: Materials in Electronics, 2024, 35, .	2.2	O
78	Enhancement of H2O2 current at electrodes made of Fenton-Activated carbon nanotubes. Journal of Electroanalytical Chemistry, 2024, 956, 118094.	3.8	0
79	Synthesis and Characterization of Copper-Nickel Based Metal Organic Framework by Co-Precipitation Methode: Properties and Possible Application. Journal of Physics: Conference Series, 2024, 2705, 012006.	0.4	O
80	Ageing regulates the migration of carbon nanotubes in saturated quartz sand. Journal of Environmental Chemical Engineering, 2024, 12, 112267.	6.7	0
81	Recent advances in the adsorptive removal of heavy metals from acid mine drainage by conventional and novel materials: A review. Bioresource Technology Reports, 2024, 25, 101797.	2.7	О
82	Electron-interactive 1D porous vertical NiCo2O4 nanowire and 3D N-doped graphene aerogel enable high hydroxyl-ion adsorption capacity for superior energy storage. Materials Today Nano, 2024, 26, 100470.	4.6	0
83	From carbon nanotubes to functional graphene nanoribbons for high performance supercapacitors. Diamond and Related Materials, 2024, 144, 111011.	3.9	0
84	Enhanced copper removal by magnesium modified biochar derived from Alternanthera philoxeroides. Environmental Research, 2024, 251, 118652.	7.5	О