Sources and upstream pathways of the densest overflow

Nature Communications 11, 5389

DOI: 10.1038/s41467-020-19050-y

Citation Report

#	Article	IF	Citations
1	The Iceland-Faroe Slope Jet: a conduit for dense water toward the Faroe Bank Channel overflow. Nature Communications, 2020, 11, 5390.	12.8	16
2	How Much Arctic Fresh Water Participates in the Subpolar Overturning Circulation?. Journal of Physical Oceanography, 2021, 51, 955-973.	1.7	14
3	Combined influence of oceanic and atmospheric circulations on Greenland sea ice concentration. Cryosphere, 2021, 15, 1307-1319.	3.9	6
4	Transports and Accumulations of Greenland Sea Intermediate Waters in the Norwegian Sea. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016582.	2.6	5
5	Wintertime Water Mass Transformation in the Western Iceland and Greenland Seas. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016893.	2.6	5
6	Lateral redistribution of heat and salt in the Nordic Seas. Progress in Oceanography, 2021, 196, 102609.	3.2	9
7	Study of the Overflow Transport of the Nordic Sea. Water (Switzerland), 2021, 13, 2675.	2.7	0
8	Kinematic Structure and Dynamics of the Denmark Strait Overflow from Ship-Based Observations. Journal of Physical Oceanography, 2020, 50, 3235-3251.	1.7	9
9	Transient Increase in Arctic Deep-Water Formation and Ocean Circulation under Sea Ice Retreat. Journal of Climate, 2022, 35, 109-124.	3.2	8
10	The Annual Salinity Cycle of the Denmark Strait Overflow. Journal of Geophysical Research: Oceans, 2022, 127, .	2.6	1
11	Evolution and Transformation of the North Icelandic Irminger Current Along the North Iceland Shelf. Journal of Geophysical Research: Oceans, 2022, 127, .	2.6	5
12	Nordic Seas Heat Loss, Atlantic Inflow, and Arctic Sea Ice Cover Over the Last Century. Reviews of Geophysics, 2022, 60, .	23.0	43
13	Habitat variability and faunal zonation at the Ægir Ridge, a canyon-like structure in the deep Norwegian Sea. PeerJ, 0, 10, e13394.	2.0	2
14	Water mass transformation in the Iceland Sea: Contrasting two winters separated by four decades. Deep-Sea Research Part I: Oceanographic Research Papers, 2022, 186, 103824.	1.4	4
15	Spatio-temporal analysis of east greenland polar front. Frontiers in Marine Science, 0, 9, .	2.5	3
16	Variability of Near-Surface Salinity in the Nordic Seas Over the Past Three Decades (1991-2019). Frontiers in Marine Science, 0, 9, .	2.5	O
17	Slantwise Convection in the Irminger Sea. Journal of Geophysical Research: Oceans, 2022, 127, .	2.6	5
18	Coupled atmosphere–ocean observations of a coldâ€air outbreak and its impact on the Iceland Sea. Quarterly Journal of the Royal Meteorological Society, 2023, 149, 472-493.	2.7	1

#	Article	IF	CITATIONS
19	Role of air-sea heat flux on the transformation of Atlantic Water encircling the Nordic Seas. Nature Communications, 2023 , 14 , .	12.8	4
20	Role of Extreme Indian Ocean Dipole in Regulating Threeâ€Dimensional Freshwater Content in the Southeast Indian Ocean. Geophysical Research Letters, 2023, 50, .	4.0	3
21	The Faroeâ€Shetland Channel Jet: Structure, Variability, and Driving Mechanisms. Journal of Geophysical Research: Oceans, 2023, 128, .	2.6	1
22	Recent Convection Decline in the Greenland Sea: Insights From the Mercator Ocean System Over 2008–2020. Journal of Geophysical Research: Oceans, 2023, 128, .	2.6	2
23	Mixing and air–sea buoyancy fluxes set the time-mean overturning circulation in the subpolar North Atlantic and Nordic Seas. Ocean Science, 2023, 19, 745-768.	3.4	4
24	Structure and Variability of the Barrow Canyon Outflow From Two Highâ€Resolution Shipboard Surveys in 2018. Journal of Geophysical Research: Oceans, 2023, 128, .	2.6	0
25	Crossâ€Shelf Exchanges Between the East Greenland Shelf and Interior Seas. Journal of Geophysical Research: Oceans, 2023, 128, .	2.6	2
26	Surfaceâ€Forced Variability in the Nordic Seas Overturning Circulation and Overflows. Geophysical Research Letters, 2023, 50, .	4.0	2
27	Exceptional sea ice loss leading to anomalously deep winter convection north of Svalbard in 2018. Climate Dynamics, 2024, 62, 2349-2367.	3.8	O