The Iceland-Faroe Slope Jet: a conduit for dense water to overflow

Nature Communications 11, 5390 DOI: 10.1038/s41467-020-19049-5

Citation Report

#	Article	IF	CITATIONS
1	Sources and upstream pathways of the densest overflow water in the Nordic Seas. Nature Communications, 2020, 11, 5389.	12.8	27
2	Vertical Migration of Pelagic and Mesopelagic Scatterers From ADCP Backscatter Data in the Southern Norwegian Sea. Frontiers in Marine Science, 2021, 7, .	2.5	10
3	Response of biological productivity to North Atlantic marine front migration during the Holocene. Climate of the Past, 2021, 17, 379-396.	3.4	6
4	Transports and Accumulations of Greenland Sea Intermediate Waters in the Norwegian Sea. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016582.	2.6	5
5	The Norwegian Sea Gyre – A Regulator of Iceland-Scotland Ridge Exchanges. Frontiers in Marine Science, 2021, 8, .	2.5	7
6	Lateral redistribution of heat and salt in the Nordic Seas. Progress in Oceanography, 2021, 196, 102609.	3.2	9
7	Rapid Freshening of Iceland Scotland Overflow Water Driven by Entrainment of a Major Upper Ocean Salinity Anomaly. Geophysical Research Letters, 2021, 48, e2021GL094396.	4.0	5
8	Evolution and Transformation of the North Icelandic Irminger Current Along the North Iceland Shelf. Journal of Geophysical Research: Oceans, 2022, 127, .	2.6	5
9	Spatial Variability of the Feeding Conditions for the Norwegian Spring Spawning Herring in May. Frontiers in Marine Science, 2022, 9, .	2.5	3
10	Nordic Seas Heat Loss, Atlantic Inflow, and Arctic Sea Ice Cover Over the Last Century. Reviews of Geophysics, 2022, 60, .	23.0	43
11	Arctic and Atlantic Waters in the Norwegian Basin, Between Year Variability and Potential Ecosystem Implications. Frontiers in Marine Science, 2022, 9, .	2.5	7
12	Habitat variability and faunal zonation at the Ægir Ridge, a canyon-like structure in the deep Norwegian Sea. PeerJ, 0, 10, e13394.	2.0	2
13	Water mass transformation in the Iceland Sea: Contrasting two winters separated by four decades. Deep-Sea Research Part I: Oceanographic Research Papers, 2022, 186, 103824.	1.4	4
14	How Warm Gulf Stream Water Sustains a Cold Underwater Waterfall. Frontiers for Young Minds, 0, 10, .	0.8	0
15	The Atlantic Ocean landscape: A basin-wide cluster analysis of the Atlantic near seafloor environment. Frontiers in Marine Science, 0, 9, .	2.5	3
16	The Faroeâ€Shetland Channel Jet: Structure, Variability, and Driving Mechanisms. Journal of Geophysical Research: Oceans, 2023, 128, .	2.6	1