A defect in COPI-mediated transport of STING causes in syndrome

Journal of Experimental Medicine 217, DOI: 10.1084/jem.20201045

Citation Report

#	Article	IF	CITATIONS
1	Molecular and spatial mechanisms governing STING signalling. FEBS Journal, 2021, 288, 5504-5529.	2.2	27
2	Development of small molecule inhibitors/agonists targeting STING for disease. Biomedicine and Pharmacotherapy, 2020, 132, 110945.	2.5	20
3	Monogenic autoinflammatory disorders: Conceptual overview, phenotype, and clinical approach. Journal of Allergy and Clinical Immunology, 2020, 146, 925-937.	1.5	89
4	COPA silences STING. Journal of Experimental Medicine, 2020, 217, .	4.2	14
5	Overview of STING-Associated Vasculopathy with Onset in Infancy (SAVI) Among 21 Patients. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 803-818.e11.	2.0	98
6	STING, the Endoplasmic Reticulum, and Mitochondria: Is Three a Crowd or a Conversation?. Frontiers in Immunology, 2020, 11, 611347.	2.2	46
7	Homeostatic regulation of STING by retrograde membrane traffic to the ER. Nature Communications, 2021, 12, 61.	5.8	80
8	Cyclic Guanosine Monophosphate–Adenosine Monophosphate Synthase (cGAS), a Multifaceted Platform of Intracellular DNA Sensing. Frontiers in Immunology, 2021, 12, 637399.	2.2	8
9	The Trinity of cGAS, TLR9, and ALRs Guardians of the Cellular Galaxy Against Host-Derived Self-DNA. Frontiers in Immunology, 2020, 11, 624597.	2.2	40
10	Spectrum of Systemic Auto-Inflammatory Diseases in India: A Multi-Centric Experience. Frontiers in Immunology, 2021, 12, 630691.	2.2	11
13	The cGAS–STING pathway as a therapeutic target in inflammatory diseases. Nature Reviews Immunology, 2021, 21, 548-569.	10.6	714
14	The STING phase-separator suppresses innate immune signalling. Nature Cell Biology, 2021, 23, 330-340.	4.6	96
16	STING Operation at the ER/Golgi Interface. Frontiers in Immunology, 2021, 12, 646304.	2.2	37
17	Golgi apparatus-synthesized sulfated glycosaminoglycans mediate polymerization and activation of the cGAMP sensor STING. Immunity, 2021, 54, 962-975.e8.	6.6	76
18	Self-DNA Sensing by cGAS-STING and TLR9 in Autoimmunity: Is the Cytoskeleton in Control?. Frontiers in Immunology, 2021, 12, 657344.	2.2	18
19	Augmentation of Stimulator of Interferon Genes–Induced Type I Interferon Production in COPA Syndrome. Arthritis and Rheumatology, 2021, 73, 2105-2115.	2.9	19
20	A cell-free assay implicates a role of sphingomyelin and cholesterol in STING phosphorylation. Scientific Reports, 2021, 11, 11996.	1.6	14
21	COPA Syndrome (Ala239Pro) Presenting with Isolated Follicular Bronchiolitis in Early Childhood: Case Report. Journal of Clinical Immunology, 2021, 41, 1660-1663.	2.0	5

ITATION REDO

ARTICLE IF CITATIONS # Emerging Place of JAK Inhibitors in the Treatment of Inborn Errors of Immunity. Frontiers in 22 2.2 23 Immunology, 2021, 12, 717388. Monogenic autoimmunity and infectious diseases: the double-edged sword of immune dysregulation. 2.4 Current Opinion in Immunology, 2021, 72, 230-238. No Longer A One-Trick Pony: STING Signaling Activity Beyond Interferon. Journal of Molecular 24 2.0 13 Biology, 2022, 434, 167257. Molecular biology of autoinflammatory diseases. Inflammation and Regeneration, 2021, 41, 33. The type I interferonopathies: 10 years on. Nature Reviews Immunology, 2022, 22, 471-483. 26 10.6 164 A Novel Mutation c.841C>T in COPA Syndrome of an 11-Year-Old Boy: A Case Report and Short Literature Review. Frontiers in Pediatrics, 2021, 9, 773112. Regulation of cGAS-STING pathway - Implications for systemic lupus erythematosus. Rheumatology and 28 0.2 6 Immunology Research, 2021, 2, 173-184. Intervention of cGASâ€'STING signaling in sterile inflammatory diseases. Journal of Molecular Cell 1.5 Biology, 2022, 14, . 30 Lung Inflammation in STING-Associated Vasculopathy with Onset in Infancy (SAVI). Cells, 2022, 11, 318. 1.8 28 Allograft dysfunction after lung transplantation for COPA syndrome: A case report and literature review. Modern Rheumatology Case Reports, 2022, 6, 314-318. Regulation and function of the cGAS-MITA/STING axis in health and disease., 2022, 1, 100001. 32 15 Chemical and Biomolecular Strategies for STING Pathway Activation in Cancer Immunotherapy. Chemical Reviews, 2022, 122, 5977-6039. Specific association of TBK1 with the trans-Golgi network following STING stimulation. Cell 34 0.5 12 Structure and Function, 2022, 47, 19-30. Emerging dimensions of cellular cGAS-STING signaling. Current Opinion in Immunology, 2022, 74, 164-171. 2.4 36 Organellar homeostasis and innate immune sensing. Nature Reviews Immunology, 2022, 22, 535-549. 10.6 49 Pathogenic insights from genetic causes of autoinflammatory inflammasomopathies and interferonopathies. Journal of Allergy and Clinical Immunology, 2022, 149, 819-832. 38 STING1 in Different Organelles: Location Dictates Function. Frontiers in Immunology, 2022, 13, 842489. 2.24 Crosstalk between RNA viruses and DNA sensors: Role of the cGASâ€STING signalling pathway. Reviews in Medical Virology, 2022, 32, e2343.

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
40	Management of a Novel Autoimmune Disease, COPA Syndrome, in Pregnancy. Case Reports in Obstetrics and Gynecology, 2022, 2022, 1-4.	0.2	1
41	The cGAS-STING Pathway: A Promising Immunotherapy Target. Frontiers in Immunology, 2021, 12, 795048.	2.2	56
42	Deficiency in coatomer complex I causes aberrant activation of STING signalling. Nature Communications, 2022, 13, 2321.	5.8	43
43	Pathophysiological functions of self-derived DNA. International Reviews of Immunology, 2023, 42, 274-286.	1.5	1
44	Disorders of ubiquitylation: unchained inflammation. Nature Reviews Rheumatology, 2022, 18, 435-447.	3.5	36
45	Dysregulation of the cGAS-STING Pathway in Monogenic Autoinflammation and Lupus. Frontiers in Immunology, 0, 13, .	2.2	10
46	Intracellular Sensing of <scp>DNA</scp> in Autoinflammation and Autoimmunity. Arthritis and Rheumatology, 2022, 74, 1615-1624.	2.9	5
47	Pathophysiological Role of Nucleic Acid-Sensing Pattern Recognition Receptors in Inflammatory Diseases. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	3
48	Recent progress on the activation of the cGAS–STING pathway and its regulation by biomolecular condensation. Journal of Molecular Cell Biology, 2022, 14, .	1.5	5
49	cGAS–STING signaling. Current Biology, 2022, 32, R730-R734.	1.8	18
50	Activation of STING Based on Its Structural Features. Frontiers in Immunology, 0, 13, .	2.2	13
51	Cargo Receptor-Mediated ER Export in Lipoprotein Secretion and Lipid Homeostasis. Cold Spring Harbor Perspectives in Biology, 2023, 15, a041260.	2.3	4
52	Inhibitory targeting cGAS-STING-TBK1 axis: Emerging strategies for autoimmune diseases therapy. Frontiers in Immunology, 0, 13, .	2.2	6
53	Alternative pathways driven by STING: From innate immunity to lipid metabolism. Cytokine and Growth Factor Reviews, 2022, 68, 54-68.	3.2	4
54	<scp>UNC13D</scp> inhibits <scp>STING</scp> signaling by attenuating its oligomerization on the endoplasmic reticulum. EMBO Reports, 2022, 23, .	2.0	4
55	T cell-intrinsic STING signaling promotes regulatory T cell induction and immunosuppression by upregulating FOXP3 transcription in cervical cancer. , 2022, 10, e005151.		14
56	MITA/STING-mediated antiviral immunity and autoimmunity: the evolution, mechanism, and intervention. Current Opinion in Immunology, 2022, 78, 102248.	2.4	6
57	Medicinal chemistry perspective on cGAS-STING signaling pathway with small molecule inhibitors. European Journal of Medicinal Chemistry, 2022, 244, 114791.	2.6	13

#	Article	IF	Citations
58	Recent advances in the activation and regulation of the cGAS-STING pathway. Advances in Immunology, 2022, , 55-102.	1.1	7
59	Microvascular lung injury and endoplasmic reticulum stress in systemic lupus erythematosus-associated alveolar hemorrhage and pulmonary vasculitis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 323, L715-L729.	1.3	1
60	COPA A-to-I RNA editing hijacks endoplasmic reticulum stress to promote metastasis in colorectal cancer. Cancer Letters, 2023, 553, 215995.	3.2	2
61	The activity of disease-causative STING variants can be suppressed by wild-type STING through heterocomplex formation. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	2
62	Novel endogenous endoplasmic reticulum transmembrane protein SURF4 suppresses cell death by negatively regulating the STING TAT6 axis in myeloid leukemia. Cancer Communications, 2023, 43, 395-399.	3.7	3
63	Interruption of post-Golgi STING trafficking activates tonic interferon signaling. Nature Communications, 2022, 13, .	5.8	14
64	STING Targeting in Lung Diseases. Cells, 2022, 11, 3483.	1.8	2
65	Surf4, cargo trafficking, lipid metabolism, and therapeutic implications. Journal of Molecular Cell Biology, 2023, 14, .	1.5	5
66	Cellular functions of cGAS-STING signaling. Trends in Cell Biology, 2023, 33, 630-648.	3.6	45
67	The effect of the cyclic GMP-AMP synthase-stimulator of interferon genes signaling pathway on organ inflammatory injury and fibrosis. Frontiers in Pharmacology, 0, 13, .	1.6	0
68	Multifaceted functions of STING in human health and disease: from molecular mechanism to targeted strategy. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	27
69	Structural insights into a shared mechanism of human STING activation by a potent agonist and an autoimmune disease-associated mutation. Cell Discovery, 2022, 8, .	3.1	13
70	Type-1 interferon-dependent and -independent mechanisms in cyclic GMP–AMP synthase–stimulator of interferon genes-driven auto-inflammation. Current Opinion in Immunology, 2023, 80, 102280.	2.4	6
71	STING trafficking as a new dimension of immune signaling. Journal of Experimental Medicine, 2023, 220,	4.2	14
72	ARMH3-mediated recruitment of PI4KB directs Golgi-to-endosome trafficking and activation of the antiviral effector STING. Immunity, 2023, 56, 500-515.e6.	6.6	17
73	A non-nucleotide agonist that binds covalently to cysteine residues of STING. Cell Structure and Function, 2023, 48, 59-70.	0.5	0
74	ESCRT-dependent STING degradation inhibits steady-state and cGAMP-induced signalling. Nature Communications, 2023, 14, .	5.8	25
75	A path towards personalized medicine for autoinflammatory and related diseases. Nature Reviews Rheumatology, 2023, 19, 182-189.	3.5	5

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
76	Mechanisms of Protein Trafficking and Quality Control in the Kidney and Beyond. Annual Review of Physiology, 2023, 85, 407-423.	5.6	1
77	NF-κB activation enhances STING signaling by altering microtubule-mediated STING trafficking. Cell Reports, 2023, 42, 112185.	2.9	29
78	Pathophysiological Roles of the cGAS-STING Inflammatory Pathway. Physiology, 2023, 38, 167-177.	1.6	3
79	The mechanism of STING autoinhibition and activation. Molecular Cell, 2023, 83, 1502-1518.e10.	4.5	16
85	Beyond DNA sensing: expanding the role of cGAS/STING in immunity and diseases. Archives of Pharmacal Research, 2023, 46, 500-534.	2.7	4
97	Interféronopathies de typeÂl. , 2022, , 161-170.		0
110	Autoinflammatory Diseases Due to Defects in Degradation orÂTransport of Intracellular Proteins. Advances in Experimental Medicine and Biology, 2024, , 83-95.	0.8	0