Non-precious-metal catalysts for alkaline water electro characterizations, theoretical calculations, and recent a

Chemical Society Reviews 49, 9154-9196 DOI: 10.1039/d0cs00575d

Citation Report

#	Article	IF	CITATIONS
1	Atomically Dispersed Reactive Centers for Electrocatalytic CO ₂ Reduction and Water Splitting. Angewandte Chemie - International Edition, 2021, 60, 13177-13196.	7.2	143
2	Atomically Dispersed Reactive Centers for Electrocatalytic CO ₂ Reduction and Water Splitting. Angewandte Chemie, 2021, 133, 13285-13304.	1.6	20
3	Twoâ€Dimensional Porous Molybdenum Phosphide/Nitride Heterojunction Nanosheets for pHâ€Universal Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2021, 60, 6673-6681.	7.2	227
4	Thermally activated carbon–nitrogen vacancies in double-shelled NiFe Prussian blue analogue nanocages for enhanced electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2021, 9, 12734-12745.	5.2	25
5	Atomic heterointerface engineering overcomes the activity limitation of electrocatalysts and promises highly-efficient alkaline water splitting. Energy and Environmental Science, 2021, 14, 5228-5259.	15.6	198
6	Recent advances in doped ruthenium oxides as high-efficiency electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 15506-15521.	5.2	73
7	Pyrolysis-free polymer-based oxygen electrocatalysts. Energy and Environmental Science, 2021, 14, 2789-2808.	15.6	55
8	Boosting electrocatalytic oxygen evolution activity of bimetallic CoFe selenite by exposing specific crystal facets. New Journal of Chemistry, 0, , .	1.4	4
9	Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chemical Society Reviews, 2021, 50, 8428-8469.	18.7	452
10	Ultrathin metal–organic framework nanosheet arrays and derived self-supported electrodes for overall water splitting. Journal of Materials Chemistry A, 2021, 9, 22597-22602.	5.2	41
11	Anodic hydrazine oxidation assisted hydrogen evolution over bimetallic RhIr mesoporous nanospheres. Journal of Materials Chemistry A, 2021, 9, 18323-18328.	5.2	21
12	Interface engineering of cobalt–sulfide–selenium core–shell nanostructures as bifunctional electrocatalysts toward overall water splitting. Nanoscale, 2021, 13, 6890-6901.	2.8	12
13	Transition metal-based catalysts for electrochemical water splitting at high current density: current status and perspectives. Nanoscale, 2021, 13, 12788-12817.	2.8	142
14	Twoâ€Dimensional Porous Molybdenum Phosphide/Nitride Heterojunction Nanosheets for pHâ€Universal Hydrogen Evolution Reaction. Angewandte Chemie, 2021, 133, 6747-6755.	1.6	25
15	Spatial Confinement of a Carbon Nanocone for an Efficient Oxygen Evolution Reaction. Journal of Physical Chemistry Letters, 2021, 12, 2252-2258.	2.1	4
16	Progress on X-ray Absorption Spectroscopy for the Characterization of Perovskite-Type Oxide Electrocatalysts. Energy & Fuels, 2021, 35, 5716-5737.	2.5	24
17	Deep Eutectic Solvents for Boosting Electrochemical Energy Storage and Conversion: A Review and Perspective. Advanced Functional Materials, 2021, 31, 2011102.	7.8	172
18	Two-dimensional bimetallic coordination polymers as bifunctional evolved electrocatalysts for enhanced oxygen evolution reaction and urea oxidation reaction. Journal of Energy Chemistry, 2021, 63, 230-238.	7.1	29

#	Article	IF	CITATIONS
19	Moâ€∤Coâ€N Hybrid Nanosheets Oriented on Hierarchical Nanoporous Cu as Versatile Electrocatalysts for Efficient Water Splitting. Advanced Functional Materials, 2021, 31, 2102285.	7.8	41
20	Simple Construction of Amorphous Monometallic Cobaltâ€Based Selenite Nanoparticles using Ball Milling for Highly Efficient Oxygen Evolution Reaction. ChemCatChem, 2021, 13, 2719-2725.	1.8	5
21	Rational Construction of a N, F Coâ€doped Mesoporous Cobalt Phosphate with Richâ€Oxygen Vacancies for Oxygen Evolution Reaction and Supercapacitors. Chemistry - A European Journal, 2021, 27, 7731-7737.	1.7	7
22	Syntheses, characterizationsna and water-electrolysis properties of 2D α- and β-PdSeO3 bulk and nanosheet semiconductors. Journal of Solid State Chemistry, 2021, 297, 122018.	1.4	1
23	Atomically Structural Regulations of Carbonâ€Based Singleâ€Atom Catalysts for Electrochemical CO ₂ Reduction. Small Methods, 2021, 5, e2100102.	4.6	61
24	Cu ²⁺ -Guided Construction of the Amorphous CoMoO ₃ /Cu Nanocomposite for Highly Efficient Water Electrolysis. ACS Applied Energy Materials, 2021, 4, 6740-6748.	2.5	8
25	Computational screening of bifunctional single atom electrocatalyst based on boron nitride nanoribbon for water splitting. Applied Catalysis A: General, 2021, 622, 118235.	2.2	18
26	Engineering Selfâ€Reconstruction via Flexible Components in Layered Double Hydroxides for Superiorâ€Evolving Performance. Small, 2021, 17, e2101671.	5.2	30
27	Superfast Synthesis of Densely Packed and Ultrafine Pt–Lanthanide@KB via Solventâ€Free Microwave as Efficient Hydrogen Evolution Electrocatalysts. Small, 2021, 17, e2102879.	5.2	27
28	Design of Aligned Porous Carbon Films with Singleâ€Atom Co–N–C Sites for Highâ€Currentâ€Density Hydrogen Generation. Advanced Materials, 2021, 33, e2103533.	11.1	76
29	Recent Progress on Structurally Ordered Materials for Electrocatalysis. Advanced Energy Materials, 2021, 11, 2101937.	10.2	65
30	Programming a " <i>Crab Claw</i> ―like DNA Nanomachine as a Super Signal Amplifier for Ultrasensitive Electrochemical Assay of Hg ²⁺ . Analytical Chemistry, 2021, 93, 12075-12080.	3.2	19
31	Highly Efficient Water Splitting Catalyst Composed of N,P-Doped Porous Carbon Decorated with Surface P-Enriched Ni ₂ P Nanoparticles. ACS Applied Materials & Interfaces, 2022, 14, 20358-20367.	4.0	18
32	Tracing Resistances of Anion Exchange Membrane Water Electrolyzer during Long-term Stability Tests. Journal of Electrochemical Science and Technology, 2021, 12, 358-364.	0.9	2
33	Coupling of Thermal and Electrochemical-Activated Stainless-Steel Mesh as a Highly Robust Electrocatalyst for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2021, 4, 10404-10413.	2.5	10
34	Porous hollow nanorod structured chromium-substituted inverse spinel compound: An efficient oxygen evolution reaction catalyst. Journal of Industrial and Engineering Chemistry, 2021, 101, 178-185.	2.9	8
35	Bimetallic Mixed Clusters Highly Loaded on Porous 2D Graphdiyne for Hydrogen Energy Conversion. Advanced Science, 2021, 8, e2102777.	5.6	27
36	Utilizing tannic acid and polypyrrle to induce reconstruction to optimize the activity of MOF-derived electrocatalyst for water oxidation in seawater. Chemical Engineering Journal, 2022, 430, 132632.	6.6	15

#	Article	IF	CITATIONS
37	Tuning Reconstruction Level of Precatalysts to Design Advanced Oxygen Evolution Electrocatalysts. Molecules, 2021, 26, 5476.	1.7	14
38	Structural Transformation of Heterogeneous Materials for Electrocatalytic Oxygen Evolution Reaction. Chemical Reviews, 2021, 121, 13174-13212.	23.0	262
39	Electronic Structure Modulation of Nanoporous Cobalt Phosphide by Carbon Doping for Alkaline Hydrogen Evolution Reaction. Advanced Functional Materials, 2021, 31, 2107333.	7.8	104
40	The Role of Surface Curvature in Electrocatalysts. Chemistry - A European Journal, 2022, 28, .	1.7	9
41	Regulating Water Reduction Kinetics on MoP Electrocatalysts Through Se Doping for Accelerated Alkaline Hydrogen Production. Frontiers in Chemistry, 2021, 9, 737495.	1.8	6
42	Cerium decorated amorphous ternary Ni-Ce-B catalyst for enhanced electrocatalytic water oxidation. Surfaces and Interfaces, 2021, 26, 101447.	1.5	4
43	Chlorine-assisted synthesis of CuCo2S4@(Cu,Co)2Cl(OH)3 heterostructures with an efficient nanointerface for electrocatalytic oxygen evolution. Journal of Colloid and Interface Science, 2021, 601, 437-445.	5.0	5
44	A general strategy for constructing transition metal Oxide/CeO2 heterostructure with oxygen vacancies toward hydrogen evolution reaction and oxygen evolution reaction. Journal of Power Sources, 2021, 512, 230514.	4.0	32
45	Efficient electrocatalytic water splitting by bimetallic cobalt iron boride nanoparticles with controlled electronic structure. Journal of Colloid and Interface Science, 2021, 604, 650-659.	5.0	32
46	Porous Mn-doped cobalt phosphide nanosheets as highly active electrocatalysts for oxygen evolution reaction. Chemical Engineering Journal, 2021, 425, 131642.	6.6	71
47	Synergistic engineering of morphology and electronic structure in constructing metal-organic framework-derived Ru doped cobalt-nickel oxide heterostructure towards efficient alkaline hydrogen evolution reaction. Chemical Engineering Journal, 2021, 426, 131300.	6.6	20
48	Interfacial engineering of the NiSe2/FeSe2 p-p heterojunction for promoting oxygen evolution reaction and electrocatalytic urea oxidation. Applied Catalysis B: Environmental, 2021, 299, 120638.	10.8	181
49	Unexpected increasing Co valence state of an exsolved catalyst by Mo doping for enhanced oxygen evolution reaction. Chemical Engineering Journal, 2021, 425, 130681.	6.6	11
50	Di-nuclear metal synergistic catalysis: Ni2Mo6S6O2/MoS2 two-dimensional nanosheets for hydrogen evolution reaction. Chemical Engineering Journal, 2022, 428, 131084.	6.6	19
51	Unified surface modification by double heterojunction of MoS2 nanosheets and BiVO4 nanoparticles to enhance the photoelectrochemical water splitting of hematite photoanode. Journal of Alloys and Compounds, 2022, 890, 161802.	2.8	33
52	Tailoring synergetic catalytic interface of VPO/Ni2P to boost hydrogen evolution under alkaline conditions. Journal of Energy Chemistry, 2022, 65, 674-680.	7.1	9
53	Metal–Organic-Framework-Derived Cobalt nanoparticles encapsulated in Nitrogen-Doped carbon nanotubes on Ni foam integrated Electrode: Highly electroactive and durable catalysts for overall water splitting. Journal of Colloid and Interface Science, 2022, 606, 38-46.	5.0	23
54	Structural investigation of metallic Ni nanoparticles with N-doped carbon for efficient oxygen evolution reaction. Chemical Engineering Journal, 2022, 429, 132122.	6.6	35

#	Article	IF	CITATIONS
55	Hierarchical nanostructure with ultrafine MoO3 particles-decorated Co(OH)2 nanosheet array on Ag nanowires for promoted hydrogen evolution reaction. Chemical Engineering Journal, 2022, 429, 132477.	6.6	25
56	Ultralow loading of ruthenium nanoparticles on nitrogen-doped porous carbon enables ultrahigh mass activity for the hydrogen evolution reaction in alkaline media. Catalysis Science and Technology, 2021, 11, 3182-3188.	2.1	11
57	One-step synthesis of amorphous nickel iron phosphide hierarchical nanostructures for water electrolysis with superb stability at high current density. Dalton Transactions, 2021, 50, 8102-8110.	1.6	13
58	Ni _{1â^'2<i>x</i>} Mo _{<i>x</i>} Se nanowires@ammonium nickel phosphate–MoO _{<i>x</i>} heterostructures as a high performance electrocatalyst for water splitting. Sustainable Energy and Fuels, 2021, 5, 5581-5593.	2.5	5
59	Controlled assembly of cobalt embedded N-doped graphene nanosheets (Co@NGr) by pyrolysis of a mixed ligand Co(<scp>ii</scp>) MOF as a sacrificial template for high-performance electrocatalysts. RSC Advances, 2021, 11, 21179-21188.	1.7	9
60	Power-to-methanol process: a review of electrolysis, methanol catalysts, kinetics, reactor designs and modelling, process integration, optimisation, and techno-economics. Sustainable Energy and Fuels, 2021, 5, 3490-3569.	2.5	41
61	Promoting water splitting on arrayed molybdenum carbide nanosheets with electronic modulation. Journal of Materials Chemistry A, 2021, 9, 21440-21447.	5.2	21
62	Recent Progress of Metal Organic Frameworksâ€Based Electrocatalysts for Hydrogen Evolution, Oxygen Evolution, and Oxygen Reduction Reaction. Energy and Environmental Materials, 2022, 5, 1084-1102.	7.3	24
63	1D/3D Heterogeneous Assembling Body as Trifunctional Electrocatalysts Enabling Zinc–Air Battery and Selfâ€Powered Overall Water Splitting. Advanced Functional Materials, 2022, 32, .	7.8	88
65	Facile Synthesis of Copper Oxide-Cobalt Oxide/Nitrogen-Doped Carbon (Cu2O-Co3O4/CN) Composite for Efficient Water Splitting. Applied Sciences (Switzerland), 2021, 11, 9974.	1.3	25
66	Design Principles for Tungsten Oxide Electrocatalysts for Water Splitting. ChemElectroChem, 2021, 8, 4427-4440.	1.7	15
67	Ultrahighâ€Currentâ€Density and Longâ€Termâ€Durability Electrocatalysts for Water Splitting. Small, 2022, 18, e2104513.	5.2	49
68	Structural Variations of Metal Oxideâ€Based Electrocatalysts for Oxygen Evolution Reaction. Small Methods, 2021, 5, e2100834.	4.6	42
69	Surface phosphorization of Ni–Co–S as an efficient bifunctional electrocatalyst for full water splitting. Dalton Transactions, 2021, 50, 16578-16586.	1.6	17
70	Highâ€Entropy Alloys for Electrocatalysis: Design, Characterization, and Applications. Small, 2022, 18, e2104339.	5.2	82
71	Carbon Nanotubesâ€Based Electrocatalysts: Structural Regulation, Support Effect, and Synchrotronâ€Based Characterization. Advanced Functional Materials, 2022, 32, 2106684.	7.8	14
72	Mesoporous Carbon Materials for Electrochemical Energy Storage and Conversion. ChemElectroChem, 2022, 9, .	1.7	9
73	In situ studies of energy-related electrochemical reactions using Raman and X-ray absorption spectroscopy. Chinese Journal of Catalysis, 2022, 43, 33-46.	6.9	28

#	Article	IF	CITATIONS
74	<i>A</i> '– <i>B</i> Intersite Cooperation-Enhanced Water Splitting in Quadruple Perovskite Oxide CaCu ₃ Ir ₄ O ₁₂ . Chemistry of Materials, 2021, 33, 9295-9305.	3.2	11
75	An overview on advances in design and development of materials for electrochemical generation of hydrogen and oxygen. Materials Today Energy, 2022, 23, 100902.	2.5	33
76	New insights into cations effect in oxygen evolution reaction. Chemical Engineering Journal, 2021, 433, 133518.	6.6	0
77	Metal-containing covalent organic framework: a new type of photo/electrocatalyst. Rare Metals, 2022, 41, 1160-1175.	3.6	16
78	Single-Atom Engineering to Ignite 2D Transition Metal Dichalcogenide Based Catalysis: Fundamentals, Progress, and Beyond. Chemical Reviews, 2022, 122, 1273-1348.	23.0	104
79	Constructing a Hetero-interface Composed of Oxygen Vacancy-Enriched Co ₃ O ₄ and Crystalline–Amorphous NiFe-LDH for Oxygen Evolution Reaction. ACS Catalysis, 2021, 11, 14338-14351.	5.5	134
81	Heterostructured nickel/vanadium nitrides composites for efficient electrocatalytic hydrogen evolution in neutral medium. Journal of Power Sources, 2022, 521, 230934.	4.0	22
82	CoMoO4 enhanced anodized cobalt oxide nanotube as an efficient electrocatalyst for hydrogen evolution reaction. Applied Surface Science, 2022, 579, 152128.	3.1	9
83	Bifunctional electrocatalyst of CoxFey-C for overall water splitting. Journal of Alloys and Compounds, 2022, 897, 163126.	2.8	9
84	Rational design of metal oxide catalysts for electrocatalytic water splitting. Nanoscale, 2021, 13, 20324-20353.	2.8	38
85	Revealing Improved Electrocatalytic Performances of Electrochemically Synthesized S and Ni Doped Fe ₂ O ₃ Nanostructure Interfaces. SSRN Electronic Journal, 0, , .	0.4	0
86	Dynamics and control of active sites in hierarchically nanostructured cobalt phosphide/chalcogenide-based electrocatalysts for water splitting. Energy and Environmental Science, 2022, 15, 727-739.	15.6	96
87	Poly(ionic liquid)/graphene oxide-derived porous carbon materials as highly efficient electrocatalysts for hydrogen evolution reaction. Ionics, 2022, 28, 1311-1321.	1.2	3
88	In situ/operando analysis of surface reconstruction of transition metal-based oxygen evolution electrocatalysts. Cell Reports Physical Science, 2022, 3, 100729.	2.8	29
89	Swapping Catalytic Active Sites from Cationic Ni to Anionic S in Nickel Sulfide Enables More Efficient Alkaline Hydrogen Generation. Advanced Energy Materials, 2022, 12, .	10.2	55
90	A New Photoelectrochemical Reactor with Special Photocathode Design for Hydrogen Production. Advanced Engineering Materials, 0, , 2101509.	1.6	0
91	Interfacial Water Enrichment and Reorientation on Pt/C Catalysts Induced by Metal Oxides Participation for Boosting the Hydrogen Evolution Reaction. Journal of Physical Chemistry Letters, 2022, 13, 1069-1076.	2.1	15
92	Integration of heterointerface and porosity engineering to achieve efficient hydrogen evolution of 2D porous NiMoN nanobelts coupled with Ni particles. Electrochimica Acta, 2022, 403, 139702.	2.6	12

#	Article	IF	CITATIONS
93	Toward Excellence of Electrocatalyst Design by Emerging Descriptorâ€Oriented Machine Learning. Advanced Functional Materials, 2022, 32, .	7.8	43
94	Heterostructural MoS ₂ /NiS nanoflowers <i>via</i> precise interface modification for enhancing electrocatalytic hydrogen evolution. New Journal of Chemistry, 2022, 46, 5505-5514.	1.4	8
95	Activating the lattice oxygen oxidation mechanism in amorphous molybdenum cobalt oxide nanosheets for water oxidation. Journal of Materials Chemistry A, 2022, 10, 3659-3666.	5.2	24
96	In Situ Investigation on Lifeâ€Time Dynamic Structure–Performance Correlation Toward Electrocatalyst Service Behavior in Water Splitting. Advanced Functional Materials, 2022, 32, .	7.8	21
97	Boosted Oxygen Evolution Reaction by Controllable Fluoridation on Porous Cobalt–Iron Nanoflakes. Energy & Fuels, 0, , .	2.5	0
98	Metal substrates activate NiFe(oxy)hydroxide catalysts for efficient oxygen evolution reaction in alkaline media. Journal of Alloys and Compounds, 2022, 901, 163689.	2.8	16
99	Electronic modulation of Ni2P through anion and cation substitution toward highly efficient oxygen evolution. Science China Materials, 2022, 65, 1522-1530.	3.5	4
100	Design Strategies for Single-Atom Iron Electrocatalysts toward Efficient Oxygen Reduction. Journal of Physical Chemistry Letters, 2022, 13, 168-174.	2.1	22
101	In-Situ Single-Phase Derived Nicop/Cop Hetero-Nanoparticles on Aminated-Carbon Nanotubes as Highly Efficient Ph-Universal Electrocatalysts for Hydrogen Evolution. SSRN Electronic Journal, 0, , .	0.4	0
102	Progress on perovskite materials for energy application. Results in Chemistry, 2022, 4, 100321.	0.9	25
103	Computational Screening of Single Transition Metal Atom Embedded in Nitrogen Doped Graphene for Ch4 Detection. SSRN Electronic Journal, 0, , .	0.4	0
104	Electrochemistry under confinement. Chemical Society Reviews, 2022, 51, 2491-2543.	18.7	52
105	A review of hetero-structured Ni-based active catalysts for urea electrolysis. Journal of Materials Chemistry A, 2022, 10, 9308-9326.	5.2	67
106	Hydrogen Evolution Linked to Selective Oxidation of Glycerol over CoMoO ₄ —A Theoretically Predicted Catalyst. Advanced Energy Materials, 2022, 12, .	10.2	37
107	Anodized Steel: The Most Promising Bifunctional Electrocatalyst for Alkaline Water Electrolysis in Industry. Advanced Functional Materials, 2022, 32, .	7.8	37
108	Recent advances in rare-earth-based materials for electrocatalysis. Chem Catalysis, 2022, 2, 967-1008.	2.9	75
109	Amorphous–Amorphous Coupling Enhancing the Oxygen Evolution Reaction Activity and Stability of the NiFe-Based Catalyst. ACS Applied Materials & Interfaces, 2022, 14, 15205-15213.	4.0	16
110	Interface construction of NiCo LDH/NiCoS based on the 2D ultrathin nanosheet towards oxygen evolution reaction. Nano Research, 2022, 15, 4986-4995.	5.8	71

#	Article	IF	CITATIONS
111	Emerging Ultrahighâ€Density Singleâ€Atom Catalysts for Versatile Heterogeneous Catalysis Applications: Redefinition, Recent Progress, and Challenges. Small Structures, 2022, 3, .	6.9	41
112	Empirical approach for configuring highâ€entropy catalysts in alkaline water electrolysis. International Journal of Energy Research, 2022, 46, 9938-9947.	2.2	5
113	Disclosing the active integration structure and robustness of a pseudo-tri-component electrocatalyst toward alkaline hydrogen evolution. Journal of Energy Chemistry, 2022, 72, 210-216.	7.1	11
114	Chromium-Modified Ultrathin CoFe LDH as High-Efficiency Electrode for Hydrogen Evolution Reaction. Nanomaterials, 2022, 12, 1227.	1.9	29
115	Oxygen Vacancyâ€Enhanced Ternary Nickelâ€Tungstenâ€Cerium Metal Alloyâ€Oxides for Efficient Alkaline Electrochemical Full Cell Water Splitting Using Anion Exchange Membrane. ChemElectroChem, 2022, 9, .	1.7	6
116	Revealing improved electrocatalytic performances of electrochemically synthesized S and Ni doped Fe2O3 nanostructure interfaces. Applied Surface Science, 2022, 588, 152894.	3.1	6
117	A facile approach to tailor electrocatalytic properties of MnO2 through tuning phase transition, surface morphology and band structure. Chemical Engineering Journal, 2022, 438, 135561.	6.6	21
118	Computational screening of single transition metal atom embedded in nitrogen doped graphene for CH4 detection. Materials Today Communications, 2022, 31, 103383.	0.9	0
119	Co3W intermetallic compound as an efficient hydrogen evolution electrocatalyst for water splitting and electrocoagulation in non-acidic media. Chemical Engineering Journal, 2022, 438, 135517.	6.6	8
120	In-situ single-phase derived NiCoP/CoP hetero-nanoparticles on aminated-carbon nanotubes as highly efficient pH-universal electrocatalysts for hydrogen evolution. Electrochimica Acta, 2022, 416, 140280.	2.6	11
121	In-situ fabrication of NixSey/MoSe2 hollow rod array for enhanced catalysts for efficient hydrogen evolution reaction. Journal of Colloid and Interface Science, 2022, 617, 611-619.	5.0	14
122	One‣tep Construction of Ordered Sulfurâ€Terminated Tantalum Carbide MXene for Efficient Overall Water Splitting. Small Structures, 2022, 3, .	6.9	33
123	Porous carbon cubes decorated with cobalt nanoparticles for oxygen evolution catalysis in Znâ€air batteries. International Journal of Energy Research, 2022, 46, 6755-6765.	2.2	1
124	Review of the Hydrogen Evolution Reaction—A Basic Approach. Energies, 2021, 14, 8535.	1.6	22
125	Manipulation on active electronic states of metastable phase β-NiMoO4 for large current density hydrogen evolution. Nature Communications, 2021, 12, 5960.	5.8	86
126	State of the Active Site in La _{1–<i>x</i>} Sr _{<i>x</i>} CoO _{3â[~]δ} Under Oxygen Evolution Reaction Investigated by Total-Reflection Fluorescence X-Ray Absorption Spectroscopy. ACS Applied Energy Materials, 2022, 5, 4108-4116.	2.5	4
127	Several Key Factors for Efficient Electrocatalytic Water Splitting: Active Site Coordination Environment, Morphology Changes and Intermediates Identification. Chemistry - A European Journal, 2022, 28, .	1.7	5
128	Copper foam-derived electrodes as efficient electrocatalysts for conventional and hybrid water electrolysis. Materials Reports Energy, 2022, 2, 100092.	1.7	9

#	Article	IF	CITATIONS
129	Heterointerface and Defect Dual Engineering in a Superhydrophilic Ni ₂ P/WO _{2.83} Microsphere for Boosting Alkaline Hydrogen Evolution Reaction at High Current Density. ACS Applied Materials & Interfaces, 2022, 14, 18816-18824.	4.0	24
130	Mg/seawater batteries driven self-powered direct seawater electrolysis systems for hydrogen production. Nano Energy, 2022, 98, 107295.	8.2	34
131	Obstructed Surface States as the Descriptor for Predicting Catalytic Active Sites in Inorganic Crystalline Materials. Advanced Materials, 2022, 34, e2201328.	11.1	18
132	Precursor-converted formation of bimetallic–organic framework nanosheets for efficient oxygen evolution reaction. Inorganic Chemistry Frontiers, 2022, 9, 3148-3155.	3.0	3
133	High-performance seawater oxidation by a homogeneous multimetallic layered double hydroxide electrocatalyst. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2202382119.	3.3	51
134	Ni-Mo based metal/oxide heterostructured nanosheets with largely exposed interfacial atoms for overall water-splitting. Applied Surface Science, 2022, 597, 153597.	3.1	12
135	A comparative study on hybrid power-to-liquids/power-to-gas processes coupled with different water electrolysis technologies. Energy Conversion and Management, 2022, 263, 115671.	4.4	18
136	Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chemical Society Reviews, 2022, 51, 4583-4762.	18.7	453
137	Construct MnxCoyO4/Ti Electrocatalysts for Efficient Bifunctional Water Splitting. Dalton Transactions, 0, , .	1.6	1
138	Modulating the Electronic Structure of Mo Species by Forming Cr2O3/MoN Interface for Boosted Electrocatalytic HER Performance. Journal of Electroanalytical Chemistry, 2022, , 116439.	1.9	0
139	Amorphous Ni-P-S@FeOOH/CC catalyst for high oxygen evolution Activity: Preparation, characterization and modeling. Chemical Engineering Science, 2022, 258, 117761.	1.9	9
140	ƕFe3n@N-Doped Carbon Core-Shell Nanoparticles Encapsulated in Bamboo-Like Carbon Nanotubes for Oxygen Reduction Reaction Electrocatalyst. SSRN Electronic Journal, 0, , .	0.4	0
141	Conductive Co-triazole metal-organic framework exploited as an oxygen evolution electrocatalyst. Chemical Communications, 2022, 58, 7124-7127.	2.2	9
142	Highly efficient OER catalyst enabled by <i>in situ</i> generated manganese spinel on polyaniline with strong coordination. Dalton Transactions, 2022, 51, 9116-9126.	1.6	8
143	Electrochemical Water Splitting: Bridging the Gaps Between Fundamental Research and Industrial Applications. Energy and Environmental Materials, 2023, 6, .	7.3	89
144	Bimetallic Cu/Fe MOF-Based Nanosheet Film via Binder-Free Drop-Casting Route: A Highly Efficient Urea-Electrolysis Catalyst. Nanomaterials, 2022, 12, 1916.	1.9	33
145	One-pot electrodeposition synthesis of NiFe-phosphate/phosphide hybrid nanosheet arrays for efficient water splitting. Applied Surface Science, 2022, 598, 153717.	3.1	10
146	Dynamic Surface Evolution of Metal Oxides for Autonomous Adaptation to Catalytic Reaction Environments. Advanced Materials, 2023, 35, .	11.1	1

#	Article	IF	CITATIONS
147	Substitutional Doping Engineering toward W ₂ N Nanorod for Hydrogen Evolution Reaction at High Current Density. , 2022, 4, 1374-1380.		21
148	Double Synergetic Feco-Nanoparticles and Single Atoms Embedded in N-Doped Carbon Nanotube Arrays as Efficient Bifunctional Catalyst for High-Performance Zinc-Air Batteries. SSRN Electronic Journal, 0, , .	0.4	0
149	Non-noble electrocatalysts discovered by scaling relations of Gibbs-free energies of key oxygen adsorbates in water oxidation. Journal of Materials Chemistry A, O, , .	5.2	4
150	Kinetic Regulation Engineering and In‣itu Spectroscopy Studies on Transitionâ€Metalâ€Based Electrocatalysts for Water Splitting. ChemElectroChem, 2022, 9, .	1.7	4
151	Efficient and Durable Anion Exchange Membrane Water Electrolysis for a Commercially Available Electrolyzer Stack using Alkaline Electrolyte. ACS Energy Letters, 2022, 7, 2576-2583.	8.8	44
152	Rational Design of an FeCo ₂ O ₄ @FeCo ₂ S ₄ Heterostructure as an Efficient Bifunctional Electrocatalyst for Zn–Air Batteries. ACS Applied Energy Materials, 2022, 5, 9742-9749.	2.5	4
153	Metalâ€Organicâ€Frameworkâ€derived Co Nanoparticles Embedded in P, Nâ€Dualâ€doped Porous Carbon/rGO Catalyst for Water Splitting and Oxygen Reduction. ChemNanoMat, 2022, 8, .	1.5	2
154	Surface Reconstruction of Water Splitting Electrocatalysts. Advanced Energy Materials, 2022, 12, .	10.2	111
155	Bixbyite-type Ln2O3 as promoters of metallic Ni for alkaline electrocatalytic hydrogen evolution. Nature Communications, 2022, 13, .	5.8	62
156	Insight into the boosted activity of TiO2–CoP composites for hydrogen evolution reaction: Accelerated mass transfer, optimized interfacial water, and promoted intrinsic activity. Journal of Energy Chemistry, 2022, 74, 111-120.	7.1	10
157	Chameleon‣ike Reconstruction on Redox Catalysts Adaptive to Alkali Water Electrolysis. Small, 2022, 18, .	5.2	9
158	Bi/BiFe(oxy)hydroxide for sustainable lattice oxygen-boosted electrocatalysis at a practical high current density. Applied Catalysis B: Environmental, 2022, 317, 121685.	10.8	7
159	Understanding of Oxygen Redox in the Oxygen Evolution Reaction. Advanced Materials, 2022, 34, .	11.1	109
160	Self-Supported Bimetallic Phosphide Heterojunction-Integrated Electrode Promoting High-Performance Alkaline Anion-Exchange Membrane Water Electrolysis. ACS Sustainable Chemistry and Engineering, 2022, 10, 9956-9968.	3.2	16
161	Macro/Microâ€Environment RegulatingÂCarbonâ€Supported Singleâ€Atom Catalysts for Hydrogen/Oxygen Conversion Reactions. Small, 2022, 18, .	5.2	37
162	Metallic inverse opal frameworks as catalyst supports for highâ€performance water electrooxidation. ChemSusChem, 0, , .	3.6	3
163	Interfacial Engineering of Heterostructured Co(OH) ₂ /NiP _x Nanosheets for Enhanced Oxygen Evolution Reaction. Advanced Functional Materials, 2022, 32, .	7.8	43
164	Insights into Heterogeneous Catalysts under Reaction Conditions by In Situ/Operando Electron Microscopy. Advanced Energy Materials, 2022, 12, .	10.2	13

# 165	ARTICLE Electronegativity Enhanced Strong Metal–Support Interaction in Ru@F–Ni ₃ N for Enhanced Alkaline Hydrogen Evolution. ACS Applied Materials & Interfaces, 2022, 14, 36688-36699.	IF 4.0	Citations
166	Hydrolysis of NH ₃ BH ₃ by N-Doped Graphene Quantum Dots-Loaded Nonprecious Bimetallic Nanoparticles (Co-Ni/N-GQDs) for Hydrogen Evolution. Nano, 2022, 17, .	0.5	2
167	Highly Conductive and Mechanically Robust NiFe Alloy Aerogels: An Exceptionally Active and Durable Water Oxidation Catalyst. Small, 2022, 18, .	5.2	9
168	Rationally Designing Efficient Electrocatalysts for Direct Seawater Splitting: Challenges, Achievements, and Promises. Angewandte Chemie - International Edition, 2022, 61, .	7.2	63
169	Rationally Designing Efficient Electrocatalysts for Direct Seawater Splitting: Challenges, Achievements, and Promises. Angewandte Chemie, 2022, 134, .	1.6	4
170	High-performance bifunctional electrocatalysts of CoFe-LDH/NiCo2O4 heterostructure supported on nickel foam for effective overall water splitting. Journal of Alloys and Compounds, 2022, 926, 166846.	2.8	18
171	Operando spectroscopies unveil interfacial FeOOH induced highly reactive β-Ni(Fe)OOH for efficient oxygen evolution. Applied Catalysis B: Environmental, 2022, 318, 121825.	10.8	71
172	Gradient boosting algorithm for current-voltage prediction of fuel cells. Electrochimica Acta, 2022, 432, 141148.	2.6	2
173	Ϊμ-Fe3N@N-doped carbon core-shell nanoparticles encapsulated in bamboo-like carbon nanotubes for oxygen reduction reaction electrocatalyst. Materials Chemistry and Physics, 2022, 291, 126769.	2.0	2
174	Studies on two phenoxo-bridged homopolynuclear Cu(II) bis(salamo) type complexes based on theoretical calculations and fluorescence properties. Polyhedron, 2022, 226, 116113.	1.0	38
175	The polyoxometalates mediated preparation of phosphate-modified NiMoO4â^'x with abundant O-vacancies for H2 production via urea electrolysis. Journal of Colloid and Interface Science, 2023, 629, 297-309.	5.0	35
176	Valence-variable thiospinels for ampere-scale water electrolysis. Catalysis Science and Technology, 2022, 12, 6875-6882.	2.1	3
177	Benchmarking in electrocatalysis. , 2023, , 492-550.		2
178	Heterointerface and Oxygen Vacancy of Co(Oh)2/Con to Synergistically Boost Alkaline Water Splitting. SSRN Electronic Journal, 0, , .	0.4	0
179	A processable Prussian blue analogue-mediated route to promote alkaline electrocatalytic water splitting over bifunctional copper phosphide. Dalton Transactions, 2022, 51, 13451-13461.	1.6	2
180	Assembled cobalt phosphide nanoparticles on carbon nanofibers as a bifunctional catalyst for hydrogen evolution reaction and oxygen evolution reaction. Sustainable Energy and Fuels, 2022, 6, 5000-5007.	2.5	8
181	Boosting efficient alkaline fresh water and seawater electrolysis <i>via</i> electrochemical reconstruction. Energy and Environmental Science, 2022, 15, 3945-3957.	15.6	90
182	Highâ€Entropy Catalyst—A Novel Platform for Electrochemical Water Splitting. Advanced Functional Materials, 2022, 32, .	7.8	35

#	Article	IF	Citations
183	Carbon supported NiRu nanoparticles as effective hydrogen evolution catalysts for anion exchange membrane water electrolyzers. JPhys Energy, 2022, 4, 044007.	2.3	4
184	Ultrafine nanoporous intermetallic catalysts by high-temperature liquid metal dealloying for electrochemical hydrogen production. Nature Communications, 2022, 13, .	5.8	40
185	Constructing a Highly Active Amorphous WO ₃ /Crystalline CoP Interface for Enhanced Hydrogen Evolution at Different pH Values. ACS Applied Energy Materials, 2022, 5, 10794-10801.	2.5	5
186	Optimization of Proton Exchange Membrane Electrolyzer Cell Design Using Machine Learning. Energies, 2022, 15, 6657.	1.6	10
187	Surface reconstruction-derived heterostructures for electrochemical water splitting. EnergyChem, 2023, 5, 100091.	10.1	36
188	Tuning the Charge Transport Property and Photocatalytic Activity of Anthracene-Based 1D π–d Conjugated Coordination Polymers by Interlayer Stacking. ACS Applied Materials & Interfaces, 2022, 14, 42171-42177.	4.0	8
189	Self-Powered Seawater Electrolysis Based on a Triboelectric Nanogenerator for Hydrogen Production. ACS Nano, 2022, 16, 15286-15296.	7.3	36
190	Novel (Ptâ€O <i>_x</i>)â€(Coâ€O <i>_y</i>) Nonbonding Active Structures on Defective Carbon from Oxygenâ€Rich Coal Tar Pitch for Efficient HER and ORR. Advanced Materials, 2022, 34, .	11.1	35
191	Double synergetic FeCo-nanoparticles and single atoms embedded in N-doped carbon nanotube arrays as efficient bifunctional catalyst for high-performance zinc-air batteries. Materials Today Energy, 2022, 29, 101138.	2.5	6
192	Perovskite-based electrocatalysts for oxygen evolution reaction in alkaline media: A mini review. Frontiers in Chemistry, 0, 10, .	1.8	9
193	Engineering active sites on hierarchical transition bimetal oxyhydride/bicarbonate heterostructure for oxygen evolution catalysis in seawater splitting. Nano Research, 2023, 16, 2094-2101.	5.8	8
194	Rational design and synthesis of cerium dioxide-based nanocomposites. Nano Research, 2023, 16, 3622-3640.	5.8	3
195	Non-metal/metalloid modification of perovskite oxide enables lattice oxygen participation in accelerating oxygen evolution activity. International Journal of Hydrogen Energy, 2022, , .	3.8	2
196	Nanoscale hetero-interfaces for electrocatalytic and photocatalytic water splitting. Science and Technology of Advanced Materials, 2022, 23, 587-616.	2.8	4
197	Accelerating the surface reconstruction of cobalt phosphide via dual-doping engineering for high-performance water electrolysis. Journal of Power Sources, 2022, 551, 232181.	4.0	7
198	One-pot construction of CoSe nanoparticles anchored on single-atomic-Co doped carbon for pH-universal hydrogen evolution. Materials Chemistry Frontiers, 2022, 6, 3577-3588.	3.2	6
199	Enhancing the catalytic OER performance of MoS ₂ <i> via</i> Fe and Co doping. Nanoscale, 2022, 14, 16148-16155.	2.8	24
200	A dual-strategy of interface and reconstruction engineering to boost efficient alkaline water and seawater oxidation. Sustainable Energy and Fuels, 2022, 6, 5521-5530.	2.5	2

ARTICLE IF CITATIONS Emerging chemical driving force in electrocatalytic water splitting. EcoMat, 2023, 5, . 201 6.8 18 Phosphorus-Rich Ruthenium Phosphide Embedded on a 3D Porous Dual-Doped Graphitic Carbon for Hydrogen Evolution Reaction. Nanomaterials, 2022, 12, 3597. Evaluation of HER and OER electrocatalytic activity over RuO2–Fe2O3 nanocomposite deposited on 203 3.8 14 HrGO nanosheets. International Journal of Hydrogen Energy, 2023, 48, 1813-1830. Turning Electrocatalytic Activity Sites for the Oxygen Evolution Reaction on Brownmillerite to 204 Oxyhydroxide. ACS Ápplied Materials & amp; Intérfaces, 2022, 14, 47560-47567. Activated Ni–O–Ir Enhanced Electron Transfer for Boosting Oxygen Evolution Reaction Activity of 205 5.2 7 LaNi_{1â€x}Ir_xO₃. Small, 2022, 18, . Toward Superb Perovskite Oxide Electrocatalysts: Engineering of Coupled Nanocomposites. Small, 5.2 2022, 18, . An overview of water electrolysis technologies for green hydrogen production. Energy Reports, 207 202 2.52022, 8, 13793-13813. Machine learning-based simulation for proton exchange membrane electrolyzer cell. Energy Reports, 208 2.5 2022, 8, 13425-13437. Design and Preparation of NiFe2O4@FeOOH Composite Electrocatalyst for Highly Efficient and Stable 209 1.7 3 Oxygen Evolution Reaction. Molecules, 2022, 27, 7438. Stable p-block metals electronic perturbation in PtM@CNT (M=Ga, In, Pb and Bi) for acidic seawater hydrogen production at commercial current densities. Applied Catalysis B: Environmental, 2023, 322, 10.8 122100. Steam-driven crystalline-amorphous coupling design of homogenous metal hydroxides for oxygen 211 10.8 4 evolution reaction. Applied Catalysis B: Environmental, 2023, 323, 122165. Modification of spinel MnCo2O4 nanowire with NiFe-layered double hydroxide nanoflakes for stable 5.0 seawater oxidation. Journal of Colloid and Interface Sciénce, 2023, 632, 54-64. Constructing collaborative interface between Mo2N and NiS as efficient bifunctional 213 3.1 12 electrocatalysts for overall water splitting. Applied Surface Science, 2023, 611, 155656. Reconstructured Electrocatalysts during Oxygen Evolution Reaction under Alkaline Electrolytes. 214 1.7 Chemistry - A European Journal, 2023, 29, . Anodized AlCoCrFeNi high-entropy alloy for alkaline water electrolysis with ultra-high performance. 215 3.53 Science China Materials, 0, , . Tailoring of ZnFe2O4-ZrO2-based nanoarchitectures catalyst for supercapacitor electrode material 23 and methanol oxidation reaction. Fuel, 2023, 334, 126685. The Edge Effects Boosting Hydrogen Evolution Performance of Platinum/Transition Bimetallic 217 7.8 18 Phosphide Hybrid Electrocatalysts. Advanced Functional Materials, 2023, 33, . Surface conductance analysis of X-MoS2 (XÂ=ÂFe, Co, Ni) prepared on graphite felt as bifunctional catalysts for the hydrogen/oxidation evolution reactions. Electrochimica Acta, 2023, 439, 141596.

#	Article	IF	CITATIONS
219	Carbon paper supported gold nanoflowers for tunable glycerol electrooxidation boosting efficient hydrogen evolution. Carbon, 2023, 203, 88-96.	5.4	9
220	Transformation mechanism of high-valence metal sites for the optimization of Co- and Ni-based OER catalysts in an alkaline environment: recent progress and perspectives. Nanoscale, 2023, 15, 450-460.	2.8	12
221	Recent progress on bulk Fe-based alloys for industrial alkaline water electrolysis. Journal of Materials Chemistry A, 2023, 11, 1551-1574.	5.2	9
222	Nickel iron alloy embedded, nitrogen doped porous carbon catalyst for efficient water electrolysis. Applied Catalysis A: General, 2023, 650, 118984.	2.2	7
223	Double surface modification of graphite felt using a single facile step for electrolytic hydrogen production assisted by urea. Electrochimica Acta, 2023, 440, 141726.	2.6	8
224	Super-exchange effect induced by early 3d metal doping on NiFe2O4(0 0 1) surface for oxygen evolution reaction. Journal of Energy Chemistry, 2023, 78, 21-29.	7.1	5
225	Calix[n]arene-Based Coordination Cage and Its Application to Electrocatalysis. ACS Symposium Series, 0, , 137-154.	0.5	0
226	Minireview: Ni–Fe and Ni–Co Metal–Organic Frameworks for Electrocatalytic Waterâ€Splitting Reactions. Small Structures, 2023, 4, .	6.9	17
227	Water induced ultrathin Mo2C nanosheets with high-density grain boundaries for enhanced hydrogen evolution. Nature Communications, 2022, 13, .	5.8	44
228	Accelerating water dissociation at carbon supported nanoscale Ni/NiO heterojunction electrocatalysts for high-efficiency alkaline hydrogen evolution. Nano Research, 2023, 16, 4742-4750.	5.8	8
229	Waste-Derived Catalysts for Water Electrolysis: Circular Economy-Driven Sustainable Green Hydrogen Energy. Nano-Micro Letters, 2023, 15, .	14.4	53
230	High entropy materials based electrocatalysts for water splitting: Synthesis strategies, catalytic mechanisms, and prospects. Nano Research, 2023, 16, 4411-4437.	5.8	16
231	Synchronous regulation of morphology and electronic structure of FeNi-P nanosheet arrays by Zn implantation for robust overall water splitting. Nano Research, 2023, 16, 5733-5742.	5.8	4
232	Structure Engineering and Electronic Modulation of Transition Metal Interstitial Compounds for Electrocatalytic Water Splitting. Accounts of Materials Research, 2023, 4, 42-56.	5.9	20
233	Solar utilization beyond photosynthesis. Nature Reviews Chemistry, 2023, 7, 91-105.	13.8	54
234	Research on Hydrogen Production by Water Electrolysis Using a Rotating Magnetic Field. Energies, 2023, 16, 86.	1.6	2
235	Recent advances in transition metal layered double hydroxide based materials as efficient electrocatalysts. Journal of Industrial and Engineering Chemistry, 2023, 120, 27-46.	2.9	10
236	CoO _{<i>x</i>} Supported on αâ€MoC for Efficient Electrocatalytic Oxygen Evolution Reaction. ChemElectroChem, 2022, 9, .	1.7	2

#	Article	IF	Citations
237	Reconstruction of a surficial P-rich layer on Ni-P electrocatalysts for efficient hydrogen evolution applicable in acidic and alkaline media. Chemical Engineering Journal, 2023, 457, 141138.	6.6	6
238	Carbon Nanotube Supported Molybdenum Carbide as Robust Electrocatalyst for Efficient Hydrogen Evolution Reaction. Molecules, 2023, 28, 192.	1.7	3
239	Atomic Aerogel Materials (or Singleâ€Atom Aerogels): An Interesting New Paradigm in Materials Science and Catalysis Science. Advanced Materials, 2023, 35, .	11.1	19
240	Developments and Challenges of Catalytic Materials for Green Hydrogen Production. , 0, 1, .		2
241	Boosting Hydrogen Production via Selective Twoâ€electron Mild Electrochemical Oxidation of Tetrahydroisoquinolines Completely to Dihydroisoquinolines. Angewandte Chemie, 2023, 135, .	1.6	0
242	Boosting Hydrogen Production via Selective Twoâ€electron Mild Electrochemical Oxidation of Tetrahydroisoquinolines Completely to Dihydroisoquinolines. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
243	The economic analysis for hydrogen production cost towards electrolyzer technologies: Current and future competitiveness. International Journal of Hydrogen Energy, 2023, 48, 13767-13779.	3.8	23
244	Lattice‣train Engineering for Heterogenous Electrocatalytic Oxygen Evolution Reaction. Advanced Materials, 2023, 35, .	11.1	34
245	Optimization of oxygen evolution activity by tuning e*g band broadening in nickel oxyhydroxide. Energy and Environmental Science, 2023, 16, 641-652.	15.6	31
246	Cocatalyst Engineering with Robust Tunable Carbonâ€Encapsulated Moâ€Rich Mo/Mo ₂ C Heterostructure Nanoparticle for Efficient Photocatalytic Hydrogen Evolution. Advanced Functional Materials, 2023, 33, .	7.8	18
247	Trace Ru atoms implanted into a Ni/Fe-based oxalate solid-solution-like with high-indexed facets for energy-saving overall seawater electrolysis assisted by hydrazine. Applied Catalysis B: Environmental, 2023, 325, 122354.	10.8	13
248	3D Interconnected Honeycomb-Like Multifunctional Catalyst for Zn–Air Batteries. Nano-Micro Letters, 2023, 15, .	14.4	6
249	Dual hydrogen production from electrocatalytic water reduction coupled with formaldehyde oxidation via a copper-silver electrocatalyst. Nature Communications, 2023, 14, .	5.8	38
250	2D Metal–Organic Frameworks as Competent Electrocatalysts for Water Splitting. Small, 2023, 19, .	5.2	31
252	Facile surface defect engineering on perovskite oxides for enhanced OER performance. Dalton Transactions, 2023, 52, 4207-4213.	1.6	5
253	Progress in electrocatalytic hydrogen evolution of transition metal alloys: synthesis, structure, and mechanism analysis. Nanoscale, 2023, 15, 7202-7226.	2.8	8
254	Selfâ€Adaptive Electronic Structure of Amphoteric Conjugated Ligandâ€Modified 3 d Metalâ^'C ₃ N ₄ Smart Electrocatalyst by pH Selfâ€Response Realizing Electrocatalytic Selfâ€Adjustment. ChemSusChem, 2023, 16, .	3.6	2
255	Syntheses and applications of single-atom catalysts for electrochemical energy conversion reactions. Chinese Journal of Catalysis, 2023, 47, 32-66.	6.9	9

#	Article	IF	CITATIONS
256	Magnetic field Pre-polarization enhances the efficiency of alkaline water electrolysis for hydrogen production. Energy Conversion and Management, 2023, 283, 116906.	4.4	6
257	Engineering d-band center of FeN4 moieties for efficient oxygen reduction reaction electrocatalysts. Energy Storage Materials, 2023, 59, 102764.	9.5	10
258	Atomic phosphorus induces tunable lattice strain in high entropy alloys and boosts alkaline water splitting. Nano Energy, 2023, 110, 108380.	8.2	18
259	Heterostructured CNT-RuSx nanomaterials for efficient electrochemical hydrogen evolution reaction. Applied Catalysis B: Environmental, 2023, 331, 122681.	10.8	5
260	Anion assisted completely reconfigured manganese oxides with optimal proton adsorption for boosting acidic hydrogen evolution reaction. Chemical Engineering Journal, 2023, 465, 143006.	6.6	2
261	Hydrogen Evolution upon Ammonia Borane Solvolysis: Comparison between the Hydrolysis and Methanolysis Reactions. Chemistry, 2023, 5, 886-899.	0.9	4
262	In-situ surface reconstruction of single-crystal (NiFe)3Se4 nano-pyramid arrays for efficient oxygen evolution. Journal of Colloid and Interface Science, 2023, 642, 532-539.	5.0	4
263	Regulating the thickness of the carbon coating layer in iron/carbon heterostructures to enhance the catalytic performance for oxygen evolution reaction. Journal of Colloid and Interface Science, 2023, 642, 120-128.	5.0	14
264	Handily etching nickel foams into catalyst–substrate fusion selfâ€stabilized electrodes toward industrialâ€level water electrolysis. , 2023, 5, .		9
265	Nitrogenâ€Doped Porous Nickel Molybdenum Phosphide Sheets for Efficient Seawater Splitting. Small, 2023, 19, .	5.2	23
266	Visualizing Catalytic Dynamics Process via Synchrotron Radiation Multiâ€Techniques. Advanced Materials, 0, , 2205346.	11.1	7
267	Multicomponent Intermetallic Nanoparticles on Hierarchical Metal Network as Versatile Electrocatalysts for Highly Efficient Water Splitting. Advanced Functional Materials, 2023, 33, .	7.8	20
268	Key components and design strategy of the membrane electrode assembly for alkaline water electrolysis. Energy and Environmental Science, 2023, 16, 1384-1430.	15.6	49
269	Dopamine-coated layered Co _{0.85} Se as an efficient bifunctional oxygen electrocatalyst. New Journal of Chemistry, 2023, 47, 6287-6293.	1.4	1
270	Recent advances in carbon-supported non-precious metal single-atom catalysts for energy conversion electrocatalysis. , 2023, 2, 20220059.		6
271	Hybrid Heterostructure Ni ₃ N NiFeP/FF Self‣upporting Electrode for Highâ€Currentâ€Density Alkaline Water Electrolysis. Small Methods, 2023, 7, .	4.6	11
272	Surfactant Improved Interface Morphology and Mass Transfer for Electrochemical Oxygen-Evolving Reaction. Catalysts, 2023, 13, 569.	1.6	1
273	Extending MoS ₂ -based materials into the catalysis of non-acidic hydrogen evolution: challenges, progress, and perspectives. Materials Futures, 2023, 2, 022103.	3.1	12

#	Article	IF	CITATIONS
274	Oxygen Evolution/Reduction Reaction Catalysts: From <i>In Situ</i> Monitoring and Reaction Mechanisms to Rational Design. Chemical Reviews, 2023, 123, 6257-6358.	23.0	81
275	Platinum Group Metals: Green Recovery from Spent Auto-Catalysts and Reuse in New Catalysts—A Review. Crystals, 2023, 13, 550.	1.0	10
276	Interface-vacancy synergy of Co(OH)2/CoN to boost alkaline water splitting. Science China Materials, 2023, 66, 2246-2256.	3.5	4
277	Ultraâ€Fast In Situ Reconstructed Nickel (Oxy)Hydroxide Nanoparticle Crosslinked Structure for Superâ€Efficient Alkaline Water Electrolysis by Sacrificing Template Strategy. Small Structures, 2023, 4, .	6.9	5
278	An Optimal Control Strategy for Photovoltaic Hydrogen Production with Dynamic Regulation. , 2022, , , .		0
279	Solution Plasmaâ€Assisted Multivariate Metal Nanoalloys Encapsulated with Carbon Dots for Efficient Oxygen Evolution Reaction. ChemCatChem, 2023, 15, .	1.8	1
280	A pyrolysis-free Ni/Fe bimetallic electrocatalyst for overall water splitting. Nature Communications, 2023, 14, .	5.8	56
281	Synergistic Effect of Nâ€NiMoO ₄ /Ni Heterogeneous Interface with Oxygen Vacancies in Nâ€NiMoO ₄ /Ni/CNTs for Superior Overall Water Splitting. Small, 2023, 19, .	5.2	11
282	Ironâ€Locked Hydr(oxy)oxide Catalysts via Ionâ€Compensatory Reconstruction Boost Largeâ€Currentâ€Density Water Oxidation. Advanced Science, 2023, 10, .	5.6	8
283	Metal Oxide‣upported Metal Catalysts for Electrocatalytic Oxygen Reduction Reaction: Characterization Methods, Modulation Strategies, and Recent Progress. Small Methods, 2023, 7, .	4.6	6
284	Photogenerated Carrier-Assisted Electrocatalysts for Efficient Water Splitting. Catalysts, 2023, 13, 712.	1.6	4
285	Recent progress and perspective on molybdenum-based electrocatalysts for water electrolysis. International Journal of Hydrogen Energy, 2023, 48, 26084-26106.	3.8	13
286	Hydrogen production via electrolysis: Operando monitoring and analyses. Chem Catalysis, 2023, , 100601.	2.9	0
287	Designing electrocatalysts for seawater splitting: surface/interface engineering toward enhanced electrocatalytic performance. Green Chemistry, 2023, 25, 3767-3790.	4.6	20
288	An electrochemically fabricated cobalt iron oxyhydroxide bifunctional electrode for an anion exchange membrane water electrolyzer. Dalton Transactions, 0, , .	1.6	0
289	Investigation of Nanoscale Tungsten Carbide Enhanced Surface Carbon as a Platinum Support for the Hydrogen Evolution Reaction. Nanomaterials, 2023, 13, 1369.	1.9	0
290	Revealing the In Situ Evolution of Tetrahedral NiMoO ₄ Micropillar Array for Energyâ€Efficient Alkaline Hydrogen Production Assisted by Urea Electrolysis. Small Structures, 2023, 4,	6.9	12
291	Effective hydrolysis of <scp> NH ₃ BH ₃ </scp> for hydrogen evolution by the novel graphene quantum dots loaded bimetallic nanoparticles (Pt o/GQDs). Environmental Progress and Sustainable Energy, 0, , .	1.3	0

#	Article	IF	CITATIONS
292	Performance Evolution of Typical Electrocatalysts with Electrolyte Temperature during Alkaline Water Electrolysis. Journal of Physical Chemistry C, 2023, 127, 8041-8047.	1.5	2
293	Alleviating the Work Function of Veinâ€Like Co _X P by Cr Doping for Enhanced Seawater Electrolysis. Advanced Functional Materials, 2023, 33, .	7.8	27
294	Reconstructing oxygen electrocatalysts for hydrogen energy applications. Current Opinion in Electrochemistry, 2023, 39, 101304.	2.5	5
305	Understanding the complexity in bridging thermal and electrocatalytic methanation of CO ₂ . Chemical Society Reviews, 2023, 52, 3627-3662.	18.7	15
306	Surface self-reconstruction of catalysts in electrocatalytic oxygen evolution reaction. , 2024, , 316-327.		0
309	Advanced progress of rhenium (Re)-based electrode materials in electrocatalytic hydrogen evolution: a review. Journal of Materials Chemistry A, 2023, 11, 14451-14468.	5.2	1
329	Recent Advances and Perspectives in Ru Hybrid Electrocatalysts for the Hydrogen Evolution Reaction. Energy & Fuels, 2023, 37, 8079-8098.	2.5	8
336	Recent progress of dual-site catalysts in emerging electrocatalysis: a review. Catalysis Science and Technology, 2023, 13, 4615-4634.	2.1	3
337	Covalent triazine frameworks for advanced energy storage: challenges and new opportunities. Energy and Environmental Science, 2023, 16, 3181-3213.	15.6	17
346	Non-precious metal-based heterostructure catalysts for hydrogen evolution reaction: mechanisms, design principles, and future prospects. Nanoscale, 2023, 15, 13515-13531.	2.8	1
351	Electrocatalytic hydrogen evolution with a copper porphyrin bearing <i>meso</i> -(<i>o</i> -carborane) substituents. Chemical Communications, 2023, 59, 10777-10780.	2.2	8
357	Coupling MoS2 nanosheets with CeO2 for efficiently electrocatalytic hydrogen evolution at large current densities. Chemical Communications, 0, , .	2.2	1
358	Precious metal catalyst recycling through photocatalytic dissolution. Green Chemistry, 2023, 25, 7518-7523.	4.6	0
359	Recent advances in mechanistic understanding and catalyst design for alkaline hydrogen evolution reactions. Materials Chemistry Frontiers, 0, , .	3.2	0
370	Application of X-ray absorption spectroscopy in carbon-supported electrocatalysts. Nano Research, 2023, 16, 12438-12452.	5.8	2
407	Highly efficient sustainable strategies toward carbon-neutral energy production. Energy and Environmental Science, 2024, 17, 1007-1045.	15.6	1
435	Electrode Setups and Water Electrolysis Technologies. Materials Horizons, 2024, , 21-44.	0.3	0