Potently neutralizing and protective human antibodies

Nature 584, 443-449 DOI: 10.1038/s41586-020-2548-6

Citation Report

#	Article	IF	CITATIONS
1	A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature, 2020, 586, 560-566.	13.7	527
2	High Potency of a Bivalent Human VH Domain in SARS-CoV-2 Animal Models. Cell, 2020, 183, 429-441.e16.	13.5	100
3	A Therapeutic Non-self-reactive SARS-CoV-2 Antibody Protects from Lung Pathology in a COVID-19 Hamster Model. Cell, 2020, 183, 1058-1069.e19.	13.5	305
5	A Minimalist Strategy Towards Temporarily Defining Protection for COVID-19. SN Comprehensive Clinical Medicine, 2020, 2, 2059-2066.	0.3	8
6	Structural Basis of SARS-CoV-2 and SARS-CoV Antibody Interactions. Trends in Immunology, 2020, 41, 1006-1022.	2.9	79
7	Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nature Immunology, 2020, 21, 1506-1516.	7.0	563
8	Superantigenic character of an insert unique to SARS-CoV-2 spike supported by skewed TCR repertoire in patients with hyperinflammation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25254-25262.	3.3	252
9	Profile of SARS-CoV-2. Wiener Klinische Wochenschrift, 2020, 132, 635-644.	1.0	4
10	The immunology of SARS-CoV-2 infections and vaccines. Seminars in Immunology, 2020, 50, 101422.	2.7	85
11	Cardiovascular Manifestations of COVID-19 Infection. Cells, 2020, 9, 2508.	1.8	142
12	Immunopathology, host-virus genome interactions, and effective vaccine development in SARS-CoV-2. Computational and Structural Biotechnology Journal, 2020, 18, 3774-3787.	1.9	12
13	Applying Immune Instincts and Maternal Intelligence from Comparative Microbiology to COVID-19. SN Comprehensive Clinical Medicine, 2020, 2, 2670-2683.	0.3	8
14	SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature, 2020, 588, 682-687.	13.7	1,346
15	Spike Glycoprotein-Mediated Entry of SARS Coronaviruses. Viruses, 2020, 12, 1289.	1.5	35
16	COVID-19: The Immune Responses and Clinical Therapy Candidates. International Journal of Molecular Sciences, 2020, 21, 5559.	1.8	25
17	Approaches and Challenges in SARS-CoV-2 Vaccine Development. Cell Host and Microbe, 2020, 28, 364-370.	5.1	98
18	Structural order in plasmonic superlattices. Nature Communications, 2020, 11, 3821.	5.8	56
19	Integrated pipeline for the accelerated discovery of antiviral antibody therapeutics. Nature Biomedical Engineering, 2020, 4, 1030-1043.	11.6	46

TION RED

#	Article	IF	CITATIONS
20	Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding. Cell, 2020, 182, 1295-1310.e20.	13.5	1,726
21	Measuring immunity to SARS-CoV-2 infection: comparing assays and animal models. Nature Reviews Immunology, 2020, 20, 727-738.	10.6	107
22	Molecular Architecture of Early Dissemination and Massive Second Wave of the SARS-CoV-2 Virus in a Major Metropolitan Area. MBio, 2020, 11, .	1.8	99
23	Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2. Cell, 2020, 183, 1367-1382.e17.	13.5	420
24	Developing Antibody Defenses. IEEE Pulse, 2020, 11, 2-6.	0.1	0
25	The future of sepsis research: time to think differently?. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L523-L526.	1.3	4
26	Cell and animal models of SARS-CoV-2 pathogenesis and immunity. DMM Disease Models and Mechanisms, 2020, 13, .	1.2	46
27	Beyond Shielding: The Roles of Glycans in the SARS-CoV-2 Spike Protein. ACS Central Science, 2020, 6, 1722-1734.	5.3	727
28	Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms. Science, 2020, 370, 950-957.	6.0	504
29	Receptor-binding domain-specific human neutralizing monoclonal antibodies against SARS-CoV and SARS-CoV-2. Signal Transduction and Targeted Therapy, 2020, 5, 212.	7.1	104
30	Naturally activated adaptive immunity in COVIDâ€19 patients. Journal of Cellular and Molecular Medicine, 2020, 24, 12457-12463.	1.6	21
31	Therapeutic antibodies and fusion inhibitors targeting the spike protein of SARS-CoV-2. Expert Opinion on Therapeutic Targets, 2021, 25, 415-421.	1.5	52
32	Coronavirus Antiviral Research Database (CoV-RDB): An Online Database Designed to Facilitate Comparisons between Candidate Anti-Coronavirus Compounds. Viruses, 2020, 12, 1006.	1.5	60
33	A meta-analysis of the incidence of venous thromboembolic events and impact of anticoagulation on mortality in patients with COVID-19. International Journal of Infectious Diseases, 2020, 100, 34-41.	1.5	58
34	Emerging antibody-based therapeutics against SARS-CoV-2 during the global pandemic. Antibody Therapeutics, 2020, 3, 246-256.	1.2	34
35	Will SARS-CoV-2 Infection Elicit Long-Lasting Protective or Sterilising Immunity? Implications for Vaccine Strategies (2020). Frontiers in Immunology, 2020, 11, 571481.	2.2	48
36	Rapid and sensitive detection of SARS-CoV-2 antibodies by biolayer interferometry. Scientific Reports, 2020, 10, 21738.	1.6	49
37	Neutralizing antibodies for the treatment of COVID-19. Nature Biomedical Engineering, 2020, 4, 1134-1139.	11.6	98

~		<u> </u>	
CITA	TION	REPORT	

#	Article	IF	CITATIONS
38	An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike. Science, 2020, 370, 1473-1479.	6.0	336
39	Germline immunoglobulin genes: Disease susceptibility genes hidden in plain sight?. Current Opinion in Systems Biology, 2020, 24, 100-108.	1.3	31
40	Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews Microbiology, 2021, 19, 141-154.	13.6	3,334
41	COVID-19: Discovery, diagnostics and drug development. Journal of Hepatology, 2021, 74, 168-184.	1.8	302
42	Evidence and speculations: vaccines and therapeutic options for COVID-19 pandemic. Human Vaccines and Immunotherapeutics, 2021, 17, 1113-1121.	1.4	4
43	Antibodies at work in the time of severe acute respiratory syndrome coronavirus 2. Cytotherapy, 2021, 23, 101-110.	0.3	14
44	Whither immunity? The search for effective, durable immunity to coronavirus disease 2019 (COVID-19). Infection Control and Hospital Epidemiology, 2021, 42, 205-207.	1.0	2
45	Generation of a cost-effective cell line for support of high-throughput isolation of primary human B cells and monoclonal neutralizing antibodies. Journal of Immunological Methods, 2021, 488, 112901.	0.6	9
46	Suitability of two rapid lateral flow immunochromatographic assays for predicting SARS oVâ€2 neutralizing activity of sera. Journal of Medical Virology, 2021, 93, 2301-2306.	2.5	12
47	SARS-CoV-2: Targeted managements and vaccine development. Cytokine and Growth Factor Reviews, 2021, 58, 16-29.	3.2	44
48	Venous thromboembolic events in patients with COVID-19: a systematic review and meta-analysis. Age and Ageing, 2021, 50, 284-293.	0.7	27
49	Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition. Cell Host and Microbe, 2021, 29, 44-57.e9.	5.1	937
50	Challenges and opportunities for antiviral monoclonal antibodies as COVID-19 therapy. Advanced Drug Delivery Reviews, 2021, 169, 100-117.	6.6	63
51	COVID-19 antibody development fueled by HIV-1 broadly neutralizing antibody research. Current Opinion in HIV and AIDS, 2021, 16, 25-35.	1.5	7
52	Enhanced SARS-CoV-2 neutralization by dimeric IgA. Science Translational Medicine, 2021, 13, .	5.8	379
53	COVID-19: The Effect of Host Genetic Variations on Host–Virus Interactions. Journal of Proteome Research, 2021, 20, 139-153.	1.8	14
54	The virus that shook the world: questions and answers about SARS-CoV-2 and COVID-19. Biotechnology and Biotechnological Equipment, 2021, 35, 74-102.	0.5	13
55	Therapeutic and Vaccine Options for COVID-19: Status after Six Months of the Disease Outbreak. SLAS Discovery, 2021, 26, 311-329.	1.4	4

#	Article	IF	CITATIONS
56	The central role of the nasal microenvironment in the transmission, modulation, and clinical progression of SARS-CoV-2 infection. Mucosal Immunology, 2021, 14, 305-316.	2.7	173
57	Viral targets for vaccines against COVID-19. Nature Reviews Immunology, 2021, 21, 73-82.	10.6	832
58	Neutralizing antibodies targeting SARS-CoV-2 spike protein. Stem Cell Research, 2021, 50, 102125.	0.3	89
59	Ferritin as a Platform for Creating Antiviral Mosaic Nanocages: Prospects for Treating COVIDâ€19. ChemBioChem, 2021, 22, 1371-1378.	1.3	2
60	Spike Glycoprotein and Host Cell Determinants of SARS-CoV-2 Entry and Cytopathic Effects. Journal of Virology, 2021, 95, .	1.5	70
61	Identifying and repurposing antiviral drugs against severe acute respiratory syndrome coronavirus 2 with in silico and inÂvitro approaches. Biochemical and Biophysical Research Communications, 2021, 538, 137-144.	1.0	12
62	Live unattenuated vaccines for controlling viral diseases, including COVIDâ€19. Journal of Medical Virology, 2021, 93, 1943-1949.	2.5	4
64	Pathogenic Human Coronaviruses. , 2021, , .		5
65	Newcastle Disease Virus-Like Particles Displaying Prefusion-Stabilized SARS-CoV-2 Spikes Elicit Potent Neutralizing Responses. Vaccines, 2021, 9, 73.	2.1	24
66	Development of a Fast SARS-CoV-2 IgG ELISA, Based on Receptor-Binding Domain, and Its Comparative Evaluation Using Temporally Segregated Samples From RT-PCR Positive Individuals. Frontiers in Microbiology, 2020, 11, 618097.	1.5	30
67	Inhibition of SARS-CoV-2 pseudovirus invasion by ACE2 protecting and Spike neutralizing peptides: An alternative approach to COVID19 prevention and therapy. International Journal of Biological Sciences, 2021, 17, 2957-2969.	2.6	11
68	SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 immunogenicity in baboons and protection in mice. Nature Communications, 2021, 12, 372.	5.8	369
70	Molecular determinants and mechanism for antibody cocktail preventing SARS-CoV-2 escape. Nature Communications, 2021, 12, 469.	5.8	148
71	COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. European Journal of Clinical Microbiology and Infectious Diseases, 2021, 40, 905-919.	1.3	445
75	More Than Just Gene Therapy Vectors: Lentiviral Vector Pseudotypes for Serological Investigation. Viruses, 2021, 13, 217.	1.5	13
76	One-Year Sustained Cellular and Humoral Immunities in Coronavirus Disease 2019 (COVID-19) Convalescents. Clinical Infectious Diseases, 2022, 75, e1072-e1081.	2.9	48
77	Evolution of antibody immunity to SARS-CoV-2. Nature, 2021, 591, 639-644.	13.7	1,355
78	Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications. Journal of Biomedical Science, 2021, 28, 9.	2.6	167

#	Article	IF	CITATIONS
80	Passive Immunity Should and Will Work for COVID-19 for Some Patients. Clinical Hematology International, 2021, 3, 47.	0.7	4
82	Differential and sequential immunomodulatory role of neutrophils and Ly6C ^{hi} inflammatory monocytes during antiviral antibody therapy. Emerging Microbes and Infections, 2021, 10, 964-981.	3.0	3
83	A human cell-based SARS-CoV-2 vaccine elicits potent neutralizing antibody responses and protects mice from SARS-CoV-2 challenge. Emerging Microbes and Infections, 2021, 10, 1555-1573.	3.0	6
84	Development and structural basis of a two-MAb cocktail for treating SARS-CoV-2 infections. Nature Communications, 2021, 12, 264.	5.8	81
86	Inference of SARS-CoV-2 spike-binding neutralizing antibody titers in sera from hospitalized COVID-19 patients by using commercial enzyme and chemiluminescent immunoassays. European Journal of Clinical Microbiology and Infectious Diseases, 2021, 40, 485-494.	1.3	37
87	Overview of Nonhuman Primate Models of SARS-CoV-2 Infection. Comparative Medicine, 2021, 71, 411-432.	0.4	11
88	SARS-CoV-2 specific antibody and neutralization assays reveal the wide range of the humoral immune response to virus. Communications Biology, 2021, 4, 129.	2.0	95
89	Structural Analysis of Neutralizing Epitopes of the SARS-CoV-2 Spike to Guide Therapy and Vaccine Design Strategies. Viruses, 2021, 13, 134.	1.5	56
90	Effective virus-neutralizing activities in antisera from the first wave of severe COVID-19 survivors. JCI Insight, 2021, 6, .	2.3	10
92	Dual-Antigen System Allows Elimination of False Positive Results in COVID-19 Serological Testing. Diagnostics, 2021, 11, 102.	1.3	8
93	Development of potent and effective synthetic SARS-CoV-2 neutralizing nanobodies. MAbs, 2021, 13, 1958663.	2.6	16
94	Standardized Two-Step Testing of Antibody Activity in COVID-19 Convalescent Plasma. SSRN Electronic Journal, 0, , .	0.4	2
98	Epitope-resolved profiling of the SARS-CoV-2 antibody response identifies cross-reactivity with endemic human coronaviruses. Cell Reports Medicine, 2021, 2, 100189.	3.3	149
101	Spike S2 Subunit: The Dark Horse in the Race for Prophylactic and Therapeutic Interventions against SARS-CoV-2. Vaccines, 2021, 9, 178.	2.1	23
103	A single-dose mRNA vaccine provides a long-term protection for hACE2 transgenic mice from SARS-CoV-2. Nature Communications, 2021, 12, 776.	5.8	65
104	Clinical correlates of anti-SARS-CoV-2 antibody profiles in Spanish COVID-19 patients from a high incidence region. Scientific Reports, 2021, 11, 4363.	1.6	9
106	Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science, 2021, 371, .	6.0	2,268
108	COVID-19 Antibody Tests and Their Limitations. ACS Sensors, 2021, 6, 593-612.	4.0	150

#	Article	IF	CITATIONS
111	Single-domain antibodies make a difference. Science, 2021, 371, 681-682.	6.0	12
113	Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice. Science, 2021, 371, 735-741.	6.0	305
114	Post-exposure protection of SARS-CoV-2 lethal infected K18-hACE2 transgenic mice by neutralizing human monoclonal antibody. Nature Communications, 2021, 12, 944.	5.8	53
115	In silico analysis suggests less effective MHC-II presentation of SARS-CoV-2 RBM peptides: Implication for neutralizing antibody responses. PLoS ONE, 2021, 16, e0246731.	1.1	7
116	Enhancement versus neutralization by SARS-CoV-2 antibodies from a convalescent donor associates with distinct epitopes on the RBD. Cell Reports, 2021, 34, 108699.	2.9	110
117	SARS-CoV-2 mRNA Vaccines: Immunological Mechanism and Beyond. Vaccines, 2021, 9, 147.	2.1	175
118	mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature, 2021, 592, 616-622.	13.7	1,232
122	Identification of HLA-A*02:01-Restricted Candidate Epitopes Derived from the Nonstructural Polyprotein 1a of SARS-CoV-2 That May Be Natural Targets of CD8 ⁺ T Cell Recognition <i>In Vivo</i> . Journal of Virology, 2021, 95, .	1.5	20
123	Clinical, laboratory, and temporal predictors of neutralizing antibodies against SARS-CoV-2 among COVID-19 convalescent plasma donor candidates. Journal of Clinical Investigation, 2021, 131, .	3.9	72
124	Antibody titers against SARS-CoV-2 decline, but do not disappear for several months. EClinicalMedicine, 2021, 32, 100734.	3.2	134
125	Determining available strategies for prevention and therapy: Exploring COVID‑19 from the perspective of ACE2 (Review). International Journal of Molecular Medicine, 2021, 47, .	1.8	8
130	A longitudinal study of convalescent plasma (<scp>CCP</scp>) donors and correlation of <scp>ABO</scp> group, initial neutralizing antibodies (<scp>nAb</scp>), and body mass index (<scp>BMI</scp>) with <scp>nAb</scp> and antiâ€nucleocapsid (<scp>NP</scp>) <scp>SARSâ€CoV</scp> â€2 antibody kinetics: Proposals for better quality of <scp>CCP</scp> collections. Transfusion, 2021, 61,	0.8	22
132	Adaptive immunity to SARS-CoV-2 and COVID-19. Cell, 2021, 184, 861-880.	13.5	1,364
133	SARS-CoV-2 Proteome-Wide Analysis Revealed Significant Epitope Signatures in COVID-19 Patients. Frontiers in Immunology, 2021, 12, 629185.	2.2	42
135	Diagnostic Value of IgM and IgG Detection in COVID-19 Diagnosis by the Mobile Laboratory B-LiFE: A Massive Testing Strategy in the Piedmont Region. International Journal of Environmental Research and Public Health, 2021, 18, 3372.	1.2	3
136	SARS-CoV-2-induced humoral immunity through B cell epitope analysis in COVID-19 infected individuals. Scientific Reports, 2021, 11, 5934.	1.6	26
142	Neutralization of SARS-CoV-2 with IgG from COVID-19-convalescent plasma. Scientific Reports, 2021, 11, 5563.	1.6	42
143	Nicotinic cholinergic system and COVID-19: In silico identification of interactions between α7 nicotinic acetylcholine receptor and the cryptic epitopes of SARS-Co-V and SARS-CoV-2 Spike glycoproteins. Food and Chemical Toxicology, 2021, 149, 112009.	1.8	46

#	Article	IF	CITATIONS
144	Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nature Medicine, 2021, 27, 717-726.	15.2	838
145	Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host and Microbe, 2021, 29, 463-476.e6.	5.1	1,054
146	A Rapid and Efficient Screening System for Neutralizing Antibodies and Its Application for SARS-CoV-2. Frontiers in Immunology, 2021, 12, 653189.	2.2	20
148	Approaching the Interpretation of Discordances in SARS-CoV-2 Testing. Open Forum Infectious Diseases, 2021, 8, ofab144.	0.4	2
151	mRNA vaccination boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection. Science, 2021, 372, 1413-1418.	6.0	468
152	Neutralizing Monoclonal Anti-SARS-CoV-2 Antibodies Isolated from Immunized Rabbits Define Novel Vulnerable Spike-Protein Epitope. Viruses, 2021, 13, 566.	1.5	23
153	Comparison of Subgenomic and Total RNA in SARS-CoV-2-Challenged Rhesus Macaques. Journal of Virology, 2021, 95, .	1.5	87
154	Monoclonal antibodies capable of binding SARS-CoV-2 spike protein receptor-binding motif specifically prevent GM-CSF induction. Journal of Leukocyte Biology, 2021, 111, 261-267.	1.5	13
155	Correlates of Vaccine-Induced Protection against SARS-CoV-2. Vaccines, 2021, 9, 238.	2.1	49
156	Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization. Cell Host and Microbe, 2021, 29, 477-488.e4.	5.1	700
158	A proof of concept for neutralizing antibody-guided vaccine design against SARS-CoV-2. National Science Review, 2021, 8, nwab053.	4.6	36
159	COVID-19 vaccines: The status and perspectives in delivery points of view. Advanced Drug Delivery Reviews, 2021, 170, 1-25.	6.6	262
160	Drug discovery and development targeting the life cycle of SARS-CoV-2. Fundamental Research, 2021, 1, 151-165.	1.6	9
161	Therapeutic activity of an inhaled potent SARS-CoV-2 neutralizing human monoclonal antibody in hamsters. Cell Reports Medicine, 2021, 2, 100218.	3.3	57
162	Immunogenicity of prime-boost protein subunit vaccine strategies against SARS-CoV-2 in mice and macaques. Nature Communications, 2021, 12, 1403.	5.8	65
163	Antibody isotype diversity against SARS-CoV-2 is associated with differential serum neutralization capacities. Scientific Reports, 2021, 11, 5538.	1.6	37
166	Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature, 2021, 593, 130-135.	13.7	1,904
168	Nanobody cocktails potently neutralize SARS-CoV-2 D614G N501Y variant and protect mice. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	109

#	Article	IF	CITATIONS
173	Enhancing the Prefusion Conformational Stability of SARS-CoV-2 Spike Protein Through Structure-Guided Design. Frontiers in Immunology, 2021, 12, 660198.	2.2	28
174	Modular basis for potent SARS-CoV-2 neutralization by a prevalent VH1-2-derived antibody class. Cell Reports, 2021, 35, 108950.	2.9	54
175	Coronavirus disease 2019 and the revival of passive immunization: Antibody therapy for inhibiting severe acute respiratory syndrome coronavirus 2 and preventing host cell infection: IUPHAR review 31. British Journal of Pharmacology, 2021, 178, 3359-3372.	2.7	10
176	Robust SARS-CoV-2 infection in nasal turbinates after treatment with systemic neutralizing antibodies. Cell Host and Microbe, 2021, 29, 551-563.e5.	5.1	87
177	The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates. Science Translational Medicine, 2021, 13, .	5.8	347
178	Extremely potent human monoclonal antibodies from COVID-19 convalescent patients. Cell, 2021, 184, 1821-1835.e16.	13.5	180
179	SARS-CoV-2 can recruit a heme metabolite to evade antibody immunity. Science Advances, 2021, 7, .	4.7	107
182	Native-like SARS-CoV-2 Spike Glycoprotein Expressed by ChAdOx1 nCoV-19/AZD1222 Vaccine. ACS Central Science, 2021, 7, 594-602.	5.3	118
183	IgG and IgM antibody formation to spike and nucleocapsid proteins in COVID-19 characterized by multiplex immunoblot assays. BMC Infectious Diseases, 2021, 21, 325.	1.3	26
184	Neutralizing Antibody Therapeutics for COVID-19. Viruses, 2021, 13, 628.	1.5	99
185	A real-time and high-throughput neutralization test based on SARS-CoV-2 pseudovirus containing monomeric infrared fluorescent protein as reporter. Emerging Microbes and Infections, 2021, 10, 894-904.	3.0	16
187	Considerations for bioanalytical characterization and batch release of COVID-19 vaccines. Npj Vaccines, 2021, 6, 53.	2.9	23
188	Safe and effective two-in-one replicon-and-VLP minispike vaccine for COVID-19: Protection of mice after a single immunization. PLoS Pathogens, 2021, 17, e1009064.	2.1	21
189	Impact of the N501Y substitution of SARS-CoV-2 Spike on neutralizing monoclonal antibodies targeting diverse epitopes. Virology Journal, 2021, 18, 87.	1.4	27
190	Multifunctional angiotensin converting enzyme 2, the SARS-CoV-2 entry receptor, and critical appraisal of its role in acute lung injury. Biomedicine and Pharmacotherapy, 2021, 136, 111193.	2.5	42
192	Bridging animal and clinical research during SARS-CoV-2 pandemic: A new-old challenge. EBioMedicine, 2021, 66, 103291.	2.7	15
193	The antigenic anatomy of SARS-CoV-2 receptor binding domain. Cell, 2021, 184, 2183-2200.e22.	13.5	331
194	A multiplex antigen microarray for simultaneous IgG and IgM detection against SARSâ€CoVâ€2 reveals higher seroprevalence than reported. Microbial Biotechnology, 2021, 14, 1228-1236.	2.0	11

#	Article	IF	CITATIONS
195	Antibody Therapy: From Diphtheria to Cancer, COVID-19, and Beyond. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2021, 40, 36-49.	0.8	8
196	Antibody Affinity Governs the Inhibition of SARS-CoV-2 Spike/ACE2 Binding in Patient Serum. ACS Infectious Diseases, 2021, 7, 2362-2369.	1.8	32
197	Convergence of a common solution for broad ebolavirus neutralization by glycan cap-directed human antibodies. Cell Reports, 2021, 35, 108984.	2.9	22
199	Antibodies and Vaccines Target RBD of SARS-CoV-2. Frontiers in Molecular Biosciences, 2021, 8, 671633.	1.6	108
200	N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell, 2021, 184, 2332-2347.e16.	13.5	784
201	Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein. Cell, 2021, 184, 2316-2331.e15.	13.5	321
202	Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection. Cell, 2021, 184, 1804-1820.e16.	13.5	297
203	Integrative overview of antibodies against SARS-CoV-2 and their possible applications in COVID-19 prophylaxis and treatment. Microbial Cell Factories, 2021, 20, 88.	1.9	37
204	Concerns about SARS-CoV-2 evolution should not hold back efforts to expand vaccination. Nature Reviews Immunology, 2021, 21, 330-335.	10.6	98
205	Durable SARS-CoV-2 B cell immunity after mild or severe disease. Journal of Clinical Investigation, 2021, 131, .	3.9	76
206	A human coronavirus evolves antigenically to escape antibody immunity. PLoS Pathogens, 2021, 17, e1009453.	2.1	183
207	Computational epitope map of SARS-CoV-2 spike protein. PLoS Computational Biology, 2021, 17, e1008790.	1.5	109
209	Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016. Cell Reports Medicine, 2021, 2, 100255.	3.3	402
212	Genome-Wide B Cell, CD4+, and CD8+ T Cell Epitopes That Are Highly Conserved between Human and Animal Coronaviruses, Identified from SARS-CoV-2 as Targets for Preemptive Pan-Coronavirus Vaccines. Journal of Immunology, 2021, 206, 2566-2582.	0.4	53
213	Comparative Perturbation-Based Modeling of the SARS-CoV-2 Spike Protein Binding with Host Receptor and Neutralizing Antibodies: Structurally Adaptable Allosteric Communication Hotspots Define Spike Sites Targeted by Global Circulating Mutations. Biochemistry, 2021, 60, 1459-1484.	1.2	62
217	Lipid Nanoparticle RBD-hFc mRNA Vaccine Protects hACE2 Transgenic Mice against a Lethal SARS-CoV-2 Infection. Nano Letters, 2021, 21, 4774-4779.	4.5	20
220	Advancing HIV Broadly Neutralizing Antibodies: From Discovery to the Clinic. Frontiers in Public Health, 2021, 9, 690017.	1.3	26
221	Kinetics of Neutralizing Antibodies of COVID-19 Patients Tested Using Clinical D614G, B.1.1.7, and B 1.351 Isolates in Microneutralization Assays. Viruses, 2021, 13, 996.	1.5	14

#	Article	IF	CITATIONS
222	Possible inhibition of GM-CSF production by SARS-CoV-2 spike-based vaccines. Molecular Medicine, 2021, 27, 49.	1.9	7
223	Inhalable Nanobody (PiN-21) prevents and treats SARS-CoV-2 infections in Syrian hamsters at ultra-low doses. Science Advances, 2021, 7, .	4.7	113
224	Prevalent, protective, and convergent lgG recognition of SARS-CoV-2 non-RBD spike epitopes. Science, 2021, 372, 1108-1112.	6.0	210
225	Neutralizing antibody vaccine for pandemic and pre-emergent coronaviruses. Nature, 2021, 594, 553-559.	13.7	199
226	IgV somatic mutation of human anti–SARS-CoV-2 monoclonal antibodies governs neutralization and breadth of reactivity. JCI Insight, 2021, 6, .	2.3	13
227	Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization. Cell Host and Microbe, 2021, 29, 747-751.e4.	5.1	504
228	High-resolution profiling of pathways of escape for SARS-CoV-2 spike-binding antibodies. Cell, 2021, 184, 2927-2938.e11.	13.5	35
229	Adaptive immune responses to SARS-CoV-2. Advanced Drug Delivery Reviews, 2021, 172, 1-8.	6.6	6
230	A combination of cross-neutralizing antibodies synergizes to prevent SARS-CoV-2 and SARS-CoV pseudovirus infection. Cell Host and Microbe, 2021, 29, 806-818.e6.	5.1	49
231	Outpatient Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 Infection to Prevent Coronavirus Disease 2019 Progression. Clinical Infectious Diseases, 2021, 73, 1717-1721.	2.9	16
232	Requirement of Fc-Fc Gamma Receptor Interaction for Antibody-Based Protection against Emerging Virus Infections. Viruses, 2021, 13, 1037.	1.5	20
234	Mapping the SARS-CoV-2 spike glycoprotein-derived peptidome presented by HLA class II on dendritic cells. Cell Reports, 2021, 35, 109179.	2.9	63
236	A SARS-CoV-2 neutralizing antibody with extensive Spike binding coverage and modified for optimal therapeutic outcomes. Nature Communications, 2021, 12, 2623.	5.8	64
237	Antibody evasion by the P.1 strain of SARS-CoV-2. Cell, 2021, 184, 2939-2954.e9.	13.5	519
238	SARS-CoV-2 vaccines in advanced clinical trials: Where do we stand?. Advanced Drug Delivery Reviews, 2021, 172, 314-338.	6.6	75
239	Evaluation of Cellular and Serological Responses to Acute SARS-CoV-2 Infection Demonstrates the Functional Importance of the Receptor-Binding Domain. Journal of Immunology, 2021, 206, 2605-2613.	0.4	7
241	Insights into forsythia honeysuckle (Lianhuaqingwen) capsules: A Chinese herbal medicine repurposed for COVID-19 pandemic. Phytomedicine Plus, 2021, 1, 100027.	0.9	23
243	Detection of Anti-Nucleocapsid Antibody in COVID-19 Patients in Bangladesh Is not Correlated with Previous Dengue Infection. Pathogens, 2021, 10, 637.	1.2	5

#	Article	IF	CITATIONS
244	Aptamer BC 007's Affinity to Specific and Less-Specific Anti-SARS-CoV-2 Neutralizing Antibodies. Viruses, 2021, 13, 932.	1.5	5
245	Structural basis for broad coronavirus neutralization. Nature Structural and Molecular Biology, 2021, 28, 478-486.	3.6	152
247	SARS-CoV-2-neutralising monoclonal antibodies to prevent COVID-19. The Cochrane Library, 0, , .	1.5	2
248	Blueprint for pandemic response: Focus on translational medicine, clinical pharmacology and pharmacometrics. British Journal of Clinical Pharmacology, 2021, 87, 3398-3407.	1.1	1
249	Diverse immunoglobulin gene usage and convergent epitope targeting in neutralizing antibody responses to SARS-CoV-2. Cell Reports, 2021, 35, 109109.	2.9	21
250	Prospects of Neutralizing Nanobodies Against SARS-CoV-2. Frontiers in Immunology, 2021, 12, 690742.	2.2	22
251	On the road to ending the COVID-19 pandemic: Are we there yet?. Virology, 2021, 557, 70-85.	1.1	38
252	Structural insights into the cross-neutralization of SARS-CoV and SARS-CoV-2 by the human monoclonal antibody 47D11. Science Advances, 2021, 7, .	4.7	42
253	A SARS-CoV-2 antibody curbs viral nucleocapsid protein-induced complement hyperactivation. Nature Communications, 2021, 12, 2697.	5.8	61
254	A review of monoclonal antibodies in COVID-19: Role in immunotherapy, vaccine development and viral detection. Human Antibodies, 2021, 29, 1-13.	0.6	20
256	Humoral Immunity against SARS-CoV-2 and the Impact on COVID-19 Pathogenesis. Molecules and Cells, 2021, 44, 392-400.	1.0	22
257	Multivalency transforms SARS-CoV-2 antibodies into ultrapotent neutralizers. Nature Communications, 2021, 12, 3661.	5.8	48
258	Antibodies elicited by mRNA-1273 vaccination bind more broadly to the receptor binding domain than do those from SARS-CoV-2 infection. Science Translational Medicine, 2021, 13, .	5.8	198
261	The Fc-mediated effector functions of a potent SARS-CoV-2 neutralizing antibody, SC31, isolated from an early convalescent COVID-19 patient, are essential for the optimal therapeutic efficacy of the antibody. PLoS ONE, 2021, 16, e0253487.	1.1	76
262	Extracellular vesicles carry SARS oVâ€2 spike protein and serve as decoys for neutralizing antibodies. Journal of Extracellular Vesicles, 2021, 10, e12112.	5.5	44
264	Advances in Neutralization Assays for SARS oVâ€2. Scandinavian Journal of Immunology, 2021, 94, e13088.	1.3	40
265	Neutralization potency of monoclonal antibodies recognizing dominant and subdominant epitopes on SARS-CoV-2 Spike is impacted by the B.1.1.7 variant. Immunity, 2021, 54, 1276-1289.e6.	6.6	112
266	Cross-Reactive SARS-CoV-2 Neutralizing Antibodies From Deep Mining of Early Patient Responses. Frontiers in Immunology, 2021, 12, 678570.	2.2	16

#	Article	IF	CITATIONS
267	Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduction and Targeted Therapy, 2021, 6, 233.	7.1	203
269	Animal models for SARS-CoV-2. Current Opinion in Virology, 2021, 48, 73-81.	2.6	52
270	Characterization of Immune Responses to SARS-CoV-2 and Other Human Pathogenic Coronaviruses Using a Multiplex Bead-Based Immunoassay. Vaccines, 2021, 9, 611.	2.1	5
271	Engineering mesenchymal stromal cells with neutralizing and anti-inflammatory capability against SARS-CoV-2 infection. Molecular Therapy - Methods and Clinical Development, 2021, 21, 754-764.	1.8	5
273	Immunogenicity and efficacy of the COVID-19 candidate vector vaccine MVA-SARS-2-S in preclinical vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	64
274	Tackling COVID-19 with neutralizing monoclonal antibodies. Cell, 2021, 184, 3086-3108.	13.5	309
275	SARS-CoV-2 Antiviral Therapy. Clinical Microbiology Reviews, 2021, 34, e0010921.	5.7	64
276	Ultrapotent antibodies against diverse and highly transmissible SARS-CoV-2 variants. Science, 2021, 373,	6.0	174
278	Adaptation of the MTT assay for detection of neutralizing antibodies against the SARS-CoV-2 virus. Zhurnal Mikrobiologii Epidemiologii I Immunobiologii, 2021, 98, 253-265.	0.3	10
279	SARS-CoV-2 Neutralizing Antibody Responses towards Full-Length Spike Protein and the Receptor-Binding Domain. Journal of Immunology, 2021, 207, 878-887.	0.4	30
280	Screening of potent neutralizing antibodies against SARS-CoV-2 using convalescent patients-derived phage-display libraries. Cell Discovery, 2021, 7, 57.	3.1	28
281	Neutralizing Antibody Responses After SARS-CoV-2 Infection in End-Stage Kidney Disease and Protection Against Reinfection. Kidney International Reports, 2021, 6, 1799-1809.	0.4	13
282	Early treatment with a combination of two potent neutralizing antibodies improves clinical outcomes and reduces virus replication and lung inflammation in SARS-CoV-2 infected macaques. PLoS Pathogens, 2021, 17, e1009688.	2.1	16
283	Reprogrammed CRISPR-Cas13b suppresses SARS-CoV-2 replication and circumvents its mutational escape through mismatch tolerance. Nature Communications, 2021, 12, 4270.	5.8	37
284	Therapeutic antibodies under development for SARSâ€CoVâ€2. View, 2021, , 20200178.	2.7	4
285	A novel mouse AAV6 hACE2 transduction model of wild-type SARS-CoV-2 infection studied using synDNA immunogens. IScience, 2021, 24, 102699.	1.9	15
287	kinetics of anti-SARS-CoV-2 antibodies over time. Results of 10 month follow up in over 300 seropositive Health Care Workers. European Journal of Internal Medicine, 2021, 89, 97-103.	1.0	26
288	Role of Laboratory Medicine in SARS-CoV-2 Diagnostics. Lessons Learned from a Pandemic. Healthcare (Switzerland), 2021, 9, 915.	1.0	5

#	Article	IF	CITATIONS
290	Antibody and B cell responses to SARS-CoV-2 infection and vaccination. Cell Host and Microbe, 2021, 29, 1063-1075.	5.1	99
291	Polymersomes Decorated with the SARS-CoV-2 Spike Protein Receptor-Binding Domain Elicit Robust Humoral and Cellular Immunity. ACS Central Science, 2021, 7, 1368-1380.	5.3	21
292	Mapping mutations to the SARS-CoV-2 RBD that escape binding by different classes of antibodies. Nature Communications, 2021, 12, 4196.	5.8	332
293	SARS-CoV-2 RBD-Tetanus Toxoid Conjugate Vaccine Induces a Strong Neutralizing Immunity in Preclinical Studies. ACS Chemical Biology, 2021, 16, 1223-1233.	1.6	57
294	Identification of Novel Neutralizing Monoclonal Antibodies against SARS-CoV-2 Spike Glycoprotein. ACS Pharmacology and Translational Science, 2021, 4, 1349-1361.	2.5	3
295	Cross-reactive antibodies against human coronaviruses and the animal coronavirome suggest diagnostics for future zoonotic spillovers. Science Immunology, 2021, 6, .	5.6	26
297	Isolation and characterization of cross-neutralizing coronavirus antibodies from COVID-19+ subjects. Cell Reports, 2021, 36, 109353.	2.9	95
298	Protective antibodies elicited by SARS-CoV-2 spike protein vaccination are boosted in the lung after challenge in nonhuman primates. Science Translational Medicine, 2021, 13, .	5.8	56
299	Antibody Mediated Immunity to SARS-CoV-2 and Human Coronaviruses: Multiplex Beads Assay and Volumetric Absorptive Microsampling to Generate Immune Repertoire Cartography. Frontiers in Immunology, 2021, 12, 696370.	2.2	14
300	Dynamic Characteristic Analysis of Antibodies in Patients With COVID-19: A 13-Month Study. Frontiers in Immunology, 2021, 12, 708184.	2.2	19
301	Immunogenicity and Protective Efficacy of a Highly Thermotolerant, Trimeric SARS-CoV-2 Receptor Binding Domain Derivative. ACS Infectious Diseases, 2021, 7, 2546-2564.	1.8	34
303	Prevention and therapy of SARS-CoV-2 and the B.1.351 variant in mice. Cell Reports, 2021, 36, 109450.	2.9	38
304	Longitudinal analysis shows durable and broad immune memory after SARS-CoV-2 infection with persisting antibody responses and memory B and TÂcells. Cell Reports Medicine, 2021, 2, 100354.	3.3	316
305	Potent and protective IGHV3-53/3-66 public antibodies and their shared escape mutant on the spike of SARS-CoV-2. Nature Communications, 2021, 12, 4210.	5.8	82
308	Rapid Generation of Coronaviral Immunity Using Recombinant Peptide Modified Nanodiamonds. Pathogens, 2021, 10, 861.	1.2	10
309	Identification of HLA-A2 restricted CD8+ T cell epitopes in SARS-CoV-2 structural proteins. Journal of Leukocyte Biology, 2021, 110, 1171-1180.	1.5	11
310	Analysis of SARS-CoV-2 variant mutations reveals neutralization escape mechanisms and the ability to use ACE2 receptors from additional species. Immunity, 2021, 54, 1611-1621.e5.	6.6	190
311	SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. Nature, 2021, 597, 97-102.	13.7	385

#	Article	IF	CITATIONS
312	Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell. Cell Reports, 2021, 36, 109364.	2.9	109
313	Distinguishing features of current COVID-19 vaccines: knowns and unknowns of antigen presentation and modes of action. Npj Vaccines, 2021, 6, 104.	2.9	241
314	Sex Disparities and Neutralizing-Antibody Durability to SARS-CoV-2 Infection in Convalescent Individuals. MSphere, 2021, 6, e0027521.	1.3	36
315	Convergent antibody responses to the SARS-CoV-2 spike protein in convalescent and vaccinated individuals. Cell Reports, 2021, 36, 109604.	2.9	67
316	InÂvitro and inÂvivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell, 2021, 184, 4203-4219.e32.	13.5	228
317	SARS-CoV-2 Neutralizing Antibodies for COVID-19 Prevention and Treatment. Annual Review of Medicine, 2022, 73, 1-16.	5.0	91
318	Multiple immune function impairments in diabetic patients and their effects on COVID-19. World Journal of Clinical Cases, 2021, 9, 6969-6978.	0.3	8
321	Antibody Response to SARS-CoV-2 Membrane Protein in Patients of the Acute and Convalescent Phase of COVID-19. Frontiers in Immunology, 2021, 12, 679841.	2.2	28
322	Diffuse C4d staining of peritubular capillaries in renal allograft following bamlanivimab therapy. American Journal of Transplantation, 2022, 22, 289-293.	2.6	3
324	Safety, Virologic Efficacy, and Pharmacokinetics of CT-P59, a Neutralizing Monoclonal Antibody Against SARS-CoV-2 Spike Receptor-Binding Protein: Two Randomized, Placebo-Controlled, Phase I Studies in Healthy Individuals and Patients With Mild SARS-CoV-2 Infection. Clinical Therapeutics, 2021, 43. 1706-1727.	1.1	39
325	Therapeutic alphavirus cross-reactive E1 human antibodies inhibit viral egress. Cell, 2021, 184, 4430-4446.e22.	13.5	25
326	SARS-CoV-2 escape from a highly neutralizing COVID-19 convalescent plasma. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	251
327	Single-Dose Intranasal Administration of AdCOVID Elicits Systemic and Mucosal Immunity against SARS-CoV-2 and Fully Protects Mice from Lethal Challenge. Vaccines, 2021, 9, 881.	2.1	86
328	"Molecular Masks―for ACE2 to Effectively and Safely Block SARS-CoV-2 Virus Entry. International Journal of Molecular Sciences, 2021, 22, 8963.	1.8	7
329	Signatures in SARS-CoV-2 spike protein conferring escape to neutralizing antibodies. PLoS Pathogens, 2021, 17, e1009772.	2.1	74
330	A potently neutralizing SARS-CoV-2 antibody inhibits variants of concern by utilizing unique binding residues in a highly conserved epitope. Immunity, 2021, 54, 2399-2416.e6.	6.6	79
331	Cooperativity mediated by rationally selected combinations of human monoclonal antibodies targeting the henipavirus receptor binding protein. Cell Reports, 2021, 36, 109628.	2.9	23
332	Correlation between a quantitative anti‣ARS oVâ€2 IgG ELISA and neutralization activity. Journal of Medical Virology, 2022, 94, 388-392.	2.5	89

#	Article	IF	CITATIONS
333	A monoclonal antibody against staphylococcal enterotoxin B superantigen inhibits SARS-CoV-2 entry inÂvitro. Structure, 2021, 29, 951-962.e3.	1.6	28
334	A vaccine-induced public antibody protects against SARS-CoV-2 and emerging variants. Immunity, 2021, 54, 2159-2166.e6.	6.6	52
335	A surrogate cellâ€based SARSâ€CoVâ€2 spike blocking assay. European Journal of Immunology, 2021, 51, 2665-2676.	1.6	3
336	Broad cross-reactivity across sarbecoviruses exhibited by a subset of COVID-19 donor-derived neutralizing antibodies. Cell Reports, 2021, 36, 109760.	2.9	80
337	IgG Antibodies Develop to Spike but Not to the Nucleocapsid Viral Protein in Many Asymptomatic and Light COVID-19 Cases. Viruses, 2021, 13, 1945.	1.5	16
338	Safety and Tolerability of the Adeno-Associated Virus Vector, AAV6.2FF, Expressing a Monoclonal Antibody in Murine and Ovine Animal Models. Biomedicines, 2021, 9, 1186.	1.4	7
339	A SARS oVâ€2 Neutralization Assay using Single Molecule Arrays. Angewandte Chemie, 0, , .	1.6	5
340	Bispecific antibodies targeting distinct regions of the spike protein potently neutralize SARS-CoV-2 variants of concern. Science Translational Medicine, 2021, 13, eabj5413.	5.8	79
341	An ultrapotent pan-β-coronavirus lineage B (β-CoV-B) neutralizing antibody locks the receptor-binding domain in closed conformation by targeting its conserved epitope. Protein and Cell, 2022, 13, 655-675.	4.8	25
342	What we know and still ignore on COVIDâ€19 immune pathogenesis and a proposal based on the experience of allergic disorders. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1114-1128.	2.7	6
344	Live imaging of SARS-CoV-2 infection in mice reveals that neutralizing antibodies require Fc function for optimal efficacy. Immunity, 2021, 54, 2143-2158.e15.	6.6	155
346	Treatment and prevention strategies for the COVID 19 pandemic: A review of immunotherapeutic approaches for neutralizing SARS-CoV-2. International Journal of Biological Macromolecules, 2021, 186, 490-500.	3.6	28
347	Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail. Nature Microbiology, 2021, 6, 1233-1244.	5.9	237
348	Defining variant-resistant epitopes targeted by SARS-CoV-2 antibodies: A global consortium study. Science, 2021, 374, 472-478.	6.0	228
349	SARS-CoV-2 mRNA Vaccines Elicit Different Responses in Immunologically NaÃ ⁻ ve and Pre-Immune Humans. Frontiers in Immunology, 2021, 12, 728021.	2.2	20
351	Neutralizing antibodies for the prevention and treatment of COVID-19. Cellular and Molecular Immunology, 2021, 18, 2293-2306.	4.8	91
352	A non-RBM targeted RBD specific antibody neutralizes SARS-CoV-2 inducing S1 shedding. Biochemical and Biophysical Research Communications, 2021, 571, 152-158.	1.0	5
353	Neutralizing antibody responses following natural SARS-CoV-2 infection: Dynamics and correlation with commercial serologic tests Journal of Clinical Virology, 2021, 144, 104988.	1.6	31

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
355	SARS-CoV-2 Subgenomic RNAs: Characterization, Utility, and Perspectives. Viruses, 2021, 13, 1923.	1.5	38
357	SARSâ€CoVâ€2 neutralizing antibodies decline over one year and patients with severe COVIDâ€19 pneumonia display a unique cytokine profile. International Journal of Infectious Diseases, 2021, 112, 227-234.	1.5	13
358	Cross-neutralization of SARS-CoV-2 by HIV-1 specific broadly neutralizing antibodies and polyclonal plasma. PLoS Pathogens, 2021, 17, e1009958.	2.1	20
359	Landscape of human antibody recognition of the SARS-CoV-2 receptor binding domain. Cell Reports, 2021, 37, 109822.	2.9	35
360	A potent SARS-CoV-2 neutralising nanobody shows therapeutic efficacy in the Syrian golden hamster model of COVID-19. Nature Communications, 2021, 12, 5469.	5.8	102
361	Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines. Cell, 2021, 184, 5432-5447.e16.	13.5	131
362	Dynamics of morbidity of the population with respiratory diseases in the pandemic COVID-19 period in the Far Eastern Federal District. Bulletin Physiology and Pathology of Respiration, 2021, , 19-26.	0.0	0
363	SARS-CoV-2, COVID-19 and the aging immune system. Nature Aging, 2021, 1, 769-782.	5.3	208
365	Antibody Response against SARS-CoV-2 Infection: Implications for Diagnosis, Treatment and Vaccine Development. International Reviews of Immunology, 2022, 41, 393-413.	1.5	13
366	A SARS oVâ€2 Neutralization Assay Using Single Molecule Arrays. Angewandte Chemie - International Edition, 2021, 60, 25966-25972.	7.2	21
367	Generation of potent cellular and humoral immunity against SARS-CoV-2 antigens via conjugation to a polymeric glyco-adjuvant. Biomaterials, 2021, 278, 121159.	5.7	23
368	Magnetofluidic immuno-PCR for point-of-care COVID-19 serological testing. Biosensors and Bioelectronics, 2022, 195, 113656.	5.3	18
369	SARS-CoV-2 Cellular Infection and Therapeutic Opportunities: Lessons Learned from Ebola Virus. Membranes, 2021, 11, 64.	1.4	0
372	Pharmacotherapeutics of SARS-CoV-2 Infections. Journal of NeuroImmune Pharmacology, 2021, 16, 12-37.	2.1	4
373	SARS-CoV-2 B cell receptor signatures in at-risk populations. Journal of Clinical Investigation, 2021, 131, .	3.9	0
375	Development and application of therapeutic antibodies against COVID-19. International Journal of Biological Sciences, 2021, 17, 1486-1496.	2.6	47
376	Potent mouse monoclonal antibodies that block SARS-CoV-2 infection. Journal of Biological Chemistry, 2021, 296, 100346.	1.6	15
377	Neutralizing antibody titres in SARS-CoV-2 infections. Nature Communications, 2021, 12, 63.	5.8	303

#	Article	IF	CITATIONS
379	Human Monoclonal Antibodies: On the Menu of Targeted Therapeutics Against COVID-19. Virologica Sinica, 2020, 35, 713-724.	1.2	10
380	Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature, 2021, 590, 630-634.	13.7	995
381	Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo. Journal of Experimental Medicine, 2021, 218, .	4.2	283
382	The impact of structural bioinformatics tools and resources on SARS-CoV-2 research and therapeutic strategies. Briefings in Bioinformatics, 2021, 22, 742-768.	3.2	29
383	Role of Immunoglobulin M and A Antibodies in the Neutralization of Severe Acute Respiratory Syndrome Coronavirus 2. Journal of Infectious Diseases, 2021, 223, 957-970.	1.9	64
384	Double lock of a potent human therapeutic monoclonal antibody against SARS-CoV-2. National Science Review, 2021, 8, nwaa297.	4.6	24
438	Sex, age, and hospitalization drive antibody responses in a COVID-19 convalescent plasma donor population. Journal of Clinical Investigation, 2020, 130, 6141-6150.	3.9	375
439	A natural mutation between SARS-CoV-2 and SARS-CoV determines neutralization by a cross-reactive antibody. PLoS Pathogens, 2020, 16, e1009089.	2.1	55
440	Medicamentos e tratamentos para a Covid-19. Estudos Avancados, 2020, 34, 7-27.	0.2	15
442	Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. ELife, 2020, 9, .	2.8	1,239
443	Immunology of SARS-CoV-2 infections and vaccines. Advances in Immunology, 2021, 151, 49-97.	1.1	12
444	How Antibodies Recognize Pathogenic Viruses: Structural Correlates of Antibody Neutralization of HIV-1, SARS-CoV-2, and Zika. Viruses, 2021, 13, 2106.	1.5	7
445	Kinetics of Neutralizing Antibody Response Underscores Clinical COVID-19 Progression. Journal of Immunology Research, 2021, 2021, 1-11.	0.9	4
446	Rational preparation and application of a mRNA delivery system with cytidinyl/cationic lipid. Journal of Controlled Release, 2021, 340, 114-124.	4.8	11
448	A potent bispecific nanobody protects hACE2 mice against SARS-CoV-2 infection via intranasal administration. Cell Reports, 2021, 37, 109869.	2.9	59
449	InÂvivo characterization of emerging SARS-CoV-2 variant infectivity and human antibody escape potential. Cell Reports, 2021, 37, 109838.	2.9	8
450	Structure-guided antibody cocktail for prevention and treatment of COVID-19. PLoS Pathogens, 2021, 17, e1009704.	2.1	12
452	Key Substitutions in the Spike Protein of SARS-CoV-2 Variants Can Predict Resistance to Monoclonal Antibodies, but Other Substitutions Can Modify the Effects. Journal of Virology, 2022, 96, JVI0111021.	1.5	29

#	Article	IF	CITATIONS
453	Distant residues modulate conformational opening in SARS-CoV-2 spike protein. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	69
454	Characterization of SARS-CoV-2-specific humoral immunity and its potential applications and therapeutic prospects. Cellular and Molecular Immunology, 2022, 19, 150-157.	4.8	43
456	<scp>COVID</scp> â€19 vaccination in patients with heart failure: a position paper of the Heart Failure Association of the European Society of Cardiology. European Journal of Heart Failure, 2021, 23, 1806-1818.	2.9	32
457	Current trends in diagnosis and treatment strategies of COVID-19 infection. Environmental Science and Pollution Research, 2021, 28, 64987-65013.	2.7	3
458	COVA1-18 neutralizing antibody protects against SARS-CoV-2 in three preclinical models. Nature Communications, 2021, 12, 6097.	5.8	38
460	Mechanisms of Lung Injury Induced by SARS-CoV-2 Infection. Physiology, 2022, 37, 88-100.	1.6	18
461	Monoclonal antibodies protect aged rhesus macaques from SARS-CoV-2-induced immune activation and neuroinflammation. Cell Reports, 2021, 37, 109942.	2.9	9
462	Isolation of a panel of ultra-potent human antibodies neutralizing SARS-CoV-2 and viral variants of concern. Cell Discovery, 2021, 7, 96.	3.1	21
463	Computational Design of Potent D-Peptide Inhibitors of SARS-CoV-2. Journal of Medicinal Chemistry, 2021, 64, 14955-14967.	2.9	28
465	Structural mechanism of SARS-CoV-2 neutralization by two murine antibodies targeting the RBD. Cell Reports, 2021, 37, 109881.	2.9	14
466	Serological anti-SARS-CoV-2 neutralizing antibodies association to live virus neutralizing test titers in COVID-19 paucisymptomatic/symptomatic patients and vaccinated subjects. International Immunopharmacology, 2021, 101, 108215.	1.7	20
468	The demographic and serological characteristics of COVID-19 convalescent plasma donors: Identification of basic criteria for optimal donor selection. Transfusion and Apheresis Science, 2022, 61, 103302.	0.5	5
469	Complete protection by a single-dose skin patch–delivered SARS-CoV-2 spike vaccine. Science Advances, 2021, 7, eabj8065.	4.7	31
470	Insights into COVID-19 Vaccine Development Based on Immunogenic Structural Proteins of SARS-CoV-2, Host Immune Responses, and Herd Immunity. Cells, 2021, 10, 2949.	1.8	26
471	Neutralizing Antibodies to SARSâ€CoVâ€2 Selected from a Human Antibody Library Constructed Decades Ago. Advanced Science, 2022, 9, e2102181.	5.6	14
472	Antiviral Therapeutics: Key to Curbing the COVID-19 Pandemic. American Journal of Medicine, 2021, , .	0.6	0
473	Low-dose in vivo protection and neutralization across SARS-CoV-2 variants by monoclonal antibody combinations. Nature Immunology, 2021, 22, 1503-1514.	7.0	40
474	Contributions of single-particle cryoelectron microscopy toward fighting COVID-19. Trends in Biochemical Sciences, 2022, 47, 117-123.	3.7	6

#	Article	IF	Citations
479	Probing Affinity, Avidity, Anticooperativity, and Competition in Antibody and Receptor Binding to the SARS-CoV-2 Spike by Single Particle Mass Analyses. ACS Central Science, 2021, 7, 1863-1873.	5.3	20
480	Cross-reactivity of antibodies from non-hospitalized COVID-19 positive individuals against the native, B.1.351, B.1.617.2, and P.1 SARS-CoV-2 spike proteins. Scientific Reports, 2021, 11, 21601.	1.6	20
481	Self and Nonself Short Constituent Sequences of Amino Acids in the SARS-CoV-2 Proteome for Vaccine Development. Covid, 2021, 1, 555-574.	0.7	4
482	A Novel Double Mosaic Virus-like Particle-Based Vaccine against SARS-CoV-2 Incorporates Both Receptor Binding Motif (RBM) and Fusion Domain. Vaccines, 2021, 9, 1287.	2.1	10
483	In Vivo Electroporation of Plasmid DNA: A Promising Strategy for Rapid, Inexpensive, and Flexible Delivery of Anti-Viral Monoclonal Antibodies. Pharmaceutics, 2021, 13, 1882.	2.0	6
484	Potent SARS-CoV-2 neutralizing antibodies with protective efficacy against newly emerged mutational variants. Nature Communications, 2021, 12, 6304.	5.8	42
486	Editorial: The battle for survival between severe acute respiratory syndrome coronavirus 2 and human beings. Current Opinion in HIV and AIDS, 2020, 15, 325-327.	1.5	0
492	Generation and Effect Testing of a SARS-CoV-2 RBD-Targeted Polyclonal Therapeutic Antibody Based on a 2-D Airway Organoid Screening System. Frontiers in Immunology, 2021, 12, 689065.	2.2	6
493	Analysis of Glycosylation and Disulfide Bonding of Wild-Type SARS-CoV-2 Spike Glycoprotein. Journal of Virology, 2022, 96, JVI0162621.	1.5	24
494	Pathogenesis and Mechanism of Gastrointestinal Infection With COVID-19. Frontiers in Immunology, 2021, 12, 674074.	2.2	20
495	A Bacterial Cell-Based Assay To Study SARS-CoV-2 Protein-Protein Interactions. MBio, 2021, , e0293621.	1.8	1
497	Recombinant production of a functional SARS-CoV-2 spike receptor binding domain in the green algae Chlamydomonas reinhardtii. PLoS ONE, 2021, 16, e0257089.	1.1	20
498	Nanoparticular CpG-adjuvanted SARS-CoV-2 S1 protein elicits broadly neutralizing and Th1-biased immunoreactivity in mice. International Journal of Biological Macromolecules, 2021, 193, 1885-1897.	3.6	12
499	Antibody cocktail effective against variants of SARS-CoV-2. Journal of Biomedical Science, 2021, 28, 80.	2.6	17
500	Cross-Neutralization of Emerging SARS-CoV-2 Variants of Concern by Antibodies Targeting Distinct Epitopes on Spike. MBio, 2021, 12, e0297521.	1.8	24
501	Treatments for COVID-19: Lessons from 2020 and new therapeutic options. Current Opinion in Pharmacology, 2022, 62, 43-59.	1.7	23
502	Spherical Neutralizing Aptamer Inhibits SARS-CoV-2 Infection and Suppresses Mutational Escape. Journal of the American Chemical Society, 2021, 143, 21541-21548.	6.6	56
504	Is SARSâ€CoVâ€2 viral clearance in nasopharyngeal swabs an appropriate surrogate marker for clinical efficacy of neutralising antibodyâ€based therapeutics?. Reviews in Medical Virology, 2022, 32, e2314.	3.9	7

#	Article	IF	CITATIONS
505	Pharmacological Agents for COVID-19 Patients. , 2021, , 151-166.		0
506	Structural basis and mode of action for two broadly neutralizing antibodies against SARS-CoV-2 emerging variants of concern. Cell Reports, 2022, 38, 110210.	2.9	96
507	A structural view of the SARS-CoV-2 virus and its assembly. Current Opinion in Virology, 2022, 52, 123-134.	2.6	42
509	Single-cell immunology of SARS-CoV-2 infection. Nature Biotechnology, 2022, 40, 30-41.	9.4	78
510	Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature, 2022, 602, 671-675.	13.7	1,202
511	Thiol-based chemical probes exhibit antiviral activity against SARS-CoV-2 via allosteric disulfide disruption in the spike glycoprotein. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	28
512	The SARS-CoV-2 monoclonal antibody combination, AZD7442, is protective in nonhuman primates and has an extended half-life in humans. Science Translational Medicine, 2022, 14, eabl8124.	5.8	143
513	<i>In Vivo</i> Hematopoietic Stem Cell Gene Therapy for SARS-CoV2 Infection Using a Decoy Receptor. Human Gene Therapy, 2022, 33, 389-403.	1.4	5
514	Performance of a flow cytometry-based immunoassay for detection of antibodies binding to SARS-CoV-2 spike protein. Scientific Reports, 2022, 12, 586.	1.6	1
515	Homologous or heterologous booster of inactivated vaccine reduces SARS-CoV-2 Omicron variant escape from neutralizing antibodies. Emerging Microbes and Infections, 2022, 11, 477-481.	3.0	104
517	A possible doseâ€response equation: Viral load after plasma infusion in COVID â€19 patients and antiâ€SARSâ€CoV â€2 antibody titers in convalescent plasma. Transfusion Medicine, 2022, , e12852.	0.5	0
518	mRNA-1273 vaccine-induced antibodies maintain Fc effector functions across SARS-CoV-2 variants of concern. Immunity, 2022, 55, 355-365.e4.	6.6	76
519	Immunology and Technology of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Vaccines. Pharmacological Reviews, 2022, 74, 313-339.	7.1	9
520	The mutational dynamics of the SARS-CoV-2 virus in serial passages in vitro. Virologica Sinica, 2022, 37, 198-207.	1.2	12
521	Immunization with synthetic SARS-CoV-2 S glycoprotein virus-like particles protects macaques from infection. Cell Reports Medicine, 2022, 3, 100528.	3.3	6
522	A new testing platform using fingerstick blood for quantitative antibody response evaluation after SARS-CoV-2 vaccination. Emerging Microbes and Infections, 2022, 11, 250-259.	3.0	3
523	Preclinical evaluation of a SARS-CoV-2 mRNA vaccine PTX-COVID19-B. Science Advances, 2022, 8, eabj9815.	4.7	29
524	Rapid identification of neutralizing antibodies against SARS-CoV-2 variants by mRNA display. Cell Reports, 2022, 38, 110348.	2.9	14

#	Article	IF	CITATIONS
525	Longitudinal immune profiling reveals dominant epitopes mediating long-term humoral immunity in COVID-19–convalescent individuals. Journal of Allergy and Clinical Immunology, 2022, 149, 1225-1241.	1.5	5
526	A pandemic-enabled comparison of discovery platforms demonstrates a nail^ve antibody library can match the best immune-sourced antibodies. Nature Communications, 2022, 13, 462.	5.8	17
528	Monoclonal antibodies for COVID-19 therapy and SARS-CoV-2 detection. Journal of Biomedical Science, 2022, 29, 1.	2.6	144
529	IgG Against Human Betacoronavirus Spike Proteins Correlates With SARS-CoV-2 Anti-Spike IgG Responses and COVID-19 Disease Severity. Journal of Infectious Diseases, 2022, 226, 474-484.	1.9	11
531	Evaluation of Drug Repositioning by Molecular Docking of Pharmaceutical Resources to Identification of Potential SARS-CoV-2 Viral Inhibitors. , 0, , .		0
532	Standardized two-step testing of antibody activity in COVID-19 convalescent plasma. IScience, 2022, 25, 103602.	1.9	6
533	An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nature Medicine, 2022, 28, 490-495.	15.2	577
534	Germinal center responses to SARS-CoV-2 mRNA vaccines in healthy and immunocompromised individuals. Cell, 2022, 185, 1008-1024.e15.	13.5	101
535	Efficacy and Safety of Regdanvimab (CT-P59): A Phase 2/3 Randomized, Double-Blind, Placebo-Controlled Trial in Outpatients With Mild-to-Moderate Coronavirus Disease 2019. Open Forum Infectious Diseases, 2022, 9, ofac053.	0.4	38
536	CoVac501, a self-adjuvanting peptide vaccine conjugated with TLR7 agonists, against SARS-CoV-2 induces protective immunity. Cell Discovery, 2022, 8, 9.	3.1	12
537	Regdanvimab in patients with mild-to-moderate SARS-CoV-2 infection: A propensity score–matched retrospective cohort study. International Immunopharmacology, 2022, 106, 108570.	1.7	13
538	Monoclonal antibodies targeting two immunodominant epitopes on the Spike protein neutralize emerging SARS-CoV-2 variants of concern. EBioMedicine, 2022, 76, 103818.	2.7	14
539	Human Antibodies for Viral Infections. Annual Review of Immunology, 2022, 40, 349-386.	9.5	23
540	Designed SARSâ€CoVâ€2 receptor binding domain variants form stable monomers. Biotechnology Journal, 2022, 17, e2100422.	1.8	8
541	A combination of two human neutralizing antibodies prevents SARS-CoV-2 infection in cynomolgus macaques. Med, 2022, 3, 188-203.e4.	2.2	11
543	Neutralizing monoclonal antibodies against highly pathogenic coronaviruses. Current Opinion in Virology, 2022, 53, 101199.	2.6	2
544	Monoclonal Antibody Therapeutics for Infectious Diseases: Beyond Normal Human Immunoglobulin. SSRN Electronic Journal, 0, , .	0.4	0
545	A high-throughput single cell-based antibody discovery approach against the full-length SARS-CoV-2 spike protein suggests a lack of neutralizing antibodies targeting the highly conserved S2 domain. Briefings in Bioinformatics, 2022, 23, .	3.2	2

#	Article	IF	CITATIONS
546	Development of SARS-CoV2 humoral response including neutralizing antibodies is not sufficient to protect patients against fatal infection. Scientific Reports, 2022, 12, 2077.	1.6	8
548	A human antibody reveals a conserved site on beta-coronavirus spike proteins and confers protection against SARS-CoV-2 infection. Science Translational Medicine, 2022, 14, eabi9215.	5.8	123
549	An adjuvant strategy enabled by modulation of the physical properties of microbial ligands expands antigen immunogenicity. Cell, 2022, 185, 614-629.e21.	13.5	40
550	Casirivimab and imdevimab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet, The, 2022, 399, 665-676.	6.3	280
553	SARS-CoV-2 Omicron-neutralizing memory B cells are elicited by two doses of BNT162b2 mRNA vaccine. Science Immunology, 2022, 7, eabn8590.	5.6	88
554	Elicitation of potent SARS-CoV-2 neutralizing antibody responses through immunization with a versatile adenovirus-inspired multimerization platform. Molecular Therapy, 2022, 30, 1913-1925.	3.7	21
555	A SARS-CoV-2 variant elicits an antibody response with a shifted immunodominance hierarchy. PLoS Pathogens, 2022, 18, e1010248.	2.1	48
556	Parallel profiling of antigenicity alteration and immune escape of SARS-CoV-2 Omicron and other variants. Signal Transduction and Targeted Therapy, 2022, 7, 42.	7.1	25
558	A Potent and Protective Human Neutralizing Antibody Against SARS-CoV-2 Variants. Frontiers in Immunology, 2021, 12, 766821.	2.2	15
559	SARS-CoV-2 ferritin nanoparticle vaccines elicit broad SARS coronavirus immunogenicity. Cell Reports, 2021, 37, 110143.	2.9	94
560	Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature, 0, , .	13.7	90
561	Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature, 0, , .	13.7	101
562	Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature, 0, , .	13.7	72
563	Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature, 0, , .	13.7	88
564	Conformational dynamics of the Beta and Kappa SARS-CoV-2 spike proteins and their complexes with ACE2 receptor revealed by cryo-EM. Nature Communications, 2021, 12, 7345.	5.8	58
565	Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature, 2022, 602, 657-663.	13.7	1,350
566	Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature, 2022, 602, 664-670.	13.7	917
567	Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature, 2022, 602, 676-681.	13.7	1,038

ARTICLE IF CITATIONS # Deep dissection of the antiviral immune profile of patients with COVID-19. Communications Biology, 568 2.0 9 2021, 4, 1389. SARS-CoV-2 spreads through cell-to-cell transmission. Proceedings of the National Academy of 3.3 145 Sciences of the United States of America, 2022, 119, . Rapid discovery of diverse neutralizing SARS-CoV-2 antibodies from large-scale synthetic phage 570 2.6 14 libraries. MAbs, 2022, 14, 2002236. Molecular basis of immune evasion by the Delta and Kappa SARS-CoV-2 variants. Science, 2021, 374, 232 1621-1626. Structural basis of SARS-CoV-2 Omicron immune evasion and receptor engagement. Science, 2022, 375, 581 6.0 394 864-868. Highly synergistic combinations of nanobodies that target SARS-CoV-2 and are resistant to escape. ELife, 2021, 10, . 2.8 Practical Considerations for the Scale-Up of Chinese Hamster Ovary (CHO) Cell Cultures. Cell 584 0.4 1 Engineering, 2021, , 367-400. Anti-SARS CoV-2 IgG in COVID-19 Patients with Hematological Diseases: A Single-center, Retrospective 0.3 Study in Japan. Internal Medicine, 2022, 61, 1681-1686. SARS-CoV-2 and Coronavirus Disease Mitigation: Treatment Options, Vaccinations and Variants. 586 1.2 9 Pathogens, 2022, 11, 275. 587 Bispecific antiviral neutralizing antibodies are twice as nice. Nature Immunology, 2022, 23, 346-347. Comparative Magnitude and Persistence of Humoral SARS-CoV-2 Vaccination Responses in the Adult 588 2.2 11 Population in Germany. Frontiers in Immunology, 2022, 13, 828053. Identification of a Novel Neutralizing Epitope on the N-Terminal Domain of the Human Coronavirus 1.5 229E Spike Protein. Journal of Virology, 2022, 96, JVI0195521. Therapeutic antibodies for COVID-19: is a new age of IgM, IgA and bispecific antibodies coming?. MAbs, 590 2.6 15 2022, 14, 2031483. Performance evaluation of an automatic chemiluminescence immune platform for SARS-CoV-2 1.3 neutralizing antibody after vaccination in real world. BMC Infectious Diseases, 2022, 22, 157. An engineered bispecific human monoclonal antibody against SARS-CoV-2. Nature Immunology, 2022, 23, 592 7.0 38 423-430. Structural basis for SARS-CoV-2 Delta variant recognition of ACE2 receptor and broadly neutralizing 5.8 antibodies. Nature Communications, 2022, 13, 871. Characterization of the antibody response to SARSâ \in CoVâ \in 2 in a mildly affected pediatric population. 594 1.1 5 Pediatric Allergy and Immunology, 2022, 33, e13737. Modeling how antibody responses may determine the efficacy of COVID-19 vaccines. Nature 3.8 Computational Science, 2022, 2, 123-131.

#	Article	IF	CITATIONS
596	Multivariate mining of an alpaca immune repertoire identifies potent cross-neutralizing SARS-CoV-2 nanobodies. Science Advances, 2022, 8, eabm0220.	4.7	18
597	Nonself Mutations in the Spike Protein Suggest an Increase in the Antigenicity and a Decrease in the Virulence of the Omicron Variant of SARS-CoV-2. Covid, 2022, 2, 407-418.	0.7	3
598	Antibody evasion properties of SARS-CoV-2 Omicron sublineages. Nature, 2022, 604, 553-556.	13.7	649
599	Short-Term Instantaneous Prophylaxis and Efficient Treatment Against SARS-CoV-2 in hACE2 Mice Conferred by an Intranasal Nanobody (Nb22). Frontiers in Immunology, 2022, 13, 865401.	2.2	8
603	The role of neutralizing antibodies by sVNT after two doses of BNT162b2 mRNA vaccine in a cohort of Italian healthcare workers. Clinical Chemistry and Laboratory Medicine, 2022, 60, 934-940.	1.4	5
604	An antibody-escape estimator for mutations to the SARS-CoV-2 receptor-binding domain. Virus Evolution, 2022, 8, veac021.	2.2	93
606	Pre-existing SARS-CoV-2 immunity influences potency, breadth, and durability of the humoral response to SARS-CoV-2 vaccination. Cell Reports Medicine, 2022, 3, 100603.	3.3	27
607	Monospecific and bispecific monoclonal SARS-CoV-2 neutralizing antibodies that maintain potency against B.1.617. Nature Communications, 2022, 13, 1638.	5.8	11
609	Efficient discovery of SARS-CoV-2-neutralizing antibodies via B cell receptor sequencing and ligand blocking. Nature Biotechnology, 2022, 40, 1270-1275.	9.4	27
610	Structural basis for potent antibody neutralization of SARS-CoV-2 variants including B.1.1.529. Science, 2022, 376, eabn8897.	6.0	119
612	Serum neutralization of SARS-CoV-2 Omicron sublineages BA.1 and BA.2 in patients receiving monoclonal antibodies. Nature Medicine, 2022, 28, 1297-1302.	15.2	235
613	Neutralizing Monoclonal Antibodies Inhibit SARS-CoV-2 Infection through Blocking Membrane Fusion. Microbiology Spectrum, 2022, 10, e0181421.	1.2	9
614	The ChAdOx1 vectored vaccine, AZD2816, induces strong immunogenicity against SARS-CoV-2 beta (B.1.351) and other variants of concern in preclinical studies. EBioMedicine, 2022, 77, 103902.	2.7	23
618	Decreased and Heterogeneous Neutralizing Antibody Responses Against RBD of SARS-CoV-2 Variants After mRNA Vaccination. Frontiers in Immunology, 2022, 13, 816389.	2.2	5
619	SARS-CoV-2 BA.1 variant is neutralized by vaccine booster–elicited serum but evades most convalescent serum and therapeutic antibodies. Science Translational Medicine, 2022, 14, eabn8543.	5.8	75
621	RBD trimer mRNA vaccine elicits broad and protective immune responses against SARS-CoV-2 variants. IScience, 2022, 25, 104043.	1.9	19
622	Upstream cell culture process characterization and in-process control strategy development at pandemic speed. MAbs, 2022, 14, 2060724.	2.6	9
623	Neutralization or enhancement of SARS-CoV-2 infection by a monoclonal antibody targeting a specific epitope in the spike receptor-binding domain. Antiviral Research, 2022, 200, 105290.	1.9	3

#	Article	IF	Citations
624	Analysis of memory B cells identifies conserved neutralizing epitopes on the N-terminal domain of variant SARS-Cov-2 spike proteins. Immunity, 2022, 55, 998-1012.e8.	6.6	86
626	Systematic profiling of antigen bias in humoral response against SARS-CoV-2. Virus Research, 2022, 312, 198711.	1.1	0
627	Isolation of human monoclonal antibodies with neutralizing activity to a broad spectrum of SARS-CoV-2 viruses including the Omicron variants. Antiviral Research, 2022, 201, 105297.	1.9	3
628	Application of the SARS-CoV-2-S1 ACE-2 receptor interaction as the basis of the fully automated assay to detect neutralizing SARS-CoV-2-S1 antibodies in blood samples. Journal of Immunological Methods, 2022, 504, 113258.	0.6	2
629	A comprehensive evolutionary and epidemiological characterization of insertion and deletion mutations in SARS-CoV-2 genomes. Virus Evolution, 2021, 7, veab104.	2.2	9
630	Computational Insights Into the Effects of the R190K and N121Q Mutations on the SARS-CoV-2 Spike Complex With Biliverdin. Frontiers in Molecular Biosciences, 2021, 8, 791885.	1.6	4
631	Nonmuscle myosin heavy chain IIA facilitates SARS-CoV-2 infection in human pulmonary cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	25
632	Human neutralizing antibodies for SARS-CoV-2 prevention and immunotherapy. Immunotherapy Advances, 2022, 2, .	1.2	9
635	Neutralizing antibody responses over time in demographically and clinically diverse individuals recovered from SARS-CoV-2 infection in the United States and Peru: A cohort study. PLoS Medicine, 2021, 18, e1003868.	3.9	20
636	Monoclonal Antibodies against SARS-CoV-2: Current Scenario and Future Perspectives. Pharmaceuticals, 2021, 14, 1272.	1.7	20
637	Quality comparability assessment of a SARS-CoV-2-neutralizing antibody across transient, mini-pool-derived and single-clone CHO cells. MAbs, 2022, 14, 2005507.	2.6	8
639	Evaluation of a Lateral Flow Immunoassay COVIDTECH [®] SARS-CoV-2 IgM/IgG Antibody Rapid Test. Japanese Journal of Infectious Diseases, 2022, 75, 334-340.	0.5	3
641	Phosphate-mediated coanchoring of RBD immunogens and molecular adjuvants to alum potentiates humoral immunity against SARS-CoV-2. Science Advances, 2021, 7, eabj6538.	4.7	19
643	Recent Developments in SARS-CoV-2 Neutralizing Antibody Detection Methods. Current Medical Science, 2021, 41, 1052-1064.	0.7	16
644	Foxp3+ CD4+ regulatory T cells control dendritic cells in inducing antigen-specific immunity to emerging SARS-CoV-2 antigens. PLoS Pathogens, 2021, 17, e1010085.	2.1	13
645	Multiple Routes of Antibody-Dependent Enhancement of SARS-CoV-2 Infection. Microbiology Spectrum, 2022, 10, e0155321.	1.2	30
646	Human-Immune-System (HIS) humanized mouse model (DRAGA: HLA-A2.HLA-DR4.Rag1KO.IL-2RγcKO.NOD) for COVID-19. Human Vaccines and Immunotherapeutics, 2022, 18, 1-16.	1.4	6
647	Structures of Omicron spike complexes and implications for neutralizing antibody development. Cell Reports, 2022, 39, 110770.	2.9	47

#	Article		CITATIONS
648	The kinetics and predictors of antiâ€SARSâ€CoVâ€2 antibodies up to eight months after symptomatic COVIDâ€19: a Czech crossâ€sectional study. Journal of Medical Virology, 2022, , . BNT162b2, mRNA-1273, and Sputnik V Vaccines Induce Comparable Immune Responses on a Par With Severe Course of COVID-19. Frontiers in Immunology, 2022, 13, 797918. Severe Acute Respiratory Syndrome Coronavirus 2 Variants of Concern: A Perspective for Emerging More Transmissible and Vaccine-Resistant Strains. Viruses, 2022, 14, 827.		7
649			1
650			14
651	Prolonged Protective Immunity Induced by Mild SARS-CoV-2 Infection of K18-hACE2 Mice. Vaccines, 2022, 10, 613.		2
652	SARS-CoV-2 Spike Protein Expression In Vitro and Hematologic Effects in Mice Vaccinated With AZD1222 (ChAdOx1 nCoV-19). Frontiers in Immunology, 2022, 13, 836492.		8
653	Intramuscular AZD7442 (Tixagevimab–Cilgavimab) for Prevention of Covid-19. New England Journal of Medicine, 2022, 386, 2188-2200.		450
655	SARS-CoV-2 pan-variant inhibitory peptides deter S1-ACE2 interaction and neutralize delta and omicron pseudoviruses. Computational and Structural Biotechnology Journal, 2022, 20, 2042-2056.		8
656	Broadly neutralizing antibodies against SARS-CoV-2 variants. , 2022, 1, 20220005.		3
657	Passive Immunotherapy Against SARS-CoV-2: From Plasma-Based Therapy to Single Potent Antibodies in the Race to Stay Ahead of the Variants. BioDrugs, 2022, 36, 231-323.	2.2	24
658	An antibody targeting the N-terminal domain of SARS-CoV-2 disrupts the spike trimer. Journal of Clinical Investigation, 2022, 132, .	3.9	14
659	SARS-CoV-2 Omicron variant: recent progress and future perspectives. Signal Transduction and Targeted Therapy, 2022, 7, 141.	7.1	315
660	A combination of potently neutralizing monoclonal antibodies isolated from an Indian convalescent donor protects against the SARS-CoV-2 Delta variant. PLoS Pathogens, 2022, 18, e1010465.	2.1	8
662	Novel super-neutralizing antibody UT28K is capable of protecting against infection from a wide variety of SARS-CoV-2 variants. MAbs, 2022, 14, 2072455.	2.6	9
663	Structural mapping of antibody landscapes to human betacoronavirus spike proteins. Science Advances, 2022, 8, eabn2911.	4.7	28
664	Off-the-shelf CAR natural killer cells secreting IL-15 target spike in treating COVID-19. Nature Communications, 2022, 13, 2576.	5.8	21
665	Structural insights of a highly potent pan-neutralizing SARS-CoV-2 human monoclonal antibody. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120976119.	3.3	27
666	Antibody evasion of SARS-CoV-2 Omicron BA.1, BA.1.1, BA.2, and BA.3 sub-lineages. Cell Host and Microbe, 2022, 30, 1077-1083.e4.	5.1	132
667	Analysis of a SARS-CoV-2 convalescent cohort identified a common strategy for escape of vaccine-induced anti-RBD antibodies by Beta and Omicron variants. EBioMedicine, 2022, 80, 104025.	2.7	13

ARTICLE IF CITATIONS Antibody-mediated neutralization of SARS-CoV-2. Immunity, 2022, 55, 925-944. 74 668 6.6 Complex Mutation Pattern of Omicron BA.2: Evading Antibodies without Losing Receptor Interactions. 1.8 International Journal of Molecular Sciences, 2022, 23, 5534. Point mutations in SARS-CoV-2 variants induce long-range dynamical perturbations in neutralizing 670 3.7 6 antibodies. Chemical Science, 2022, 13, 7224-7239. Epitope Mapping and Binding Assessment by Solid-State NMR Provide a Way for the Development of Biologics under the Quality by Design Paradigm. Journal of the American Chémical Society, 2022, 144, 671 10006-10016. Phage-like particle vaccines are highly immunogenic and protect against pathogenic coronavirus 672 2.9 8 infection and disease. Npj Vaccines, 2022, 7, . Development of an LNP-Encapsulated mRNA-RBD Vaccine against SARS-CoV-2 and Its Variants. Pharmaceutics, 2022, 14, 1101. It is Never Too Late for a Cocktail - Development and Analytical Characterization of Fixed-dose 674 1.6 2 Antibody Combinations. Journal of Pharmaceutical Sciences, 2022, 111, 2149-2157. Animal models for studying coronavirus infections and developing antiviral agents and vaccines. 1.9 Antiviral Research, 2022, 203, 105345. 676 Protective neutralizing epitopes in SARSâ€CoVâ€2. Immunological Reviews, 2022, 310, 76-92. 2.8 23 Evaluation of strategies to modify Anti-SARS-CoV-2 monoclonal antibodies for optimal functionality 679 1.1 as therapeutics. PLoS ONE, 2022, 17, e0267796. COVID-19 vaccine immunogenicity among chronic liver disease patients and liver transplant recipients: 680 4.5 29 A meta-analysis. Clinical and Molecular Hepatology, 2022, 28, 890-911. Correlates of protection against <scp>SARS</scp>â€<scp>CoV</scp>â€2 infection and COVIDâ€19 disease. 2.8 138 Immunological Reviews, 2022, 310, 6-26. SARS-CoV-2-neutralising monoclonal antibodies to prevent COVID-19. The Cochrane Library, 2022, 2022, 683 1.5 20 Monoclonal Antibodies with Extended Half-Life to Prevent Covid-19. New England Journal of Medicine, 684 2022, 386, 2236-2238. SARS-CoV-2 Omicron Variants Reduce Antibody Neutralization and Acquire Usage of Mouse ACE2. 685 2.2 10 Frontiers in Immunology, 0, 13, . The Cellular Characterization of SARS-CoV-2 Spike Protein in Virus-Infected Cells Using the Receptor Binding Domain Binding Specific Human Monoclonal Antibodies. Journal of Virology, 0, , . Role of anticoagulation in lowering the mortality in hospitalized covid-19 patients. Journal of King 688 0.5 0 Abdulaziz University, Islamic Economics, 2022, 43, 541-550. Development of an efficient reproducible cell-cell transmission assay for rapid quantification of 689 1.4 SARS-CoV-2 Spike interaction with hACE2. Cell Reports Methods, 2022, , 100252.

#	Article		CITATIONS
690	Monoclonal antibody therapeutics for infectious diseases: Beyond normal human immunoglobulin. , 2022, 240, 108233.		9
691	BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature, 2022, 608, 593-602.	13.7	889
692	Antibodies to combat viral infections: development strategies and progress. Nature Reviews Drug Discovery, 2022, 21, 676-696.	21.5	68
693	Structural and functional analysis of a potent human neutralizing antibody against enterovirus A71. Science China Life Sciences, 0, , .	2.3	0
694	Potent human broadly SARS-CoV-2–neutralizing IgA and IgG antibodies effective against Omicron BA.1 and BA.2. Journal of Experimental Medicine, 2022, 219, .	4.2	34
695	Tixagevimab + Cilgavimab: First Approval. Drugs, 2022, 82, 1001-1010.	4.9	31
696	Broad Cross-Reactive IgA and IgG against Human Coronaviruses in Milk Induced by COVID-19 Vaccination and Infection. Vaccines, 2022, 10, 980.	2.1	9
697	Single-cell profiling of the antigen-specific response to BNT162b2 SARS-CoV-2 RNA vaccine. Nature Communications, 2022, 13, .	5.8	28
698	Therapeutic efficacy of monoclonal antibodies and antivirals against SARS-CoV-2 Omicron BA.1 in Syrian hamsters. Nature Microbiology, 2022, 7, 1252-1258.	5.9	20
699	A one-year follow-up study on dynamic changes of leukocyte subsets and virus-specific antibodies of patients with COVID-19 in Sichuan, China. International Journal of Medical Sciences, 2022, 19, 1122-1130.	1.1	0
700	Review on In silico Methods, High-throughput Screening Techniques, and Cell Culture Based In Vitro Assays for SARS-CoV-2 Current Medicinal Chemistry, 2022, 29, .	1.2	3
702	The humoral response and antibodies against SARS-CoV-2 infection. Nature Immunology, 2022, 23, 1008-1020.	7.0	84
703	A bivalent SARS-CoV-2 monoclonal antibody combination does not affect the immunogenicity of a vector-based COVID-19 vaccine in macaques. Science Translational Medicine, 2022, 14, .	5.8	3
704	Landscape of B Cell Receptor Repertoires in COVID-19 Patients Revealed Through CDR3 Sequencing of Immunoglobulin Heavy and Light Chains. Immunological Investigations, 2022, 51, 1994-2008.	1.0	3
705	SARS-CoV-2 Omicron sublineages exhibit distinct antibody escape patterns. Cell Host and Microbe, 2022, 30, 1231-1241.e6.	5.1	55
706	Suppression of SARSâ€CoVâ€2 Replication with Stabilized and Clickâ€Chemistry Modified siRNAs. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6
707	<scp>COVID</scp> â€19 and plasma cells: Is there longâ€lived protection?*. Immunological Reviews, 2022, 309, 40-63.	2.8	26
708	Guardians of the oral and nasopharyngeal galaxy: <scp>IgA</scp> and protection against <scp>SARSâ€CoV</scp> â€2 infection*. Immunological Reviews, 2022, 309, 75-85.	2.8	32

#	Article		CITATIONS
709	Suppression of SARSâ€CoVâ€2 Replication with Stabilized and Clickâ€Chemistry Modified siRNAs. Angewandte Chemie, 0, , .		0
710	Mosaic RBD nanoparticles protect against challenge by diverse sarbecoviruses in animal models. Science, 2022, 377, .		120
711	Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2 Omicron lineage strains. Nature Communications, 2022, 13, .		93
712	Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5. Nature, 2022, 608, 603-608.		541
713	Avidity in antibody effector functions and biotherapeutic drug design. Nature Reviews Drug Discovery, 2022, 21, 715-735.		65
716	A mRNA Vaccine Encoding for a RBD 60-mer Nanoparticle Elicits Neutralizing Antibodies and Protective Immunity Against the SARS-CoV-2 Delta Variant in Transgenic K18-hACE2 Mice. Frontiers in Immunology, 0, 13, .		1
717	Structure-selected RBM immunogens prime polyclonal memory responses that neutralize SARS-CoV-2 variants of concern. PLoS Pathogens, 2022, 18, e1010686.		2
718	Immune Evasion by the Highly Mutated SARS-CoV-2 Omicron Variant. Infection and Drug Resistance, 0, Volume 15, 4013-4027.		4
719	MicroRNAs as Potential Tools for Predicting Cancer Patients' Susceptibility to SARS-CoV-2 Infection and Vaccination Response. Cells, 2022, 11, 2279.		6
723	SARS-CoV-2 antibody progression and neutralizing potential in mild symptomatic COVID-19 patients – a comparative long term post-infection study. Frontiers in Immunology, 0, 13, .		4
726	A public antibody class recognizes an S2 epitope exposed on open conformations of SARS-CoV-2 spike. Nature Communications, 2022, 13, .		34
730	Ultrabright nanoparticle-labeled lateral flow immunoassay for detection of anti-SARS-CoV-2 neutralizing antibodies in human serum. Biomaterials, 2022, 288, 121694.	5.7	15
731	Two Years into the COVID-19 Pandemic: Lessons Learned. ACS Infectious Diseases, 2022, 8, 1758-1814.	1.8	47
732	The spike receptor-binding motif G496S substitution determines the replication fitness of SARS-CoV-2 Omicron sublineage. Emerging Microbes and Infections, 2022, 11, 2093-2101.	3.0	5
733	Qualification of a Biolayer Interferometry Assay to Support AZD7442 Resistance Monitoring. Microbiology Spectrum, 2022, 10, .		2
735	Broadly neutralizing antibodies to SARS-related viruses can be readily induced in rhesus macaques. Science Translational Medicine, 2022, 14, .	5.8	15
736	Monoclonal antibodies: a remedial approach to prevent SARS-CoV-2 infection. 3 Biotech, 2022, 12, .	1.1	4
737	Structural basis of a two-antibody cocktail exhibiting highly potent and broadly neutralizing activities against SARS-CoV-2 variants including diverse Omicron sublineages. Cell Discovery, 2022, 8, .	3.1	13

#	Article		CITATIONS
738	Converting non-neutralizing SARS-CoV-2 antibodies into broad-spectrum inhibitors. Nature Chemical Biology, 2022, 18, 1270-1276.	3.9	8
739	Single domain antibodies derived from ancient animals as broadly neutralizing agents for SARS-CoV-2 and other coronaviruses. Biomedical Engineering Advances, 2022, 4, 100054.		3
740	Antibody-mediated immunity to SARS-CoV-2 spike. Advances in Immunology, 2022, , 1-69.	1.1	12
741	Evolution of Anti-SARS-CoV-2 Therapeutic Antibodies. International Journal of Molecular Sciences, 2022, 23, 9763.		17
742	Engineered DNA-encoded monoclonal antibodies targeting Plasmodium falciparum circumsporozoite protein confer single dose protection in a murine malaria challenge model. Scientific Reports, 2022, 12, .		2
743	Design of immunogens for eliciting antibody responses that may protect against SARS-CoV-2 variants. PLoS Computational Biology, 2022, 18, e1010563.	1.5	4
744	Potential of conserved antigenic sites in development of universal SARS-like coronavirus vaccines. Frontiers in Immunology, 0, 13, .	2.2	0
746	Structure-based neutralizing mechanisms for SARS-CoV-2 antibodies. Emerging Microbes and Infections, 2022, 11, 2412-2422.	3.0	10
748	A counterintuitive antibody cocktail disrupts coxsackievirus. Cell Host and Microbe, 2022, 30, 1194-1195.		1
749	Prospects of animal models and their application in studies on adaptive immunity to SARS-CoV-2. Frontiers in Immunology, 0, 13, .	2.2	4
750	An antibody cocktail with broadened mutational resistance and effective protection against SARS-CoV-2. Science China Life Sciences, 0, , .	2.3	2
752	Engineering recombinantly expressed lectin-based antiviral agents. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	2
753	Preventing SARS-CoV-2 Infection Using Anti-spike Nanobody-IFN-Î ² Conjugated Exosomes. Pharmaceutical Research, 0, , .	1.7	2
754	Potent monoclonal antibodies neutralize Omicron sublineages and other SARS-CoV-2 variants. Cell Reports, 2022, 41, 111528.	2.9	6
755	Therapeutic Role of Neutralizing Antibody for the Treatment against SARS-CoV-2 and Its Emerging Variants: A Clinical and Pre-Clinical Perspective. Vaccines, 2022, 10, 1612.	2.1	14
756	Antigenic characterization of the SARS-CoV-2 Omicron subvariant BA.2.75. Cell Host and Microbe, 2022, 30, 1512-1517.e4.	5.1	73
757	Broadly neutralizing antibodies to SARS-CoV-2 and other human coronaviruses. Nature Reviews Immunology, 2023, 23, 189-199.	10.6	112
758	Anti-SARS-CoV-2 immunoadhesin remains effective against Omicron and other emerging variants of concern. IScience, 2022, 25, 105193.	1.9	7

#	Article		CITATIONS
759	A critical overview of current progress for COVID-19: development of vaccines, antiviralÂdrugs, and therapeutic antibodies. Journal of Biomedical Science, 2022, 29, .	2.6	64
760	Differential patterns of cross-reactive antibody response against SARS-CoV-2 spike protein detected for chronically ill and healthy COVID-19 naÃ ⁻ ve individuals. Scientific Reports, 2022, 12, .	1.6	8
761	Combating the SARS-CoV-2 Omicron (BA.1) and BA.2 with potent bispecific antibodies engineered from non-Omicron neutralizing antibodies. Cell Discovery, 2022, 8, .	3.1	10
762	A single intranasal administration of AdCOVID protects against SARS-CoV-2 infection in the upper and lower respiratory tracts. Human Vaccines and Immunotherapeutics, 2022, 18, .	1.4	9
763	Characterization of the enhanced infectivity and antibody evasion of Omicron BA.2.75. Cell Host and Microbe, 2022, 30, 1527-1539.e5.		109
764	DNA-delivered antibody cocktail exhibits improved pharmacokinetics and confers prophylactic protection against SARS-CoV-2. Nature Communications, 2022, 13, .	5.8	15
767	Nebulized mRNAâ€Encoded Antibodies Protect Hamsters from SARSâ€CoVâ€2 Infection. Advanced Science, 2022, 9, .	5.6	12
768	Impairment of antiviral immune response and disruption of cellular functions by SARS-CoV-2 ORF7a and ORF7b. IScience, 2022, 25, 105444.	1.9	14
769	Efficacy of COVID-HIGIV in animal models of SARS-CoV-2 infection. Scientific Reports, 2022, 12, .	1.6	4
770	Tixagevimab/cilgavimab for prevention and treatment of COVID-19: a review. Expert Review of Anti-Infective Therapy, 0, , 1-11.	2.0	3
771	Neutralizing antibodies from the rare convalescent donors elicited antibody-dependent enhancement of SARS-CoV-2 variants infection. Frontiers in Medicine, 0, 9, .	1.2	5
772	What Is New in Prophylaxis and Treatment of COVID-19 in Renal Transplant Patients? A Report from an ESOT Meeting on the Topic. Transplantology, 2022, 3, 288-306.	0.3	0
773	Intranasal SARS-CoV-2Âspike-based immunisation adjuvanted with polyethyleneimine elicits mucosal and systemic humoral responses in mice. Journal of Immunological Methods, 2022, 511, 113380.	0.6	0
774	Assessment of the post-SARS-CoV-2 vaccination response depending on the epidemiological status, demographic parameters and levels of selected cytokines in medical personnel. Postepy Dermatologii I Alergologii, 2022, 39, 913-922.	0.4	0
775	SARS-CoV-2 spike conformation determines plasma neutralizing activity elicited by a wide panel of human vaccines. Science Immunology, 2022, 7, .	5.6	42
776	Structural Modeling of Adaptive Immune Responses to Infection. Methods in Molecular Biology, 2023, , 283-294.	0.4	0
777	Tfh cells and the germinal center are required for memory B cell formation & humoral immunity after ChAdOx1 nCoV-19 vaccination. Cell Reports Medicine, 2022, 3, 100845.	3.3	6
778	Serological fingerprints link antiviral activity of therapeutic antibodies to affinity and concentration. Scientific Reports, 2022, 12, .	1.6	2

CITATION REPOR	
	SL.

#	Article		CITATIONS
779	A novel plantâ€made monoclonal antibody enhances the synergetic potency of an antibody cocktail against the <scp>SARSâ€CoV</scp> â€2 Omicron variant. Plant Biotechnology Journal, 2023, 21, 549-559.		8
780	ACE2: A Dilemma in Regulating SARS-CoV-2 Infection and its Metabolic Complications. BIO Integration, 2023, 4, .		0
781	CD4 and IL-2 mediated NK cell responses after COVID-19 infection and mRNA vaccination in adults. Immunobiology, 2023, 228, 152304.	0.8	2
782	Immunosenescence and inflamm-ageing in COVID-19. Ageing Research Reviews, 2023, 84, 101818.		18
785	Species-agnostic polymeric formulations for inhalable messenger RNA delivery to the lung. Nature Materials, 2023, 22, 369-379.		41
786	Weakened humoral and cellular immune response to the inactivated COVID-19 vaccines in Chinese individuals with obesity/overweight. Genes and Diseases, 2023, 10, 608-617.	1.5	5
787	Simultaneous detection of antibody responses to multiple SARS-CoV-2 antigens by a Western blot serological assay. Applied Microbiology and Biotechnology, 2022, 106, 8183-8194.	1.7	0
788	AZD7442 (Tixagevimab/Cilgavimab) for Post-Exposure Prophylaxis of Symptomatic Coronavirus Disease 2019. Clinical Infectious Diseases, 2023, 76, 1247-1256.	2.9	16
789	Broad strategies for neutralizing SARS-CoV-2 and other human coronaviruses with monoclonal antibodies. Science China Life Sciences, 2023, 66, 658-678.		3
791	Integrative transcriptome analysis of SARS-CoV-2 human-infected cells combined with deep learning algorithms identifies two potential cellular targets for the treatment of coronavirus disease. Brazilian Journal of Microbiology, 0, , .	0.8	1
792	Comparative analysis of SARS oVâ€2 OmicronÂBA.2.12.1 and BA.5.2 variants. Journal of Medical Virology, 2023, 95, .	2.5	11
793	Challenges and developments in universal vaccine design against SARS-CoV-2 variants. Npj Vaccines, 2022, 7, .	2.9	25
795	Characterization of Systemic and Mucosal Humoral Immune Responses to an Adjuvanted Intranasal SARS-CoV-2 Protein Subunit Vaccine Candidate in Mice. Vaccines, 2023, 11, 30.	2.1	3
797	Efficacy and Safety of Tixagevimab/Cilgavimab to Prevent COVID-19 (Pre-Exposure Prophylaxis): A Systematic Review and Meta-Analysis. Diseases (Basel, Switzerland), 2022, 10, 118.	1.0	11
798	Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell, 2023, 186, 279-286.e8.	13.5	455
799	Rational identification of potent and broad sarbecovirus-neutralizing antibody cocktails from SARS convalescents. Cell Reports, 2022, 41, 111845.	2.9	46
800	Neutralizing and enhancing antibodies against SARS-CoV-2. Inflammation and Regeneration, 2022, 42, .	1.5	6
801	Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution. Nature, 0, , .	13.7	187

#	Article		CITATIONS
802	Safety of mRNA COVID-19 vaccinations in patients with allergic diseases. Public Health in Practice, 2023, 5, 100354.		0
803	mRNA-Based Vaccines and Therapeutics for COVID-19 and Future Pandemics. Vaccines, 2022, 10, 2150.	2.1	25
804	A molecular understanding of alphavirus entry and antibody protection. Nature Reviews Microbiology, 2023, 21, 396-407.	13.6	9
805	Antibody feedback contributes to facilitating the development of Omicron-reactive memory B cells in SARS-CoV-2 mRNA vaccinees. Journal of Experimental Medicine, 2023, 220, .	4.2	11
807	Approaches to expand the conventional toolbox for discovery and selection of antibodies with drug-like physicochemical properties. MAbs, 2023, 15, .	2.6	11
808	Use of Antiviral Agents and other Therapies for COVID-19. Seminars in Respiratory and Critical Care Medicine, 2023, 44, 118-129.	0.8	3
809	Insight into free energy and dynamic cross-correlations of residue for binding affinity of antibody and receptor binding domain SARS-CoV-2. Heliyon, 2023, 9, e12667.	1.4	0
810	Biparatopic antibody BA7208/7125 effectively neutralizes SARS-CoV-2 variants including Omicron BA.1-BA.5. Cell Discovery, 2023, 9, .	3.1	11
811	Humoral immunity for durable control of SARS-CoV-2 and its variants. Inflammation and Regeneration, 2023, 43, .	1.5	6
812	Performance of the SureScreen Diagnostics COVID-19 antibody rapid test in comparison with three automated immunoassays Diagnostic Microbiology and Infectious Disease, 2023, , 115900.	0.8	0
814	Patientâ€reported outcomes after Tixagevimab and Cilgavimab preâ€exposure prophylaxis among solid organ transplant recipients: Safety, effectiveness, and perceptions of risk. Clinical Transplantation, 2023, 37, .	0.8	4
815	Tixagevimab/Cilgavimab in SARS-CoV-2 Prophylaxis and Therapy: A Comprehensive Review of Clinical Experience. Viruses, 2023, 15, 118.	1.5	18
816	Neutralization sensitivity, fusogenicity, and infectivity of Omicron subvariants. Genome Medicine, 2022, 14, .	3.6	12
818	Neutralizing Efficacy of Encapsulin Nanoparticles against SARS-CoV2 Variants of Concern. Viruses, 2023, 15, 346.	1.5	4
819	A Spike-destructing human antibody effectively neutralizes Omicron-included SARS-CoV-2 variants with therapeutic efficacy. PLoS Pathogens, 2023, 19, e1011085.	2.1	5
820	Human neutralizing antibodies to cold linear epitopes and subdomain 1 of the SARS-CoV-2 spike glycoprotein. Science Immunology, 2023, 8, .	5.6	33
821	Safety, Tolerability and Pharmacokinetics of Half-Life Extended Severe Acute Respiratory Syndrome Coronavirus 2 Neutralizing Monoclonal Antibodies AZD7442 (Tixagevimab-Cilgavimab) in Healthy Adults. Journal of Infectious Diseases, 2023, 227, 1153-1163.	1.9	4
822	CRISPR as13d effectively targets SARS oVâ€2 variants, including Delta and Omicron, and inhibits viral infection. MedComm, 2023, 4, .	3.1	3

# 823	ARTICLE State of the art in epitope mapping and opportunities in COVID-19. Future Science OA, 2023, 9, .	IF 0.9	Citations
824	Antiviral neutralizing antibodies: from in vitro to in vivo activity. Nature Reviews Immunology, 2023, 23, 720-734.	10.6	8
825	A systematic study on the binding affinity of SARS-CoV-2 spike protein to antibodies. AIMS Microbiology, 2022, 8, 595-611.	1.0	2
826	TAT Nanobody Exerts Antiviral Effect against PRRSV In Vitro by Targeting Viral Nucleocapsid Protein. International Journal of Molecular Sciences, 2023, 24, 1905.	1.8	1
827	Accelerated cell culture process development and characterization for cilgavimab/tixagevimab (AZD7442) for the prevention and treatment of COVIDâ€19. Biotechnology and Bioengineering, 0, , .	1.7	1
828	The Role of Cyclodextrins in COVID-19 Therapy—A Literature Review. International Journal of Molecular Sciences, 2023, 24, 2974.	1.8	8
830	Understanding the SARS-CoV-2 Virus Neutralizing Antibody Response: Lessons to Be Learned from HIV and Respiratory Syncytial Virus. Viruses, 2023, 15, 504.	1.5	0
831	Broadly neutralizing anti-S2 antibodies protect against all three human betacoronaviruses that cause deadly disease. Immunity, 2023, 56, 669-686.e7.	6.6	43
832	Computational pipeline provides mechanistic understanding of Omicron variant of concern neutralizing engineered ACE2 receptor traps. Structure, 2023, 31, 253-264.e6.	1.6	3
833	Potent Therapeutic Strategies for COVID-19 with Single-Domain Antibody Immunoliposomes Neutralizing SARS-CoV-2 and Lip/cGAMP Enhancing Protective Immunity. International Journal of Molecular Sciences, 2023, 24, 4068.	1.8	6
834	The Landscape of Neutralizing Monoclonal Antibodies (nAbs) for Treatment and Prevention of COVID-19. Journal of Pharmaceutical Innovation, 2023, 18, 1194-1212.	1.1	2
835	Lessons Learnt from COVID-19: Computational Strategies for Facing Present and Future Pandemics. International Journal of Molecular Sciences, 2023, 24, 4401.	1.8	4
836	Structure-based design of oligomeric receptor-binding domain (RBD) recombinant proteins as potent vaccine candidates against SARS-CoV-2. Human Vaccines and Immunotherapeutics, 2023, 19, .	1.4	1
837	Pilot Study Results on Antibodies to the S- and N-Proteins of SARS-CoV-2 in Paired Sera from COVID-19 Patients with Varying Severity. Antibodies, 2023, 12, 19.	1.2	0
838	Novel bispecific human antibody platform specifically targeting a fully open spike conformation potently neutralizes multiple SARS-CoV-2 variants. Antiviral Research, 2023, 212, 105576.	1.9	5
839	Variants of SARS-CoV-2: Influences on the Vaccines' Effectiveness and Possible Strategies to Overcome Their Consequences. Medicina (Lithuania), 2023, 59, 507.	0.8	5
840	Molecular Characterization of AZD7442 (Tixagevimab-Cilgavimab) Neutralization of SARS-CoV-2 Omicron Subvariants. Microbiology Spectrum, 2023, 11, .	1.2	5
843	Enhanced neutralization escape to therapeutic monoclonal antibodies by SARS-CoV-2 omicron sub-lineages. IScience, 2023, 26, 106413.	1.9	13

		CITATION R	EPORT	
#	Article		IF	CITATIONS
844	Application of Pseudotyped Viruses. Advances in Experimental Medicine and Biology, 202	3, , 45-60.	0.8	2
846	Antigenic mapping and functional characterization of human New World hantavirus neut antibodies. ELife, 0, 12, .	ralizing	2.8	9
847	Exploring the Potential of Broadly Neutralizing Antibodies for Treating SARS-CoV-2 Variar Concern in 2023: A Comprehensive Clinical Review. Cureus, 2023, , .	ts of Global	0.2	1
848	mRNA vaccines and hybrid immunity use different B cell germlines against Omicron BA.4 Nature Communications, 2023, 14, .	and BA.5.	5.8	4
849	Elicitation of potent neutralizing antibodies in obese mice by ISA 51-adjuvanted SARS-Co vaccine. Applied Microbiology and Biotechnology, 2023, 107, 2983-2995.	V-2 spike RBD-Fc	1.7	1
850	Pre-clinical models to define correlates of protection for SARS-CoV-2. Frontiers in Immuno	ology, 0, 14,	2.2	3
851	Nemacol is a small molecule inhibitor of C. elegans vesicular acetylcholine transporter wit anthelmintic potential. Nature Communications, 2023, 14, .	h	5.8	3
852	Adjuvant-Free COVID-19 Vaccine with Glycoprotein Antigen Oxidized by Periodate Rapidl Immune Responses. ACS Chemical Biology, 2023, 18, 915-923.	y Elicits Potent	1.6	0
853	Modular adjuvant-free pan-HLA-DR-immunotargeting subunit vaccine against SARS-CoV-2 sarbecovirus-neutralizing antibody responses. Cell Reports, 2023, 42, 112391.	elicits broad	2.9	1
854	Molecular Understanding of ACE-2 and HLA-Conferred Differential Susceptibility to COVII Host-Directed Insights Opening New Windows in COVID-19 Therapeutics. Journal of Clini 2023, 12, 2645.		1.0	2
855	SARS-CoV-2 Omicron boosting induces de novo B cell response in humans. Nature, 2023	617, 592-598.	13.7	49
856	Relationship between Vitamin D and Immunity in Older People with COVID-19. Internatio Environmental Research and Public Health, 2023, 20, 5432.	nal Journal of	1.2	1
859	Distinctive Dynamics and Functions of the CD4+CD25+FOXP3+ Regulatory T Cell Popula with Severe and Mild COVID-19. Journal of Immunology, 2023, 210, 1687-1699.	tion in Patients	0.4	4
860	SARS-CoV-2: Immunity, Challenges with Current Vaccines, and a Novel Perspective on Mu Vaccines. Vaccines, 2023, 11, 849.	cosal	2.1	12
883	Long-Term Vaccination and Treatment Strategies for COVID-19 Disease and Future Coror Pandemics. Advances in Experimental Medicine and Biology, 2023, , 27-49.	navirus	0.8	0
912	Vaccines and Drugs. Springer Series in Biophysics, 2023, , 887-896.		0.4	0
917	TO MARKET, TO MARKET–2022: MACROMOLECULAR THERAPEUTICS. Medicinal Chem 713-798.	stry Reviews, O, ,	0.1	0
932	Targeting bacterial polysaccharides with antibodies and vaccines. Methods in Microbiolog	yy, 2023, , .	0.4	Ο

#	Article	IF	CITATIONS
938	COVID-19 therapy directed against pathogenic mechanisms of severe acute respiratory syndrome coronavirus 2. , 2024, , 2697-2726.		0