Potent neutralizing antibodies against multiple epitope

Nature 584, 450-456 DOI: 10.1038/s41586-020-2571-7

Citation Report

#	Article	IF	Citations
1	Treatment of coronavirus disease 2019. Current Opinion in HIV and AIDS, 2020, 15, 336-340.	3.8	8
2	<p>Flattening the Risk: Pre-Exposure Prophylaxis for COVID-19</p> . Infection and Drug Resistance, 2020, Volume 13, 3689-3694.	2.7	6
3	A Therapeutic Non-self-reactive SARS-CoV-2 Antibody Protects from Lung Pathology in a COVID-19 Hamster Model. Cell, 2020, 183, 1058-1069.e19.	28.9	305
4	Therapeutically Targeted Destabilization of the Quaternary Structure of the Spike Protein in the Dominant G614 Strain of SARS-CoV-2. ACS Pharmacology and Translational Science, 2020, 3, 1027-1029.	4.9	4
5	Structure-Based Design with Tag-Based Purification and In-Process Biotinylation Enable Streamlined Development of SARS-CoV-2 Spike Molecular Probes. Cell Reports, 2020, 33, 108322.	6.4	59
6	REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters. Science, 2020, 370, 1110-1115.	12.6	476
7	Structural Basis of SARS-CoV-2 and SARS-CoV Antibody Interactions. Trends in Immunology, 2020, 41, 1006-1022.	6.8	79
8	SARS-CoV-2 vaccines in development. Nature, 2020, 586, 516-527.	27.8	1,659
9	Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nature Immunology, 2020, 21, 1506-1516.	14.5	563
10	Quantum leap of monoclonal antibody (mAb) discovery and development in the COVID-19 era. Seminars in Immunology, 2020, 50, 101427.	5.6	31
11	COVID-19 as an Immune Complex Hypersensitivity in Antigen Excess Conditions: Theoretical Pathogenetic Process and Suggestions for Potential Therapeutic Interventions. Frontiers in Immunology, 2020, 11, 566000.	4.8	13
12	Cryo-EM Structures of SARS-CoV-2 Spike without and with ACE2 Reveal a pH-Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains. Cell Host and Microbe, 2020, 28, 867-879.e5.	11.0	316
13	Antibody-guided structure-based vaccines. Seminars in Immunology, 2020, 50, 101428.	5.6	29
14	Cross-Neutralization of a SARS-CoV-2 Antibody to a Functionally Conserved Site Is Mediated by Avidity. Immunity, 2020, 53, 1272-1280.e5.	14.3	185
15	Different Innate and Adaptive Immune Responses to SARS-CoV-2 Infection of Asymptomatic, Mild, and Severe Cases. Frontiers in Immunology, 2020, 11, 610300.	4.8	149
16	Applying Immune Instincts and Maternal Intelligence from Comparative Microbiology to COVID-19. SN Comprehensive Clinical Medicine, 2020, 2, 2670-2683.	0.6	8
17	Structural Characterization of SARS-CoV-2: Where We Are, and Where We Need to Be. Frontiers in Molecular Biosciences, 2020, 7, 605236.	3.5	159
18	Real-Time Conformational Dynamics of SARS-CoV-2 Spikes on Virus Particles. Cell Host and Microbe, 2020, 28, 880-891.e8.	11.0	153

τατιών Ρερώ

	CITATION	Report	
#	Article	IF	Citations
19	SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature, 2020, 588, 682-687.	27.8	1,346
20	Of Cross-immunity, Herd Immunity and Country-specific Plans: Experiences from COVID-19 in India. , 2020, 11, 1339.		20
21	COVID-19: The Immune Responses and Clinical Therapy Candidates. International Journal of Molecular Sciences, 2020, 21, 5559.	4.1	25
22	Measuring immunity to SARS-CoV-2 infection: comparing assays and animal models. Nature Reviews Immunology, 2020, 20, 727-738.	22.7	107
23	Molecular Architecture of Early Dissemination and Massive Second Wave of the SARS-CoV-2 Virus in a Major Metropolitan Area. MBio, 2020, 11, .	4.1	99
24	Is Herd Immunity Against SARS-CoV-2 a Silver Lining?. Frontiers in Immunology, 2020, 11, 586781.	4.8	25
25	The SARS-CoV-2 Spike Glycoprotein as a Drug and Vaccine Target: Structural Insights into Its Complexes with ACE2 and Antibodies. Cells, 2020, 9, 2343.	4.1	73
26	The SARS-CoV-2 Spike Glycoprotein Biosynthesis, Structure, Function, and Antigenicity: Implications for the Design of Spike-Based Vaccine Immunogens. Frontiers in Immunology, 2020, 11, 576622.	4.8	317
27	Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2. Cell, 2020, 183, 1367-1382.e17.	28.9	420
28	Sensitivity and specificity of SARS-CoV-2 S1 subunit in COVID-19 serology assays. Cell Discovery, 2020, 6, 75.	6.7	27
29	Neutralizing Antibodies Correlate with Protection from SARS-CoV-2 in Humans during a Fishery Vessel Outbreak with a High Attack Rate. Journal of Clinical Microbiology, 2020, 58, .	3.9	494
30	Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms. Science, 2020, 370, 950-957.	12.6	504
31	Receptor-binding domain-specific human neutralizing monoclonal antibodies against SARS-CoV and SARS-CoV-2. Signal Transduction and Targeted Therapy, 2020, 5, 212.	17.1	104
32	Structurally Resolved SARS-CoV-2 Antibody Shows High Efficacy in Severely Infected Hamsters and Provides a Potent Cocktail Pairing Strategy. Cell, 2020, 183, 1013-1023.e13.	28.9	227
33	Therapeutic antibodies and fusion inhibitors targeting the spike protein of SARS-CoV-2. Expert Opinion on Therapeutic Targets, 2021, 25, 415-421.	3.4	52
34	Targeting multiple epitopes on the spike protein: a new hope for COVID-19 antibody therapy. Signal Transduction and Targeted Therapy, 2020, 5, 208.	17.1	4
35	Not just antibodies: B cells and T cells mediate immunity to COVID-19. Nature Reviews Immunology, 2020, 20, 581-582.	22.7	239
36	Coronavirus Disease 2019 (COVID-19) Re-infection by a Phylogenetically Distinct Severe Acute Respiratory Syndrome Coronavirus 2 Strain Confirmed by Whole Genome Sequencing. Clinical Infectious Diseases, 2021, 73, e2946-e2951.	5.8	647

CITATION	DEDODT
CHAHON	REPORT

#	Article	IF	CITATIONS
37	Viral Emerging Diseases: Challenges in Developing Vaccination Strategies. Frontiers in Immunology, 2020, 11, 2130.	4.8	77
38	SARS-CoV-2 neutralizing antibody responses are more robust in patients with severe disease. Emerging Microbes and Infections, 2020, 9, 2091-2093.	6.5	109
39	Achilles' Heel of SARS-CoV-2 Structure. ACS Pharmacology and Translational Science, 2020, 3, 1030-1031.	4.9	5
40	Rapid Response to Pandemic Threats: Immunogenic Epitope Detection of Pandemic Pathogens for Diagnostics and Vaccine Development Using Peptide Microarrays. Journal of Proteome Research, 2020, 19, 4339-4354.	3.7	23
41	Humoral Responses and Serological Assays in SARS-CoV-2 Infections. Frontiers in Immunology, 2020, 11, 610688.	4.8	190
42	Emerging antibody-based therapeutics against SARS-CoV-2 during the global pandemic. Antibody Therapeutics, 2020, 3, 246-256.	1.9	34
43	SARS-CoV-2: Immune Response Elicited by Infection and Development of Vaccines and Treatments. Frontiers in Immunology, 2020, 11, 569760.	4.8	30
44	Neutralizing antibodies for the treatment of COVID-19. Nature Biomedical Engineering, 2020, 4, 1134-1139.	22.5	98
45	The SARS-CoV-2 spike protein: balancing stability and infectivity. Cell Research, 2020, 30, 1059-1060.	12.0	82
46	Versatile and multivalent nanobodies efficiently neutralize SARS-CoV-2. Science, 2020, 370, 1479-1484.	12.6	306
47	Man-Specific, GalNAc/T/Tn-Specific and Neu5Ac-Specific Seaweed Lectins as Glycan Probes for the SARS-CoV-2 (COVID-19) Coronavirus. Marine Drugs, 2020, 18, 543.	4.6	17
48	<i>In Silico</i> Antibody Mutagenesis for Optimizing Its Binding to Spike Protein of Severe Acute Respiratory Syndrome Coronavirus 2. Journal of Physical Chemistry Letters, 2020, 11, 9781-9787.	4.6	22
49	An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike. Science, 2020, 370, 1473-1479.	12.6	336
50	A Cell-Based ELISA to Improve the Serological Analysis of Anti-SARS-CoV-2 IgG. Viruses, 2020, 12, 1274.	3.3	11
51	Antibody Binding to SARS-CoV-2 S Glycoprotein Correlates with but Does Not Predict Neutralization. Viruses, 2020, 12, 1214.	3.3	26
52	Structural features of coronavirus SARS-CoV-2 spike protein: Targets for vaccination. Life Sciences, 2020, 257, 118056.	4.3	175
53	Design of a highly thermotolerant, immunogenic SARS-CoV-2 spike fragment. Journal of Biological Chemistry, 2021, 296, 100025.	3.4	43
54	Phylogenetic analysis of SARSâ€CoVâ€2 in the first few months since its emergence. Journal of Medical Virology, 2021, 93, 1722-1731.	5.0	29

		CITATION REPORT		
#	Article		IF	CITATIONS
55	COVID-19: Discovery, diagnostics and drug development. Journal of Hepatology, 2021, 7	74, 168-184.	3.7	302
56	Recognition of the SARS-CoV-2 receptor binding domain by neutralizing antibodies. Biod Biophysical Research Communications, 2021, 538, 192-203.	themical and	2.1	165
57	Pathogenesisâ€directed therapy of 2019 novel coronavirus disease. Journal of Medical V 1320-1342.	'irology, 2021, 93,	5.0	40
58	Antibodies at work in the time of severe acute respiratory syndrome coronavirus 2. Cyto 23, 101-110.	therapy, 2021,	0.7	14
59	Neutralizing monoclonal antibodies for COVID-19 treatment and prevention. Biomedical 44, 7-17.	Journal, 2021,	3.1	38
60	D614G Spike Mutation Increases SARS CoV-2 Susceptibility to Neutralization. Cell Host 2021, 29, 23-31.e4.	and Microbe,	11.0	308
61	Humoral immune responses and neutralizing antibodies against SARS-CoV-2; implicatior pathogenesis and protective immunity. Biochemical and Biophysical Research Communi 538, 187-191.	ıs in cations, 2021,	2.1	86
62	A high-throughput multiplexed microfluidic device for COVID-19 serology assays. Lab on 21, 93-104.	A Chip, 2021,	6.0	53
63	A Public Health Antibody Screening Indicates a 6-Fold Higher SARS-CoV-2 Exposure Rate Cases in Children. Med, 2021, 2, 149-163.e4.	than Reported	4.4	85
64	Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain tha Recognition. Cell Host and Microbe, 2021, 29, 44-57.e9.	t Escape Antibody	11.0	937
65	Characterization of pre-existing and induced SARS-CoV-2-specific CD8+ T cells. Nature N 27, 78-85.	1edicine, 2021,	30.7	295
66	Vaccine formulations in clinical development for the prevention of severe acute respirate syndrome coronavirus 2 infection. Advanced Drug Delivery Reviews, 2021, 169, 168-189	ory ∂.	13.7	62
67	SARS-CoV-2 infections among healthcare workers at Helsinki University Hospital, Finland Serosurvey, symptoms and risk factors. Travel Medicine and Infectious Disease, 2021, 39	l, spring 2020: 9, 101949.	3.0	28
68	COVID-19 antibody development fueled by HIV-1 broadly neutralizing antibody research Opinion in HIV and AIDS, 2021, 16, 25-35.	. Current	3.8	7
69	Enhanced SARS-CoV-2 neutralization by dimeric IgA. Science Translational Medicine, 202	21, 13, .	12.4	379
70	The virus that shook the world: questions and answers about SARS-CoV-2 and COVID-19 Biotechnology and Biotechnological Equipment, 2021, 35, 74-102.).	1.3	13
71	Therapeutic and Vaccine Options for COVID-19: Status after Six Months of the Disease ODiscovery, 2021, 26, 311-329.	Dutbreak. SLAS	2.7	4
72	Comparing cytomegalovirus diagnostics by cell culture and quantitative nucleic acid tes bronchoâ€alveolar lavage fluids. Journal of Medical Virology, 2021, 93, 3804-3812.	ting in	5.0	7

	CITATION I	KEPORT	
# 73	ARTICLE Viral targets for vaccines against COVID-19. Nature Reviews Immunology, 2021, 21, 73-82.	IF 22.7	Citations 832
74	Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature, 2021, 589, 270-275.	27.8	389
75	Spike Glycoprotein and Host Cell Determinants of SARS-CoV-2 Entry and Cytopathic Effects. Journal of Virology, 2021, 95, .	3.4	70
76	Leveraging coronavirus binding to gangliosides for innovative vaccine and therapeutic strategies against COVID-19. Biochemical and Biophysical Research Communications, 2021, 538, 132-136.	2.1	47
77	AS739, AT693 and AU734 antibodies label the spike S protein from SARS-CoV-2 by immunofluorescence. Antibody Reports, 2021, 4, .	0.1	0
78	AS739, AT693 and AU734 antibodies recognize the spike S protein from SARS-CoV-2 by ELISA. Antibody Reports, 2021, 4, .	0.1	0
79	The Genetic Variant of SARS-CoV-2: Would it matter for Controlling the Devastating Pandemic?. International Journal of Biological Sciences, 2021, 17, 1476-1485.	6.4	23
80	Newcastle Disease Virus-Like Particles Displaying Prefusion-Stabilized SARS-CoV-2 Spikes Elicit Potent Neutralizing Responses. Vaccines, 2021, 9, 73.	4.4	24
83	Inhibition of SARS-CoV-2 pseudovirus invasion by ACE2 protecting and Spike neutralizing peptides: An alternative approach to COVID19 prevention and therapy. International Journal of Biological Sciences, 2021, 17, 2957-2969.	6.4	11
84	Stabilizing the closed SARS-CoV-2 spike trimer. Nature Communications, 2021, 12, 244.	12.8	139
85	Correlation of humoral immune responses to different SARS-CoV-2 antigens with virus neutralizing antibodies and symptomatic severity in a German COVID-19 cohort. Emerging Microbes and Infections, 2021, 10, 774-781.	6.5	38
86	Standardization of ELISA protocols for serosurveys of the SARS-CoV-2 pandemic using clinical and at-home blood sampling. Nature Communications, 2021, 12, 113.	12.8	115
89	Impact of New Variants on SAR-CoV-2 Infectivity and Neutralization: A Molecular Assessment of the Alterations in the Spike-Host Protein Interactions. SSRN Electronic Journal, 0, , .	0.4	3
90	Quantitative Measurement of IgG to Severe Acute Respiratory Syndrome Coronavirus-2 Proteins Using ImmunoCAP. International Archives of Allergy and Immunology, 2021, 182, 417-424.	2.1	13
92	Identification of potential SARS-CoV-2 M ^{pro} inhibitors integrating molecular docking and water thermodynamics. Journal of Biomolecular Structure and Dynamics, 2022, 40, 5079-5089.	3.5	10
93	Prediction and mitigation of mutation threats to COVID-19 vaccines and antibody therapies. Chemical Science, 2021, 12, 6929-6948.	7.4	85
94	COVID-19 re-infection or persistent infection in patient with acute myeloid leukaemia M3: a mini review. New Microbes and New Infections, 2021, 39, 100830.	1.6	7
95	Binding affinity and mechanisms of SARS-CoV-2 variants. Computational and Structural Biotechnology Journal, 2021, 19, 4184-4191.	4.1	20

	CITATION RE	CITATION REPORT	
# 97	ARTICLE The role of chemical biology in the fight against SARS-CoV-2. Biochemical Journal, 2021, 478, 157-177.	IF 3.7	Citations 2
99	Pattern of circulating SARSâ€CoVâ€2â€specific antibodyâ€secreting and memory Bâ€cell generation in patients with acute COVIDâ€19. Clinical and Translational Immunology, 2021, 10, e1245.	3.8	41
101	Evolution of antibody immunity to SARS-CoV-2. Nature, 2021, 591, 639-644.	27.8	1,355
102	Acute treatment with monoclonal antibodies: their design and their use. Microbiology Australia, 2021, 42, 39.	0.4	0
103	Models to inform neutralizing antibody therapy strategies during pandemics: the case of SARS-CoV-2. Antibody Therapeutics, 2021, 4, 60-71.	1.9	1
104	Passive Immunity Should and Will Work for COVID-19 for Some Patients. Clinical Hematology International, 2021, 3, 47.	1.7	4
105	AS739, AT693, AU197 and AU734 antibodies label the spike S protein from SARS-CoV-2 by western blot. Antibody Reports, 2021, 4, .	0.1	0
106	SARS-CoV-2 infection elicits a rapid neutralizing antibody response that correlates with disease severity. Scientific Reports, 2021, 11, 2608.	3.3	86
108	SARS-CoV-2 specific antibody and neutralization assays reveal the wide range of the humoral immune response to virus. Communications Biology, 2021, 4, 129.	4.4	95
109	Seroprevalence of SARS-CoV-2 (COVID-19) exposure in pet cats and dogs in Minnesota, USA. Virulence, 2021, 12, 1597-1609.	4.4	62
110	50ÂYears of structural immunology. Journal of Biological Chemistry, 2021, 296, 100745.	3.4	15
111	A COVID-19 vaccine candidate using SpyCatcher multimerization of the SARS-CoV-2 spike protein receptor-binding domain induces potent neutralising antibody responses. Nature Communications, 2021, 12, 542.	12.8	200
112	Structural Analysis of Neutralizing Epitopes of the SARS-CoV-2 Spike to Guide Therapy and Vaccine Design Strategies. Viruses, 2021, 13, 134.	3.3	56
114	Therapeutic and Vaccine Strategies for Stopping the COVID-19 Pandemic Based on Structural and Molecular Modeling Studies of Virus-Ganglioside Interactions. Methods in Pharmacology and Toxicology, 2021, , 273.	0.2	0
115	Effective virus-neutralizing activities in antisera from the first wave of severe COVID-19 survivors. JCI Insight, 2021, 6, .	5.0	10
116	Dual-Antigen System Allows Elimination of False Positive Results in COVID-19 Serological Testing. Diagnostics, 2021, 11, 102.	2.6	8
117	Bispecific VH/Fab antibodies targeting neutralizing and non-neutralizing Spike epitopes demonstrate enhanced potency against SARS-CoV-2. MAbs, 2021, 13, 1893426.	5.2	22
118	Evidence for adaptive evolution in the receptor-binding domain of seasonal coronaviruses OC43 and 229e. ELife, 2021, 10, .	6.0	80

#	Article	IF	CITATIONS
119	Standardized Two-Step Testing of Antibody Activity in COVID-19 Convalescent Plasma. SSRN Electronic Journal, 0, , .	0.4	2
120	Germline IGHV3-53-encoded RBD-targeting neutralizing antibodies are commonly present in the antibody repertoires of COVID-19 patients. Emerging Microbes and Infections, 2021, 10, 1097-1111.	6.5	25
123	Cutting Edge: Mouse SARS-CoV-2 Epitope Reveals Infection and Vaccine-Elicited CD8 T Cell Responses. Journal of Immunology, 2021, 206, 931-935.	0.8	36
125	A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein. Nature Communications, 2021, 12, 288.	12.8	224
132	Return to Work: Managing Employee Population Health During the COVID-19 Pandemic. Population Health Management, 2021, 24, S-3-S-15.	1.7	13
134	Single-Molecule FRET Imaging of Virus Spike–Host Interactions. Viruses, 2021, 13, 332.	3.3	18
135	COVID-19 reinfection in two children with cancer. Pediatric Hematology and Oncology, 2021, 38, 403-405.	0.8	9
138	The SIRAH-CoV-2 Initiative: A Coarse-Grained Simulations' Dataset of the SARS-CoV-2 Proteome. Frontiers in Medical Technology, 2021, 3, 644039.	2.5	12
140	Potent neutralization of clinical isolates of SARS-CoV-2 D614 and G614 variants by a monomeric, sub-nanomolar affinity nanobody. Scientific Reports, 2021, 11, 3318.	3.3	43
141	Breadth and function of antibody response to acute SARS-CoV-2 infection in humans. PLoS Pathogens, 2021, 17, e1009352.	4.7	56
145	Dissecting Role of Charged Residue from Transmembrane Domain 5 of Latent Membrane Protein 1 via In Silico Simulations and Wet-Lab Experiments. Journal of Physical Chemistry B, 2021, 125, 2124-2133.	2.6	1
146	Multi-clonal SARS-CoV-2 neutralization by antibodies isolated from severe COVID-19 convalescent donors. PLoS Pathogens, 2021, 17, e1009165.	4.7	40
147	Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice. Science, 2021, 371, 735-741.	12.6	305
148	Post-exposure protection of SARS-CoV-2 lethal infected K18-hACE2 transgenic mice by neutralizing human monoclonal antibody. Nature Communications, 2021, 12, 944.	12.8	53
149	Highâ€throughput detection of antibodies targeting the <scp>SARSâ€CoV</scp> â€2 <scp>Spike</scp> in longitudinal convalescent plasma samples. Transfusion, 2021, 61, 1377-1382.	1.6	17
152	Immunoregulatory therapy strategies that target cytokine storms in patients with COVID‑19 (Review). Experimental and Therapeutic Medicine, 2021, 21, 319.	1.8	9
153	In silico analysis suggests less effective MHC-II presentation of SARS-CoV-2 RBM peptides: Implication for neutralizing antibody responses. PLoS ONE, 2021, 16, e0246731.	2.5	7
154	SARS-CoV-2 mRNA Vaccines: Immunological Mechanism and Beyond. Vaccines, 2021, 9, 147.	4.4	175

#	Article	IF	CITATIONS
155	B cell memory: understanding COVID-19. Immunity, 2021, 54, 205-210.	14.3	102
156	mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature, 2021, 592, 616-622.	27.8	1,232
157	COVID-19: Immunology, Immunopathogenesis and Potential Therapies. International Reviews of Immunology, 2022, 41, 171-206.	3.3	30
158	Complement Factors in COVID-19 Therapeutics and Vaccines. Trends in Immunology, 2021, 42, 94-103.	6.8	38
160	Identification of HLA-A*02:01-Restricted Candidate Epitopes Derived from the Nonstructural Polyprotein 1a of SARS-CoV-2 That May Be Natural Targets of CD8 ⁺ T Cell Recognition <i>In Vivo</i> . Journal of Virology, 2021, 95, .	3.4	20
165	DNA-launched RNA replicon vaccines induce potent anti-SARS-CoV-2 immune responses in mice. Scientific Reports, 2021, 11, 3125.	3.3	17
166	Quantifying Absolute Neutralization Titers against SARS-CoV-2 by a Standardized Virus Neutralization Assay Allows for Cross-Cohort Comparisons of COVID-19 Sera. MBio, 2021, 12, .	4.1	64
167	A longitudinal study of convalescent plasma (<scp>CCP</scp>) donors and correlation of <scp>ABO</scp> group, initial neutralizing antibodies (<scp>nAb</scp>), and body mass index (<scp>BMI</scp>) with <scp>nAb</scp> and antiâ€nucleocapsid (<scp>NP</scp>) <scp>SARSâ€CoV</scp> â€2 antibody kinetics: Proposals for better quality of <scp>CCP</scp> collections. Transfusion, 2021, 61,	1.6	22
168	Adaptive immunity to SARS-CoV-2 and COVID-19. Cell, 2021, 184, 861-880.	28.9	1,364
169	SARS-CoV-2 Proteome-Wide Analysis Revealed Significant Epitope Signatures in COVID-19 Patients. Frontiers in Immunology, 2021, 12, 629185.	4.8	42
171	Diagnostic Value of IgM and IgG Detection in COVID-19 Diagnosis by the Mobile Laboratory B-LiFE: A Massive Testing Strategy in the Piedmont Region. International Journal of Environmental Research and Public Health, 2021, 18, 3372.	2.6	3
174	What do we know about the antibody responses to SARS-CoV-2?. Immunobiology, 2021, 226, 152054.	1.9	23
176	A Commentary on Realities of Developing COVID-19 Vaccines Discussed through the Global Health Safety Perspective. Vaccines, 2021, 9, 274.	4.4	5
177	Determination of the Concentration of IgG against the Spike Receptor-Binding Domain That Predicts the Viral Neutralizing Activity of Convalescent Plasma and Serum against SARS-CoV-2. Biology, 2021, 10, 208.	2.8	16
178	Linear epitope landscape of the SARS-CoV-2 Spike protein constructed from 1,051 COVID-19 patients. Cell Reports, 2021, 34, 108915.	6.4	127
179	Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host and Microbe, 2021, 29, 463-476.e6.	11.0	1,054
180	A high-affinity RBD-targeting nanobody improves fusion partner's potency against SARS-CoV-2. PLoS Pathogens, 2021, 17, e1009328.	4.7	37
181	Blockade of SARS-CoV-2 spike protein-mediated cell–cell fusion using COVID-19 convalescent plasma. Scientific Reports, 2021, 11, 5558.	3.3	19

#	Article	IF	CITATIONS
183	Previous viral symptoms and individual mothers influenced the leveled duration of human milk antibodies cross-reactive to S1 and S2 subunits from SARS-CoV-2, HCoV-229E, and HCoV-OC43. Journal of Perinatology, 2021, 41, 952-960.	2.0	24
184	A Rapid and Efficient Screening System for Neutralizing Antibodies and Its Application for SARS-CoV-2. Frontiers in Immunology, 2021, 12, 653189.	4.8	20
186	Establishment of a well-characterized SARS-CoV-2 lentiviral pseudovirus neutralization assay using 293T cells with stable expression of ACE2 and TMPRSS2. PLoS ONE, 2021, 16, e0248348.	2.5	102
187	Production of anti‧ARS oVâ€2 hyperimmune globulin from convalescent plasma. Transfusion, 2021, 61, 1705-1709.	1.6	41
189	A SARSâ€CoVâ€⊋ Spike Binding DNA Aptamer that Inhibits Pseudovirus Infection by an RBDâ€Independent Mechanism**. Angewandte Chemie, 2021, 133, 10367-10373.	2.0	16
191	Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape. Science, 2021, 371, 1139-1142.	12.6	475
192	mRNA vaccination boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection. Science, 2021, 372, 1413-1418.	12.6	468
193	Neutralizing Monoclonal Anti-SARS-CoV-2 Antibodies Isolated from Immunized Rabbits Define Novel Vulnerable Spike-Protein Epitope. Viruses, 2021, 13, 566.	3.3	23
195	A SARSâ€CoVâ€2 Spike Binding DNA Aptamer that Inhibits Pseudovirus Infection by an RBDâ€Independent Mechanism**. Angewandte Chemie - International Edition, 2021, 60, 10279-10285.	13.8	106
196	Endogenously Produced SARS-CoV-2 Specific IgG Antibodies May Have a Limited Impact on Clearing Nasal Shedding of Virus during Primary Infection in Humans. Viruses, 2021, 13, 516.	3.3	5
197	A straightforward molecular strategy to retrospectively investigate the spread of SARS-CoV-2 VOC202012/01 B.1.1.7 variant. Journal of Infection in Developing Countries, 2021, 15, 242-246.	1.2	12
198	The great escape? SARS-CoV-2 variants evading neutralizing responses. Cell Host and Microbe, 2021, 29, 322-324.	11.0	78
199	Recombinant protein vaccines, a proven approach against coronavirus pandemics. Advanced Drug Delivery Reviews, 2021, 170, 71-82.	13.7	157
200	Lessons learned in the collection of convalescent plasma during the COVIDâ€19 pandemic. Vox Sanguinis, 2021, 116, 872-879.	1.5	8
201	Neutralizing Aptamers Block S/RBDâ€ACE2 Interactions and Prevent Host Cell Infection. Angewandte Chemie, 2021, 133, 10361-10366.	2.0	15
202	Dromedary camels as a natural source of neutralizing nanobodies against SARS-CoV-2. JCI Insight, 2021, 6, .	5.0	9
203	Neutralizing Aptamers Block S/RBDâ€ACE2 Interactions and Prevent Host Cell Infection. Angewandte Chemie - International Edition, 2021, 60, 10273-10278.	13.8	81
205	Broad-Spectrum Anti-coronavirus Vaccines and Therapeutics to Combat the Current COVID-19 Pandemic and Future Coronavirus Disease Outbreaks. Stem Cell Reports, 2021, 16, 398-411.	4.8	18

#	Article	IF	CITATIONS
208	COVID-19 vaccines: The status and perspectives in delivery points of view. Advanced Drug Delivery Reviews, 2021, 170, 1-25.	13.7	262
209	Inactivated rabies virus vectored SARS-CoV-2 vaccine prevents disease in a Syrian hamster model. PLoS Pathogens, 2021, 17, e1009383.	4.7	24
213	Drug discovery and development targeting the life cycle of SARS-CoV-2. Fundamental Research, 2021, 1, 151-165.	3.3	9
214	Structural basis for bivalent binding and inhibition of SARS-CoV-2 infection by human potent neutralizing antibodies. Cell Research, 2021, 31, 517-525.	12.0	54
215	Therapeutic activity of an inhaled potent SARS-CoV-2 neutralizing human monoclonal antibody in hamsters. Cell Reports Medicine, 2021, 2, 100218.	6.5	57
216	Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. Nature Medicine, 2021, 27, 917-924.	30.7	617
217	Immunogenicity of prime-boost protein subunit vaccine strategies against SARS-CoV-2 in mice and macaques. Nature Communications, 2021, 12, 1403.	12.8	65
221	The first 12 months of COVID-19: a timeline of immunological insights. Nature Reviews Immunology, 2021, 21, 245-256.	22.7	325
223	Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature, 2021, 593, 130-135.	27.8	1,904
224	Nanobody cocktails potently neutralize SARS-CoV-2 D614G N501Y variant and protect mice. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	109
225	Identification of SARS-CoV-2–specific immune alterations in acutely ill patients. Journal of Clinical Investigation, 2021, 131, .	8.2	24
226	Vitamin D and immuno-pathology of COVID-19: many interactions but uncertain therapeutic benefits. Expert Review of Anti-Infective Therapy, 2021, 19, 1245-1258.	4.4	8
230	Quantification of SARS-CoV-2 neutralizing antibody by wild-type plaque reduction neutralization, microneutralization and pseudotyped virus neutralization assays. Nature Protocols, 2021, 16, 3114-3140.	12.0	195
231	The way forward after COVID-19 vaccination: vaccine passports with blockchain to protect personal privacy. BMJ Innovations, 2021, 7, 337-341.	1.7	25
232	Modular basis for potent SARS-CoV-2 neutralization by a prevalent VH1-2-derived antibody class. Cell Reports, 2021, 35, 108950.	6.4	54
233	Coronavirus disease 2019 and the revival of passive immunization: Antibody therapy for inhibiting severe acute respiratory syndrome coronavirus 2 and preventing host cell infection: IUPHAR review 31. British Journal of Pharmacology, 2021, 178, 3359-3372.	5.4	10
234	Robust SARS-CoV-2 infection in nasal turbinates after treatment with systemic neutralizing antibodies. Cell Host and Microbe, 2021, 29, 551-563.e5.	11.0	87
235	NeutrobodyPlex—monitoring SARSâ€CoVâ€2 neutralizing immune responses using nanobodies. EMBO Reports, 2021, 22, e52325.	4.5	43

#	Article	IF	CITATIONS
236	The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates. Science Translational Medicine, 2021, 13, .	12.4	347
237	Extremely potent human monoclonal antibodies from COVID-19 convalescent patients. Cell, 2021, 184, 1821-1835.e16.	28.9	180
238	SARS-CoV-2 can recruit a heme metabolite to evade antibody immunity. Science Advances, 2021, 7, .	10.3	107
240	Viral myocarditis: 1917–2020: From the Influenza A to the COVID-19 pandemics. Trends in Cardiovascular Medicine, 2021, 31, 163-169.	4.9	46
241	IgG and IgM antibody formation to spike and nucleocapsid proteins in COVID-19 characterized by multiplex immunoblot assays. BMC Infectious Diseases, 2021, 21, 325.	2.9	26
242	Vasculitis and Neutrophil Extracellular Traps in Lungs of Golden Syrian Hamsters With SARS-CoV-2. Frontiers in Immunology, 2021, 12, 640842.	4.8	45
243	Coronavirus infection: An immunologists' perspective. Scandinavian Journal of Immunology, 2021, 93, e13043.	2.7	10
244	Preservation of neutralizing antibody function in COVIDâ€19 convalescent plasma treated using a riboflavin and ultraviolet lightâ€based pathogen reduction technology. Vox Sanguinis, 2021, 116, 1076-1083.	1.5	11
245	Neutralizing Antibody Therapeutics for COVID-19. Viruses, 2021, 13, 628.	3.3	99
246	Evaluation of a Commercial Culture-Free Neutralization Antibody Detection Kit for Severe Acute Respiratory Syndrome-Related Coronavirus-2 and Comparison With an Antireceptor-Binding Domain Enzyme-Linked Immunosorbent Assay. Open Forum Infectious Diseases, 2021, 8, ofab220.	0.9	33
247	A real-time and high-throughput neutralization test based on SARS-CoV-2 pseudovirus containing monomeric infrared fluorescent protein as reporter. Emerging Microbes and Infections, 2021, 10, 894-904.	6.5	16
248	Mutations derived from horseshoe bat ACE2 orthologs enhance ACE2-Fc neutralization of SARS-CoV-2. PLoS Pathogens, 2021, 17, e1009501.	4.7	97
252	A novel linker-immunodominant site (LIS) vaccine targeting the SARS-CoV-2 spike protein protects against severe COVID-19 in Syrian hamsters. Emerging Microbes and Infections, 2021, 10, 874-884.	6.5	11
254	The antigenic anatomy of SARS-CoV-2 receptor binding domain. Cell, 2021, 184, 2183-2200.e22.	28.9	331
258	Structural insights into SARS-CoV-2 infection and therapeutics development. Stem Cell Research, 2021, 52, 102219.	0.7	7
260	Case Report: Stepwise Anti-Inflammatory and Anti-SARS-CoV-2 Effects Following Convalescent Plasma Therapy With Full Clinical Recovery. Frontiers in Immunology, 2021, 12, 613502.	4.8	13
261	Antibody Therapy: From Diphtheria to Cancer, COVID-19, and Beyond. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2021, 40, 36-49.	1.6	8
262	Antibody Affinity Governs the Inhibition of SARS-CoV-2 Spike/ACE2 Binding in Patient Serum. ACS Infectious Diseases, 2021, 7, 2362-2369.	3.8	32

#	Article	IF	CITATIONS
263	Sensitive detection of SARS-CoV-2 seroconversion by flow cytometry reveals the presence of nucleoprotein-reactive antibodies in unexposed individuals. Communications Biology, 2021, 4, 486.	4.4	15
265	mRNA-based SARS-CoV-2 vaccine candidate CVnCoV induces high levels of virus-neutralising antibodies and mediates protection in rodents. Npj Vaccines, 2021, 6, 57.	6.0	118
266	N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell, 2021, 184, 2332-2347.e16.	28.9	784
267	Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein. Cell, 2021, 184, 2316-2331.e15.	28.9	321
268	Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection. Cell, 2021, 184, 1804-1820.e16.	28.9	297
269	Receptorâ€binding Domain Severe Acute Respiratory Syndrome Coronavirus 2â€specific Antibodies in Human Milk From Mothers With Coronavirus Disease 2019 Polymerase Chain Reaction or With Symptoms Suggestive of Coronavirus Disease 2019. Journal of Pediatric Gastroenterology and Nutrition. 2021. 73. 125-128.	1.8	8
270	A Structural Landscape of Neutralizing Antibodies Against SARS-CoV-2 Receptor Binding Domain. Frontiers in Immunology, 2021, 12, 647934.	4.8	52
271	The COVID-19 Vaccine in Clinical Trials: Where Are We Now?. Infectious Diseases & Immunity, 2021, 1, 43-51.	0.6	4
272	High-throughput, single-copy sequencing reveals SARS-CoV-2 spike variants coincident with mounting humoral immunity during acute COVID-19. PLoS Pathogens, 2021, 17, e1009431.	4.7	34
273	Biological characteristics and biomarkers of novel SARS-CoV-2 facilitated rapid development and implementation of diagnostic tools and surveillance measures. Biosensors and Bioelectronics, 2021, 177, 112969.	10.1	22
274	Integrative overview of antibodies against SARS-CoV-2 and their possible applications in COVID-19 prophylaxis and treatment. Microbial Cell Factories, 2021, 20, 88.	4.0	37
275	Selection, identification, and characterization of SARS-CoV-2 monoclonal antibody resistant mutants. Journal of Virological Methods, 2021, 290, 114084.	2.1	1
276	A human coronavirus evolves antigenically to escape antibody immunity. PLoS Pathogens, 2021, 17, e1009453.	4.7	183
277	Computational epitope map of SARS-CoV-2 spike protein. PLoS Computational Biology, 2021, 17, e1008790.	3.2	109
279	SARS‑CoV-2 RBD219-N1C1: A yeast-expressed SARS-CoV-2 recombinant receptor-binding domain candidate vaccine stimulates virus neutralizing antibodies and T-cell immunity in mice. Human Vaccines and Immunotherapeutics, 2021, 17, 2356-2366.	3.3	64
281	Structural impact on SARS-CoV-2 spike protein by D614G substitution. Science, 2021, 372, 525-530.	12.6	344
284	Molecular Aspects Concerning the Use of the SARS-CoV-2 Receptor Binding Domain as a Target for Preventive Vaccines. ACS Central Science, 2021, 7, 757-767.	11.3	46
285	Rapid lateral flow tests for the detection of SARS-CoV-2 neutralizing antibodies. Expert Review of Molecular Diagnostics, 2021, 21, 363-370.	3.1	37

#	Article	IF	CITATIONS
287	Development of Spike Receptor-Binding Domain Nanoparticles as a Vaccine Candidate against SARS-CoV-2 Infection in Ferrets. MBio, 2021, 12, .	4.1	40
291	Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera. Cell, 2021, 184, 2201-2211.e7.	28.9	442
292	Comparison of Severe Acute Respiratory Syndrome Coronavirus 2-Specific Antibodies' Binding Capacity Between Human Milk and Serum from Coronavirus Disease 2019-Recovered Women. Breastfeeding Medicine, 2021, 16, 393-401.	1.7	13
296	SARS-CoV-2 evolution in an immunocompromised host reveals shared neutralization escape mechanisms. Cell, 2021, 184, 2605-2617.e18.	28.9	151
297	Dynamics of B cell repertoires and emergence of cross-reactive responses in patients with different severities of COVID-19. Cell Reports, 2021, 35, 109173.	6.4	46
298	Nanobased Platforms for Diagnosis and Treatment of COVID-19: From Benchtop to Bedside. ACS Biomaterials Science and Engineering, 2021, 7, 2150-2176.	5.2	27
299	Conserved and Novel Mouse CD8 T Cell Epitopes within SARS-CoV-2 Spike Receptor Binding Domain Protein Identified following Subunit Vaccination. Journal of Immunology, 2021, 206, 2503-2507.	0.8	11
300	Inhalable Nanobody (PiN-21) prevents and treats SARS-CoV-2 infections in Syrian hamsters at ultra-low doses. Science Advances, 2021, 7, .	10.3	113
301	Prevalent, protective, and convergent lgG recognition of SARS-CoV-2 non-RBD spike epitopes. Science, 2021, 372, 1108-1112.	12.6	210
304	Neutralizing antibody vaccine for pandemic and pre-emergent coronaviruses. Nature, 2021, 594, 553-559.	27.8	199
305	Structural and functional ramifications of antigenic drift in recent SARS-CoV-2 variants. Science, 2021, 373, 818-823.	12.6	309
306	Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization. Cell Host and Microbe, 2021, 29, 747-751.e4.	11.0	504
308	SARS-CoV-2 cell entry and targeted antiviral development. Acta Pharmaceutica Sinica B, 2021, 11, 3879-3888.	12.0	21
309	Outpatient Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 Infection to Prevent Coronavirus Disease 2019 Progression. Clinical Infectious Diseases, 2021, 73, 1717-1721.	5.8	16
311	One-Stop Serum Assay Identifies COVID-19 Disease Severity and Vaccination Responses. ImmunoHorizons, 2021, 5, 322-335.	1.8	19
313	Coronavirus Disease 2019 in Children. Frontiers in Pediatrics, 2021, 9, 668484.	1.9	56
314	Mapping the SARS-CoV-2 spike glycoprotein-derived peptidome presented by HLA class II on dendritic cells. Cell Reports, 2021, 35, 109179.	6.4	63
315	Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite. Cell Host and Microbe, 2021, 29, 819-833.e7.	11.0	444

#	Article	IF	CITATIONS
316	Increased elastase sensitivity and decreased intramolecular interactions in the more transmissible 501Y.V1 and 501Y.V2 SARS-CoV-2 variants' spike protein–an in silico analysis. PLoS ONE, 2021, 16, e0251	426 ⁵ .	10
317	An Engineered Receptor-Binding Domain Improves the Immunogenicity of Multivalent SARS-CoV-2 Vaccines. MBio, 2021, 12, .	4.1	20
318	Discovery of Cyclic Peptide Ligands to the SARS-CoV-2 Spike Protein Using mRNA Display. ACS Central Science, 2021, 7, 1001-1008.	11.3	47
320	SARS-CoV-2 vaccines in advanced clinical trials: Where do we stand?. Advanced Drug Delivery Reviews, 2021, 172, 314-338.	13.7	75
321	Sequence-Signature Optimization Enables Improved Identification of Human HV6-1-Derived Class Antibodies That Neutralize Diverse Influenza A Viruses. Frontiers in Immunology, 2021, 12, 662909.	4.8	0
322	Rapid isolation and immune profiling of SARS-CoV-2 specific memory B cell in convalescent COVID-19 patients via LIBRA-seq. Signal Transduction and Targeted Therapy, 2021, 6, 195.	17.1	45
324	Humoral immune response to circulating SARS-CoV-2 variants elicited by inactivated and RBD-subunit vaccines. Cell Research, 2021, 31, 732-741.	12.0	124
326	Angiotensin converting enzyme 2 is a novel target of the γ-secretase complex. Scientific Reports, 2021, 11, 9803.	3.3	13
328	Rapid development of neutralizing and diagnostic SARS-COV-2 mouse monoclonal antibodies. Scientific Reports, 2021, 11, 9682.	3.3	18
331	Structural basis for broad coronavirus neutralization. Nature Structural and Molecular Biology, 2021, 28, 478-486.	8.2	152
332	The dawn of mRNA vaccines: The COVID-19 case. Journal of Controlled Release, 2021, 333, 511-520.	9.9	276
333	Highly conserved, non-human-like, and cross-reactive SARS-CoV-2 T cell epitopes for COVID-19 vaccine design and validation. Npj Vaccines, 2021, 6, 71.	6.0	23
337	Altered Local Interactions and Long-Range Communications in UK Variant (B.1.1.7) Spike Glycoprotein. International Journal of Molecular Sciences, 2021, 22, 5464.	4.1	9
338	Cellular and Humoral Immune Responses in Mice Immunized with Vaccinia Virus Expressing the SARS-CoV-2 Spike Protein. Journal of Immunology, 2021, 206, 2596-2604.	0.8	4
340	An NTD supersite of attack. Cell Host and Microbe, 2021, 29, 744-746.	11.0	52
341	Diverse immunoglobulin gene usage and convergent epitope targeting in neutralizing antibody responses to SARS-CoV-2. Cell Reports, 2021, 35, 109109.	6.4	21
342	Neutralizing Antibody Response of Vaccinees to SARS-CoV-2 Variants. Vaccines, 2021, 9, 517.	4.4	17
343	On the road to ending the COVID-19 pandemic: Are we there yet?. Virology, 2021, 557, 70-85.	2.4	38

	CITATION R	EPORT	
#	Article	IF	CITATIONS
344	Rotavirus as an Expression Platform of Domains of the SARS-CoV-2 Spike Protein. Vaccines, 2021, 9, 449.	4.4	17
345	Development and characterization of two equine formulations towards SARS-CoV-2 proteins for the potential treatment of COVID-19. Scientific Reports, 2021, 11, 9825.	3.3	17
346	Multisystem inflammatory syndrome in children and adults (MIS-C/A): Case definition & guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine, 2021, 39, 3037-3049.	3.8	175
347	Therapeutic antibodies, targeting the SARS-CoV-2 spike N-terminal domain, protect lethally infected K18-hACE2 mice. IScience, 2021, 24, 102479.	4.1	29
351	Landscape and selection of vaccine epitopes in SARS-CoV-2. Genome Medicine, 2021, 13, 101.	8.2	30
352	Humoral Immunity against SARS-CoV-2 and the Impact on COVID-19 Pathogenesis. Molecules and Cells, 2021, 44, 392-400.	2.6	22
354	A newly identified linear epitope on non-RBD region of SARS-CoV-2 spike protein improves the serological detection rate of COVID-19 patients. BMC Microbiology, 2021, 21, 194.	3.3	8
355	Sequence signatures of two public antibody clonotypes that bind SARS-CoV-2 receptor binding domain. Nature Communications, 2021, 12, 3815.	12.8	44
358	Multivalency transforms SARS-CoV-2 antibodies into ultrapotent neutralizers. Nature Communications, 2021, 12, 3661.	12.8	48
359	Undiagnosed SARS-CoV-2 seropositivity during the first 6 months of the COVID-19 pandemic in the United States. Science Translational Medicine, 2021, 13, .	12.4	106
360	Antibodies elicited by mRNA-1273 vaccination bind more broadly to the receptor binding domain than do those from SARS-CoV-2 infection. Science Translational Medicine, 2021, 13, .	12.4	198
362	Homologous and heterologous serological response to the Nâ€ŧerminal domain of SARS oVâ€⊋ in humans and mice. European Journal of Immunology, 2021, 51, 2296-2305.	2.9	7
363	"Just in Time― The Role of Cryo-Electron Microscopy in Combating Recent Pandemics. Biochemistry, 2021, 60, 3449-3451.	2.5	4
364	Tools and Techniques for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)/COVID-19 Detection. Clinical Microbiology Reviews, 2021, 34, .	13.6	205
365	IMMUNO-COV v2.0: Development and Validation of a High-Throughput Clinical Assay for Measuring SARS-CoV-2-Neutralizing Antibody Titers. MSphere, 2021, 6, e0017021.	2.9	18
366	Artemisia annua L. extracts inhibit the in vitro replication of SARS-CoV-2 and two of its variants. Journal of Ethnopharmacology, 2021, 274, 114016.	4.1	80
367	SARS-CoV-2 variants, spike mutations and immune escape. Nature Reviews Microbiology, 2021, 19, 409-424.	28.6	2,650
368	Decay of Fc-dependent antibody functions after mild to moderate COVID-19. Cell Reports Medicine, 2021, 2, 100296.	6.5	56

#	Article	IF	CITATIONS
369	An ACE2 Triple Decoy that neutralizes SARS-CoV-2 shows enhanced affinity for virus variants. Scientific Reports, 2021, 11, 12740.	3.3	54
370	An Immunoinformatics Approach for SARS-CoV-2 in Latam Populations and Multi-Epitope Vaccine Candidate Directed Towards the World's Population. Vaccines, 2021, 9, 581.	4.4	9
371	Natural variants in SARS-CoV-2 Spike protein pinpoint structural and functional hotspots with implications for prophylaxis and therapeutic strategies. Scientific Reports, 2021, 11, 13120.	3.3	11
372	The Bone Marrow as Sanctuary for Plasma Cells and Memory T-Cells: Implications for Adaptive Immunity and Vaccinology. Cells, 2021, 10, 1508.	4.1	19
373	Stabilization of the SARS-CoV-2 Spike Receptor-Binding Domain Using Deep Mutational Scanning and Structure-Based Design. Frontiers in Immunology, 2021, 12, 710263.	4.8	32
374	Advances in Neutralization Assays for SARS oVâ€2. Scandinavian Journal of Immunology, 2021, 94, e13088.	2.7	40
376	Neutralization potency of monoclonal antibodies recognizing dominant and subdominant epitopes on SARS-CoV-2 Spike is impacted by the B.1.1.7 variant. Immunity, 2021, 54, 1276-1289.e6.	14.3	112
377	Single-Dose Immunization With a Chimpanzee Adenovirus-Based Vaccine Induces Sustained and Protective Immunity Against SARS-CoV-2 Infection. Frontiers in Immunology, 2021, 12, 697074.	4.8	18
378	Effect of natural mutations of SARS-CoV-2 on spike structure, conformation, and antigenicity. Science, 2021, 373, .	12.6	318
380	Methods to Identify Immunogenic Peptides in SARSâ€CoVâ€2 Spike and Protective Monoclonal Antibodies in COVIDâ€19 Patients. Small Methods, 2021, 5, 2100058.	8.6	6
380 381	Methods to Identify Immunogenic Peptides in SARSâ€CoVâ€2 Spike and Protective Monoclonal Antibodies in COVIDâ€19 Patients. Small Methods, 2021, 5, 2100058. Assessment of automated high-throughput serological assays for prediction of high-titer SARS-CoV-2 neutralizing antibody. Journal of Clinical Virology Plus, 2021, 1, 100016.	8.6 1.0	6
380 381 382	Methods to Identify Immunogenic Peptides in SARSâ€CoVâ€2 Spike and Protective Monoclonal Antibodies in COVIDâ€19 Patients. Small Methods, 2021, 5, 2100058. Assessment of automated high-throughput serological assays for prediction of high-titer SARS-CoV-2 neutralizing antibody. Journal of Clinical Virology Plus, 2021, 1, 100016. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduction and Targeted Therapy, 2021, 6, 233.	8.6 1.0 17.1	6 5 203
380 381 382 383	Methods to Identify Immunogenic Peptides in SARSâ€CoVâ€2 Spike and Protective Monoclonal Antibodies in COVIDâ€19 Patients. Small Methods, 2021, 5, 2100058. Assessment of automated high-throughput serological assays for prediction of high-titer SARS-CoV-2 neutralizing antibody. Journal of Clinical Virology Plus, 2021, 1, 100016. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduction and Targeted Therapy, 2021, 6, 233. Allosteric Cross-Talk among Spike's Receptor-Binding Domain Mutations of the SARS-CoV-2 South African Variant Triggers an Effective Hijacking of Human Cell Receptor. Journal of Physical Chemistry Letters, 2021, 12, 5987-5993.	8.6 1.0 17.1 4.6	6 5 203 33
380 381 382 383 383	Methods to Identify Immunogenic Peptides in SARSâ€CoVâ€2 Spike and Protective Monoclonal Antibodies in COVIDâ€19 Patients. Small Methods, 2021, 5, 2100058. Assessment of automated high-throughput serological assays for prediction of high-titer SARS-CoV-2 neutralizing antibody. Journal of Clinical Virology Plus, 2021, 1, 100016. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduction and Targeted Therapy, 2021, 6, 233. Allosteric Cross-Talk among Spike's Receptor-Binding Domain Mutations of the SARS-CoV-2 South African Variant Triggers an Effective Hijacking of Human Cell Receptor. Journal of Physical Chemistry Letters, 2021, 12, 5987-5993. Epitope Classification and RBD Binding Properties of Neutralizing Antibodies Against SARS-CoV-2 Variants of Concern. Frontiers in Immunology, 2021, 12, 691715.	 8.6 1.0 17.1 4.6 4.8 	6 5 203 33 76
 380 381 382 383 384 385 	Methods to Identify Immunogenic Peptides in SARSâ€CoVâ€2 Spike and Protective Monoclonal Antibodies in COVIDâ€19 Patients. Small Methods, 2021, 5, 2100058. Assessment of automated high-throughput serological assays for prediction of high-titer SARS-CoV-2 neutralizing antibody. Journal of Clinical Virology Plus, 2021, 1, 100016. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduction and Targeted Therapy, 2021, 6, 233. Allosteric Cross-Talk among Spike's Receptor-Binding Domain Mutations of the SARS-CoV-2 South African Variant Triggers an Effective Hijacking of Human Cell Receptor. Journal of Physical Chemistry Letters, 2021, 12, 5987-5993. Epitope Classification and RBD Binding Properties of Neutralizing Antibodies Against SARS-CoV-2 Variants of Concern. Frontiers in Immunology, 2021, 12, 691715. The landscape of antibody binding in SARS-CoV-2 infection. PLoS Biology, 2021, 19, e3001265.	 8.6 1.0 17.1 4.6 4.8 5.6 	6 5 203 33 76 58
380 381 382 383 383 385	Methods to Identify Immunogenic Peptides in SARSâCCoVâC2 Spike and Protective Monoclonal Antibodies in COVIDâC19 Patients. Small Methods, 2021, 5, 2100058. Assessment of automated high-throughput serological assays for prediction of high-titer SARS-CoV-2 neutralizing antibody. Journal of Clinical Virology Plus, 2021, 1, 100016. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduction and Targeted Therapy, 2021, 6, 233. Allosteric Cross-Talk among Spike's Receptor-Binding Domain Mutations of the SARS-CoV-2 South African Variant Triggers an Effective Hijacking of Human Cell Receptor. Journal of Physical Chemistry Letters, 2021, 12, 5987-5993. Epitope Classification and RBD Binding Properties of Neutralizing Antibodies Against SARS-CoV-2 Variants of Concern. Frontiers in Immunology, 2021, 12, 691715. The landscape of antibody binding in SARS-CoV-2 infection. PLoS Biology, 2021, 19, e3001265. Genetic modification to design a stable yeast-expressed recombinant SARS-CoV-2 receptor binding domain as a COVID-19 vaccine candidate. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129893.	 8.6 1.0 17.1 4.6 4.8 5.6 2.4 	6 5 203 33 76 58
 380 381 382 383 384 385 386 387 	Methods to Identify Immunogenic Peptides in SARSâ€CoVâ€2 Spike and Protective Monoclonal Antibodies in COVIDa€19 Patients. Small Methods, 2021, 5, 2100058. Assessment of automated high-throughput serological assays for prediction of high-titer SARS-CoV-2 neutralizing antibody. Journal of Clinical Virology Plus, 2021, 1, 100016. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduction and Targeted Therapy, 2021, 6, 233. Allosteric Cross-Talk among Spike's Receptor-Binding Domain Mutations of the SARS-CoV-2 South African Variant Triggers an Effective Hijacking of Human Cell Receptor. Journal of Physical Chemistry Letters, 2021, 12, 5987-5993. Epitope Classification and RBD Binding Properties of Neutralizing Antibodies Against SARS-CoV-2 variants of Concern. Frontiers in Immunology, 2021, 12, 691715. The landscape of antibody binding in SARS-CoV-2 infection. PLoS Biology, 2021, 19, e3001265. Genetic modification to design a stable yeast-expressed recombinant SARS-CoV-2 receptor binding domain as a COVID-19 vaccine candidate. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129893. A Comprehensive Molecular Epidemiological Analysis of SARS-CoV-2 Infection in Cyprus from April 2020 to January 2021: Evidence of a Highly Polyphyletic and Evolving Epidemic. Viruses, 2021, 13, 1098.	 8.6 1.0 17.1 4.6 4.8 5.6 2.4 3.3 	 6 5 203 33 76 58 49 11

#	Article	IF	CITATIONS
390	Characterization of neutralizing versus binding antibodies and memory B cells in COVID-19 recovered individuals from India. Virology, 2021, 558, 13-21.	2.4	24
392	Evaluation of a Surrogate Enzyme-Linked Immunosorbent Assay–Based Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) cPass Neutralization Antibody Detection Assay and Correlation With Immunoglobulin G Commercial Serology Assays. Archives of Pathology and Laboratory Medicine, 2021. 145. 1212-1220.	2.5	38
393	Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants. Nature, 2021, 595, 278-282.	27.8	154
394	SARS-CoV-2 Antiviral Therapy. Clinical Microbiology Reviews, 2021, 34, e0010921.	13.6	64
395	Site-Specific Steric Control of SARS-CoV-2 Spike Glycosylation. Biochemistry, 2021, 60, 2153-2169.	2.5	54
396	SARS-CoV-2 Spike Protein Stabilized in the Closed State Induces Potent Neutralizing Responses. Journal of Virology, 2021, 95, e0020321.	3.4	35
397	Unified platform for genetic and serological detection of COVID-19 with single-molecule technology. PLoS ONE, 2021, 16, e0255096.	2.5	5
399	Adaptation of the MTT assay for detection of neutralizing antibodies against the SARS-CoV-2 virus. Zhurnal Mikrobiologii Epidemiologii I Immunobiologii, 2021, 98, 253-265.	1.0	10
401	SARS-CoV-2 Neutralizing Antibody Responses towards Full-Length Spike Protein and the Receptor-Binding Domain. Journal of Immunology, 2021, 207, 878-887.	0.8	30
403	Therapeutic antibodies under development for SARSâ \in CoVâ \in 2. View, 2021, , 20200178.	5.3	4
404	Validation of a combined ELISA to detect IgC, IgA and IgM antibody responses to SARS-CoV-2 in mild or moderate non-hospitalised patients. Journal of Immunological Methods, 2021, 494, 113046.	1.4	40
406	Structural basis for accommodation of emerging B.1.351 and B.1.1.7 variants by two potent SARS-CoV-2 neutralizing antibodies. Structure, 2021, 29, 655-663.e4.	3.3	52
407	Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature, 2021, 596, 276-280.	27.8	1,803
409	Potency of BNT162b2 and mRNAâ€1273 vaccineâ€induced neutralizing antibodies against severe acute respiratory syndromeâ€CoVâ€2 variants of concern: A systematic review of in vitro studies. Reviews in Medical Virology, 2022, 32, e2277.	8.3	57
410	Placental response to maternal SARS-CoV-2 infection. Scientific Reports, 2021, 11, 14390.	3.3	41
412	Polymersomes Decorated with the SARS-CoV-2 Spike Protein Receptor-Binding Domain Elicit Robust Humoral and Cellular Immunity. ACS Central Science, 2021, 7, 1368-1380.	11.3	21
413	A recombinant spike protein subunit vaccine confers protective immunity against SARS-CoV-2 infection and transmission in hamsters. Science Translational Medicine, 2021, 13, .	12.4	56
414	Mapping mutations to the SARS-CoV-2 RBD that escape binding by different classes of antibodies. Nature Communications, 2021, 12, 4196.	12.8	332

#	Article	IF	CITATIONS
416	Resistance of SARS-CoV-2 variants to neutralization by antibodies induced in convalescent patients with COVID-19. Cell Reports, 2021, 36, 109385.	6.4	23
417	Identification of Novel Neutralizing Monoclonal Antibodies against SARS-CoV-2 Spike Glycoprotein. ACS Pharmacology and Translational Science, 2021, 4, 1349-1361.	4.9	3
418	Impact of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Variant-Associated Receptor Binding Domain (RBD) Mutations on the Susceptibility to Serum Antibodies Elicited by Coronavirus Disease 2019 (COVID-19) Infection or Vaccination. Clinical Infectious Diseases, 2022, 74, 1623-1630.	5.8	42
419	Isolation and characterization of cross-neutralizing coronavirus antibodies from COVID-19+ subjects. Cell Reports, 2021, 36, 109353.	6.4	95
420	Drug discovery in the era of cryo-electron microscopy. Trends in Biochemical Sciences, 2022, 47, 124-135.	7.5	45
421	Protective antibodies elicited by SARS-CoV-2 spike protein vaccination are boosted in the lung after challenge in nonhuman primates. Science Translational Medicine, 2021, 13, .	12.4	56
422	Antibody Cocktail Exhibits Broad Neutralization Activity Against SARS-CoV-2 and SARS-CoV-2 Variants. Virologica Sinica, 2021, 36, 934-947.	3.0	12
423	Intranasal Administration of a Monoclonal Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection. Viruses, 2021, 13, 1498.	3.3	33
424	Immunogenicity and Protective Efficacy of a Highly Thermotolerant, Trimeric SARS-CoV-2 Receptor Binding Domain Derivative. ACS Infectious Diseases, 2021, 7, 2546-2564.	3.8	34
425	Interference of Polydatin/Resveratrol in the ACE2:Spike Recognition during COVID-19 Infection. A Focus on Their Potential Mechanism of Action through Computational and Biochemical Assays. Biomolecules, 2021, 11, 1048.	4.0	22
428	Anti–platelet factor 4 antibodies causing VITT do not cross-react with SARS-CoV-2 spike protein. Blood, 2021, 138, 1269-1277.	1.4	102
429	The monoclonal antibody combination REGEN-COV protects against SARS-CoV-2 mutational escape in preclinical and human studies. Cell, 2021, 184, 3949-3961.e11.	28.9	171
430	SARS-CoV-2 mRNA vaccination induces functionally diverse antibodies to NTD, RBD, and S2. Cell, 2021, 184, 3936-3948.e10.	28.9	241
432	Potent and protective IGHV3-53/3-66 public antibodies and their shared escape mutant on the spike of SARS-CoV-2. Nature Communications, 2021, 12, 4210.	12.8	82
433	A Single-Cell Atlas of Lymphocyte Adaptive Immune Repertoires and Transcriptomes Reveals Age-Related Differences in Convalescent COVID-19 Patients. Frontiers in Immunology, 2021, 12, 701085.	4.8	33
434	Exploring dynamics and network analysis of spike glycoprotein of SARS-COV-2. Biophysical Journal, 2021, 120, 2902-2913.	0.5	22
435	Identification of HLA-A2 restricted CD8+ T cell epitopes in SARS-CoV-2 structural proteins. Journal of Leukocyte Biology, 2021, 110, 1171-1180.	3.3	11
436	Analysis of SARS-CoV-2 variant mutations reveals neutralization escape mechanisms and the ability to use ACE2 receptors from additional species. Immunity, 2021, 54, 1611-1621.e5.	14.3	190

#	Article	IF	CITATIONS
438	Effect of SARS-CoV-2 B.1.1.7 mutations on spike protein structure and function. Nature Structural and Molecular Biology, 2021, 28, 731-739.	8.2	124
439	Dynamics of SARS-CoV-2 Spike Proteins in Cell Entry: Control Elements in the Amino-Terminal Domains. MBio, 2021, 12, e0159021.	4.1	49
441	Convergent antibody responses to the SARS-CoV-2 spike protein in convalescent and vaccinated individuals. Cell Reports, 2021, 36, 109604.	6.4	67
442	Longitudinal analysis of antibody decay in convalescent COVID-19 patients. Scientific Reports, 2021, 11, 16796.	3.3	18
443	InÂvitro and inÂvivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell, 2021, 184, 4203-4219.e32.	28.9	228
445	SARS-CoV-2 Neutralizing Antibodies for COVID-19 Prevention and Treatment. Annual Review of Medicine, 2022, 73, 1-16.	12.2	91
447	Accelerated COVID-19 vaccine development: milestones, lessons, and prospects. Immunity, 2021, 54, 1636-1651.	14.3	165
448	Cross-reactive CD4 ⁺ T cells enhance SARS-CoV-2 immune responses upon infection and vaccination. Science, 2021, 374, eabh1823.	12.6	221
449	Probing the Allosteric Inhibition Mechanism of a Spike Protein Using Molecular Dynamics Simulations and Active Compound Identifications. Journal of Medicinal Chemistry, 2022, 65, 2827-2835.	6.4	15
450	Conformational flexibility and structural variability of SARS-CoV2ÂS protein. Structure, 2021, 29, 834-845.e5.	3.3	30
451	Simultaneous evaluation of antibodies that inhibit SARS-CoV-2 variants via multiplex assay. JCI Insight, 2021, 6, .	5.0	33
453	Crucial Mutations of Spike Protein on SARS-CoV-2 Evolved to Variant Strains Escaping Neutralization of Convalescent Plasmas and RBD-Specific Monoclonal Antibodies. Frontiers in Immunology, 2021, 12, 693775.	4.8	38
454	The impact of high-resolution structural data on stemming the COVID-19 pandemic. Current Opinion in Virology, 2021, 49, 127-138.	5.4	2
457	Emergence and expansion of SARS-CoV-2 B.1.526 after identification in New York. Nature, 2021, 597, 703-708.	27.8	103
460	Diffuse C4d staining of peritubular capillaries in renal allograft following bamlanivimab therapy. American Journal of Transplantation, 2022, 22, 289-293.	4.7	3
462	Coronavirus Pseudotypes for All Circulating Human Coronaviruses for Quantification of Cross-Neutralizing Antibody Responses. Viruses, 2021, 13, 1579.	3.3	14
463	N439K Variant in Spike Protein Alter the Infection Efficiency and Antigenicity of SARS-CoV-2 Based on Molecular Dynamics Simulation. Frontiers in Cell and Developmental Biology, 2021, 9, 697035.	3.7	19
464	Analysis of the molecular mechanism of SARS-CoV-2 antibodies. Biochemical and Biophysical Research Communications, 2021, 566, 45-52.	2.1	15

#	Article	IF	CITATIONS
465	Chimeric spike mRNA vaccines protect against Sarbecovirus challenge in mice. Science, 2021, 373, 991-998.	12.6	144
466	Opportunities and challenges to the use of neutralizing monoclonal antibody therapies for COVID-19. BioScience Trends, 2021, 15, 205-210.	3.4	8
468	Evolutionary Tracking of SARS-CoV-2 Genetic Variants Highlights an Intricate Balance of Stabilizing and Destabilizing Mutations. MBio, 2021, 12, e0118821.	4.1	30
469	Integrated single-cell analysis revealed immune dynamics during Ad5-nCoV immunization. Cell Discovery, 2021, 7, 64.	6.7	22
470	Safety, Virologic Efficacy, and Pharmacokinetics of CT-P59, a Neutralizing Monoclonal Antibody Against SARS-CoV-2 Spike Receptor-Binding Protein: Two Randomized, Placebo-Controlled, Phase I Studies in Healthy Individuals and Patients With Mild SARS-CoV-2 Infection. Clinical Therapeutics, 2021, 43, 1706-1727.	2.5	39
471	Impact of Low-Dose Methotrexate–Adalimumab Combination Therapy on the Antibody Response Induced by the mRNA-1273 SARS-CoV-2 Vaccine: Case of an Elderly Patient with Rheumatoid Arthritis. Vaccines, 2021, 9, 883.	4.4	7
472	The protective immunity induced by SARS-CoV-2 infection and vaccination: a critical appraisal. Exploration of Immunology, 2021, , 199-225.	0.3	5
477	Severe Acute Respiratory Syndrome Coronavirus 2 Reinfection: A Case Series From a 12-Month Longitudinal Occupational Cohort. Clinical Infectious Diseases, 2022, 74, 1682-1685.	5.8	9
478	The ongoing evolution of variants of concern and interest of SARS-CoV-2 in Brazil revealed by convergent indels in the amino (N)-terminal domain of the spike protein. Virus Evolution, 2021, 7, veab069.	4.9	31
480	Signatures in SARS-CoV-2 spike protein conferring escape to neutralizing antibodies. PLoS Pathogens, 2021, 17, e1009772.	4.7	74
481	Refining the N-Termini of the SARS-CoV-2 Spike Protein and Its Discrete Receptor-Binding Domain. Journal of Proteome Research, 2021, 20, 4427-4434.	3.7	4
482	A potently neutralizing SARS-CoV-2 antibody inhibits variants of concern by utilizing unique binding residues in a highly conserved epitope. Immunity, 2021, 54, 2399-2416.e6.	14.3	79
483	Infection-enhancing anti-SARS-CoV-2 antibodies recognize both the original Wuhan/D614G strain and Delta variants. A potential risk for mass vaccination?. Journal of Infection, 2021, 83, 607-635.	3.3	35
484	A monoclonal antibody against staphylococcal enterotoxin B superantigen inhibits SARS-CoV-2 entry inÂvitro. Structure, 2021, 29, 951-962.e3.	3.3	28
485	Epitope Profiling Reveals the Critical Antigenic Determinants in SARS-CoV-2 RBD-Based Antigen. Frontiers in Immunology, 2021, 12, 707977.	4.8	21
487	A pair of noncompeting neutralizing human monoclonal antibodies protecting from disease in a SARSâ€CoVâ€2 infection model. European Journal of Immunology, 2022, 52, 770-783.	2.9	24
488	Impact of Specific N-Glycan Modifications on the Use of Plant-Produced SARS-CoV-2 Antigens in Serological Assays. Frontiers in Plant Science, 2021, 12, 747500.	3.6	8
489	B.1.617.2 enters and fuses lung cells with increased efficiency and evades antibodies induced by infection and vaccination. Cell Reports, 2021, 37, 109825.	6.4	73

#	Article	IF	CITATIONS
490	CRISPR-based peptide library display and programmable microarray self-assembly for rapid quantitative protein binding assays. Molecular Cell, 2021, 81, 3650-3658.e5.	9.7	13
491	Broad cross-reactivity across sarbecoviruses exhibited by a subset of COVID-19 donor-derived neutralizing antibodies. Cell Reports, 2021, 36, 109760.	6.4	80
492	Differential Antibody Response to SARS-CoV-2 Antigens in Recovered and Deceased Iranian COVID-19 Patients. Viral Immunology, 2021, 34, 708-713.	1.3	2
494	Bispecific antibodies targeting distinct regions of the spike protein potently neutralize SARS-CoV-2 variants of concern. Science Translational Medicine, 2021, 13, eabj5413.	12.4	79
495	The SARS-CoV-2 spike protein is vulnerable to moderate electric fields. Nature Communications, 2021, 12, 5407.	12.8	26
496	Neutralization of SARSâ€CoVâ€2 requires antibodies against conformational receptorâ€binding domain epitopes. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 230-242.	5.7	45
497	An ultrapotent pan-β-coronavirus lineage B (β-CoV-B) neutralizing antibody locks the receptor-binding domain in closed conformation by targeting its conserved epitope. Protein and Cell, 2022, 13, 655-675.	11.0	25
498	Potent neutralization of SARS-CoV-2 variants of concern by an antibody with an uncommon genetic signature and structural mode of spike recognition. Cell Reports, 2021, 37, 109784.	6.4	20
499	Synthetic Neutralizing Peptides Inhibit the Host Cell Binding of Spike Protein and Block Infection of SARS-CoV-2. Journal of Medicinal Chemistry, 2021, 64, 14887-14894.	6.4	11
500	Live imaging of SARS-CoV-2 infection in mice reveals that neutralizing antibodies require Fc function for optimal efficacy. Immunity, 2021, 54, 2143-2158.e15.	14.3	155
502	Antibody screening at reduced <scp>pH</scp> enables preferential selection of potently neutralizing antibodies targeting <scp>SARSâ€CoV</scp> â€2. AICHE Journal, 2021, 67, e17440.	3.6	4
503	Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail. Nature Microbiology, 2021, 6, 1233-1244.	13.3	237
504	Emerging SARS-CoV-2 variants of concern evade humoral immune responses from infection and vaccination. Science Advances, 2021, 7, eabj5365.	10.3	83
505	Defining variant-resistant epitopes targeted by SARS-CoV-2 antibodies: A global consortium study. Science, 2021, 374, 472-478.	12.6	228
506	Neutralizing Monoclonal Antibodies That Target the Spike Receptor Binding Domain Confer Fc Receptor-Independent Protection against SARS-CoV-2 Infection in Syrian Hamsters. MBio, 2021, 12, e0239521.	4.1	13
507	Broadly-Neutralizing Antibodies Against Emerging SARS-CoV-2 Variants. Frontiers in Immunology, 2021, 12, 752003.	4.8	62
509	Neutralizing antibodies for the prevention and treatment of COVID-19. Cellular and Molecular Immunology, 2021, 18, 2293-2306.	10.5	91
510	Efficacy and breadth of adjuvanted SARS-CoV-2 receptor-binding domain nanoparticle vaccine in macaques. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	44

#	Article	IF	CITATIONS
512	Longitudinal observation of antibody responses for 14Âmonths after SARS-CoV-2 infection. Clinical Immunology, 2021, 230, 108814.	3.2	26
513	Endocytosis and Transcytosis of SARS-CoV-2 Across the Intestinal Epithelium and Other Tissue Barriers. Frontiers in Immunology, 2021, 12, 636966.	4.8	23
514	Modifications of mRNA vaccine structural elements for improving mRNA stability and translation efficiency. Molecular and Cellular Toxicology, 2022, 18, 1-8.	1.7	73
515	Monoclonal antibodies for the treatment of COVID-19 patients: An umbrella to overcome the storm?. International Immunopharmacology, 2021, 101, 108200.	3.8	20
516	SARS-COV-2 recombinant Receptor-Binding-Domain (RBD) induces neutralizing antibodies against variant strains of SARS-CoV-2 and SARS-CoV-1. Vaccine, 2021, 39, 5769-5779.	3.8	23
517	Host Cell and SARS-CoV-2-Associated Molecular Structures and Factors as Potential Therapeutic Targets. Cells, 2021, 10, 2427.	4.1	5
518	The biological and clinical significance of emerging SARS-CoV-2 variants. Nature Reviews Genetics, 2021, 22, 757-773.	16.3	778
520	Emerging SARS-CoV-2 Variants of Concern (VOCs): An Impending Global Crisis. Biomedicines, 2021, 9, 1303.	3.2	87
521	Memory B cell repertoire for recognition of evolving SARS-CoV-2 spike. Cell, 2021, 184, 4969-4980.e15.	28.9	94
523	D614G mutation in the SARS-CoV-2 spike protein enhances viral fitness by desensitizing it to temperature-dependent denaturation. Journal of Biological Chemistry, 2021, 297, 101238.	3.4	46
525	Structural biology of SARS-CoV-2 and implications for therapeutic development. Nature Reviews Microbiology, 2021, 19, 685-700.	28.6	259
526	Tetravalent SARS-CoV-2 Neutralizing Antibodies Show Enhanced Potency and Resistance to Escape Mutations. Journal of Molecular Biology, 2021, 433, 167177.	4.2	31
527	Cellular tropism of SARS-CoV-2 in the respiratory tract of Syrian hamsters and B6.Cg-Tg(K18-ACE2)2Prlmn/J transgenic mice. Veterinary Pathology, 2022, 59, 639-647.	1.7	4
528	Recent progress on the mutations of SARS-CoV-2 spike protein and suggestions for prevention and controlling of the pandemic. Infection, Genetics and Evolution, 2021, 93, 104971.	2.3	19
529	Cross-neutralization of SARS-CoV-2 by HIV-1 specific broadly neutralizing antibodies and polyclonal plasma. PLoS Pathogens, 2021, 17, e1009958.	4.7	20
530	Humoral and cellular immunity and the safety of COVID-19 vaccines: a summary of data published by 21 May 2021. International Immunology, 2021, 33, 529-540.	4.0	28
531	Landscape of human antibody recognition of the SARS-CoV-2 receptor binding domain. Cell Reports, 2021, 37, 109822.	6.4	35
532	Cross-neutralizing antibodies bind a SARS-CoV-2 cryptic site and resist circulating variants. Nature Communications, 2021, 12, 5652.	12.8	49

#	Article	IF	CITATIONS
533	A potent SARS-CoV-2 neutralising nanobody shows therapeutic efficacy in the Syrian golden hamster model of COVID-19. Nature Communications, 2021, 12, 5469.	12.8	102
534	Development of a Recombinant RBD Subunit Vaccine for SARS-CoV-2. Viruses, 2021, 13, 1936.	3.3	9
535	Rapid lateral-flow immunochromatographic tests to assess anti N/S lgG seropositivity after BNT162b2 vaccine: A cross-sectional study. Journal of Infection, 2021, 83, 381-412.	3.3	2
536	Dynamic Interactions of Fully Glycosylated SARS-CoV-2 Spike Protein with Various Antibodies. Journal of Chemical Theory and Computation, 2021, 17, 6559-6569.	5.3	13
537	SARSâ€CoVâ€2 vaccination in solidâ€organ transplant recipients: What the clinician needs to know. Transplant International, 2021, 34, 1776-1788.	1.6	32
538	Paired heavy- and light-chain signatures contribute to potent SARS-CoV-2 neutralization in public antibody responses. Cell Reports, 2021, 37, 109771.	6.4	38
539	Differential Antibody Response to mRNA COVID-19 Vaccines in Healthy Subjects. Microbiology Spectrum, 2021, 9, e0034121.	3.0	114
541	Antibody Response against SARS-CoV-2 Infection: Implications for Diagnosis, Treatment and Vaccine Development. International Reviews of Immunology, 2022, 41, 393-413.	3.3	13
542	High genetic barrier to SARS-CoV-2 polyclonal neutralizing antibody escape. Nature, 2021, 600, 512-516.	27.8	174
543	Generation of potent cellular and humoral immunity against SARS-CoV-2 antigens via conjugation to a polymeric glyco-adjuvant. Biomaterials, 2021, 278, 121159.	11.4	23
544	Evaluation of S-RBD and high specificity ACE-2-binding antibodies on SARS-CoV-2 patients after six months from infection. International Immunopharmacology, 2021, 99, 108013.	3.8	7
545	SARS-CoV-2 Infection and Antibody Seroprevalence among UK Healthcare Professionals Working with Cancer Patients during the First Wave of the COVID-19 Pandemic. Clinical Oncology, 2021, 33, 667-675.	1.4	6
546	SARS-CoV-2 S2P spike ages through distinct states with altered immunogenicity. Journal of Biological Chemistry, 2021, 297, 101127.	3.4	9
548	Bioinspired membrane-based nanomodulators for immunotherapy of autoimmune and infectious diseases. Acta Pharmaceutica Sinica B, 2022, 12, 1126-1147.	12.0	12
549	Anti-SARS-CoV-2 and anti-cytokine storm neutralizing antibody therapies against COVID-19: Update, challenges, and perspectives. International Immunopharmacology, 2021, 99, 108036.	3.8	10
550	Deamidation drives molecular aging of the SARS-CoV-2 spike protein receptor-binding motif. Journal of Biological Chemistry, 2021, 297, 101175.	3.4	3
551	Neutralizing antibody response to SARS-CoV-2 persists 9 months post symptom onset in mild and asymptomatic patients. International Journal of Infectious Diseases, 2021, 112, 8-12.	3.3	5
552	Immune response variables and viral mutations impact on COVID-19 reinfection and relapse. International Immunopharmacology, 2021, 100, 108108.	3.8	7

#	Article	IF	CITATIONS
553	Evaluation of a multi-species SARS-CoV-2 surrogate virus neutralization test. One Health, 2021, 13, 100313.	3.4	28
555	SARS-CoV-2 Cellular Infection and Therapeutic Opportunities: Lessons Learned from Ebola Virus. Membranes, 2021, 11, 64.	3.0	0
559	Comprehensive analysis of COVID-19 during pregnancy. Biochemical and Biophysical Research Communications, 2021, 538, 180-186.	2.1	67
561	AQ806, AS739, AT693, AU197 and AU734 antibodies recognize the spike S protein from SARS-CoV-2 by flow cytometry. Antibody Reports, 2021, 4, .	0.1	0
567	Potent mouse monoclonal antibodies that block SARS-CoV-2 infection. Journal of Biological Chemistry, 2021, 296, 100346.	3.4	15
568	Potential SARS-CoV-2 Immune Correlates of Protection in Infection and Vaccine Immunization. Pathogens, 2021, 10, 138.	2.8	60
569	Potent RBD-specific neutralizing rabbit monoclonal antibodies recognize emerging SARS-CoV-2 variants elicited by DNA prime-protein boost vaccination. Emerging Microbes and Infections, 2021, 10, 1390-1403.	6.5	16
570	Cold sensitivity of the SARS-CoV-2 spike ectodomain. Nature Structural and Molecular Biology, 2021, 28, 128-131.	8.2	65
571	An overview of methods for the structural and functional mapping of epitopes recognized by anti-SARS-CoV-2 antibodies. RSC Chemical Biology, 2021, 2, 1580-1589.	4.1	4
572	Current state of vaccine development and targeted therapies for COVID-19: impact of basic science discoveries. Cardiovascular Pathology, 2021, 50, 107278.	1.6	55
573	An Overview of the Crystallized Structures of the SARS-CoV-2. Protein Journal, 2020, 39, 600-618.	1.6	32
574	Human Monoclonal Antibodies: On the Menu of Targeted Therapeutics Against COVID-19. Virologica Sinica, 2020, 35, 713-724.	3.0	10
575	COVID-19 in clinical practice: A narrative synthesis. Médecine Et Maladies Infectieuses, 2020, 50, 639-647.	5.0	2
576	Targeted Disassembling of SARS-CoV-2 as It Gets Ready for Cell Penetration. ACS Medicinal Chemistry Letters, 2020, 11, 2055-2057.	2.8	3
577	Crippling life support for SARS-CoV-2 and other viruses through synthetic lethality. Journal of Cell Biology, 2020, 219, .	5.2	20
578	Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo. Journal of Experimental Medicine, 2021, 218, .	8.5	283
579	The development of neutralizing antibodies against SARS-CoV-2 and their common features. Journal of Molecular Cell Biology, 2021, 12, 980-986.	3.3	13
580	Double lock of a potent human therapeutic monoclonal antibody against SARS-CoV-2. National Science Review, 2021, 8, nwaa297.	9.5	24

#	Article	IF	CITATIONS
650	A natural mutation between SARS-CoV-2 and SARS-CoV determines neutralization by a cross-reactive antibody. PLoS Pathogens, 2020, 16, e1009089.	4.7	55
652	Paired Heavy and Light Chain Signatures Contribute to Potent SARS-CoV-2 Neutralization in Public Antibody Responses. SSRN Electronic Journal, 0, , .	0.4	1
653	Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. ELife, 2020, 9, .	6.0	1,239
654	Immunology of SARS-CoV-2 infections and vaccines. Advances in Immunology, 2021, 151, 49-97.	2.2	12
655	N-terminal domain mutations of the spike protein are structurally implicated in epitope recognition in emerging SARS-CoV-2 strains. Computational and Structural Biotechnology Journal, 2021, 19, 5556-5567.	4.1	39
656	Antibody-dependent cellular cytotoxicity response to SARS-CoV-2 in COVID-19 patients. Signal Transduction and Targeted Therapy, 2021, 6, 346.	17.1	60
657	A Combination of Receptor-Binding Domain and N-Terminal Domain Neutralizing Antibodies Limits the Generation of SARS-CoV-2 Spike Neutralization-Escape Mutants. MBio, 2021, 12, e0247321.	4.1	35
658	Polyclonal F(ab')2 fragments of equine antibodies raised against the spike protein neutralize SARS-CoV-2 variants with high potency. IScience, 2021, 24, 103315.	4.1	23
660	Expression and characterization of SARS-CoV-2 spike proteins. Nature Protocols, 2021, 16, 5339-5356.	12.0	31
662	A potent bispecific nanobody protects hACE2 mice against SARS-CoV-2 infection via intranasal administration. Cell Reports, 2021, 37, 109869.	6.4	59
663	Mutational Hotspot in the SARS-CoV-2 Spike Protein N-Terminal Domain Conferring Immune Escape Potential. Viruses, 2021, 13, 2114.	3.3	10
664	Structure-guided antibody cocktail for prevention and treatment of COVID-19. PLoS Pathogens, 2021, 17, e1009704.	4.7	12
665	Mechanisms of SARS-CoV-2 entry into cells. Nature Reviews Molecular Cell Biology, 2022, 23, 3-20.	37.0	1,532
667	Single domain shark VNAR antibodies neutralize SARS oVâ€2 infection in vitro. FASEB Journal, 2021, 35, e21970.	0.5	22
669	Uncovering a conserved vulnerability site in SARS oVâ€2 by a human antibody. EMBO Molecular Medicine, 2021, 13, e14544.	6.9	17
670	Generation and persistence of S1ÂlgG and neutralizing antibodies in post-COVID-19 patients. Infection, 2021, 50, 447.	4.7	5
671	Key Substitutions in the Spike Protein of SARS-CoV-2 Variants Can Predict Resistance to Monoclonal Antibodies, but Other Substitutions Can Modify the Effects. Journal of Virology, 2022, 96, JVI0111021.	3.4	29
672	Neutralizing antibody 5-7 defines a distinct site of vulnerability in SARS-CoV-2 spike N-terminal domain. Cell Reports, 2021, 37, 109928.	6.4	52

#	Article	IF	CITATIONS
673	Distant residues modulate conformational opening in SARS-CoV-2 spike protein. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	69
674	Structural Basis of a Human Neutralizing Antibody Specific to the SARS-CoV-2 Spike Protein Receptor-Binding Domain. Microbiology Spectrum, 2021, 9, e0135221.	3.0	13
676	Stabilized coronavirus spike stem elicits a broadly protective antibody. Cell Reports, 2021, 37, 109929.	6.4	64
679	Sensitivity of two SARS-CoV-2 variants with spike protein mutations to neutralising antibodies. Virus Genes, 2021, 57, 502-509.	1.6	3
680	Identification of conserved SARS-CoV-2 spike epitopes that expand public cTfh clonotypes in mild COVID-19 patients. Journal of Experimental Medicine, 2021, 218, .	8.5	24
681	Isolation of a panel of ultra-potent human antibodies neutralizing SARS-CoV-2 and viral variants of concern. Cell Discovery, 2021, 7, 96.	6.7	21
682	Computational Design of Potent D-Peptide Inhibitors of SARS-CoV-2. Journal of Medicinal Chemistry, 2021, 64, 14955-14967.	6.4	28
684	Humoral Response Induced by Prime-Boost Vaccination with the ChAdOx1 nCoV-19 and mRNA BNT162b2 Vaccines in a Teriflunomide-Treated Multiple Sclerosis Patient. Vaccines, 2021, 9, 1140.	4.4	3
685	Epitope Analysis of Anti-SARS-CoV-2 Neutralizing Antibodies. Current Medical Science, 2021, 41, 1065.	1.8	3
686	Elevated Humoral Immune Response to SARS-CoV-2 at High Altitudes Revealed by an Anti-RBD "In-House― ELISA. Frontiers in Medicine, 2021, 8, 720988.	2.6	5
688	Structural mechanism of SARS-CoV-2 neutralization by two murine antibodies targeting the RBD. Cell Reports, 2021, 37, 109881.	6.4	14
689	Serological anti-SARS-CoV-2 neutralizing antibodies association to live virus neutralizing test titers in COVID-19 paucisymptomatic/symptomatic patients and vaccinated subjects. International Immunopharmacology, 2021, 101, 108215.	3.8	20
690	SARS-CoV-2: Current trends in emerging variants, pathogenesis, immune responses, potential therapeutic, and vaccine development strategies. International Immunopharmacology, 2021, 101, 108232.	3.8	14
691	Membrane fusion and immune evasion by the spike protein of SARS-CoV-2 Delta variant. Science, 2021, 374, 1353-1360.	12.6	246
692	Neutralizing Antibodies to SARSâ€CoVâ€2 Selected from a Human Antibody Library Constructed Decades Ago. Advanced Science, 2022, 9, e2102181.	11.2	14
693	Low-dose in vivo protection and neutralization across SARS-CoV-2 variants by monoclonal antibody combinations. Nature Immunology, 2021, 22, 1503-1514.	14.5	40
694	Contributions of single-particle cryoelectron microscopy toward fighting COVID-19. Trends in Biochemical Sciences, 2022, 47, 117-123.	7.5	6
695	Functional differences among the spike glycoproteins of multiple emerging severe acute respiratory syndrome coronavirus 2 variants of concern. IScience, 2021, 24, 103393.	4.1	17

#	Article	IF	CITATIONS
696	Update on and Future Directions for Use of Anti–SARS-CoV-2 Antibodies: National Institutes of Health Summit on Treatment and Prevention of COVID-19. Annals of Internal Medicine, 2022, 175, 119-126.	3.9	13
697	Reply to Lassaunière: On the functional characterization of the Y453F RBD variant found in cluster 5 SARS-CoV-2. Journal of Biological Chemistry, 2021, 297, 101241.	3.4	1
698	Artemisia annua L. hot-water extracts show potent activity in vitro against Covid-19 variants including delta. Journal of Ethnopharmacology, 2022, 284, 114797.	4.1	20
702	COVID-19 AŞILARI; PANDEMİDE SONA DOĞRU?. Journal of Biotechnology and Strategic Health Research, 0, , .	1.8	6
707	Yeast-expressed recombinant SARS-CoV-2 receptor binding domain RBD203-N1 as a COVID-19 protein vaccine candidate. Protein Expression and Purification, 2022, 190, 106003.	1.3	21
708	Of Cross-Immunity, Herd Immunity and Country-Specific Plans: Experiences from COVID-19 in India. SSRN Electronic Journal, 0, , .	0.4	0
710	Cross-reactivity of antibodies from non-hospitalized COVID-19 positive individuals against the native, B.1.351, B.1.617.2, and P.1 SARS-CoV-2 spike proteins. Scientific Reports, 2021, 11, 21601.	3.3	20
711	Development of a rapid point-of-care test that measures neutralizing antibodies to SARS-CoV-2. Journal of Clinical Virology, 2021, 145, 105024.	3.1	33
712	In Vivo Electroporation of Plasmid DNA: A Promising Strategy for Rapid, Inexpensive, and Flexible Delivery of Anti-Viral Monoclonal Antibodies. Pharmaceutics, 2021, 13, 1882.	4.5	6
713	Potent SARS-CoV-2 neutralizing antibodies with protective efficacy against newly emerged mutational variants. Nature Communications, 2021, 12, 6304.	12.8	42
715	SARS-CoV-2 Serology Testing – A Laboratory Primer. Clinics in Laboratory Medicine, 2021, 42, 1-13.	1.4	0
716	Understanding the Secret of SARS-CoV-2 Variants of Concern/Interest and Immune Escape. Frontiers in Immunology, 2021, 12, 744242.	4.8	44
717	Molecular strategies for antibody binding and escape of SARS-CoV-2 and its mutations. Scientific Reports, 2021, 11, 21735.	3.3	11
718	Fc-Independent Protection from SARS-CoV-2 Infection by Recombinant Human Monoclonal Antibodies. Antibodies, 2021, 10, 45.	2.5	9
719	A non-ACE2 competing human single-domain antibody confers broad neutralization against SARS-CoV-2 and circulating variants. Signal Transduction and Targeted Therapy, 2021, 6, 378.	17.1	26
721	Editorial: The battle for survival between severe acute respiratory syndrome coronavirus 2 and human beings. Current Opinion in HIV and AIDS, 2020, 15, 325-327.	3.8	0
725	Fundamental aspects of the structural biology of coronaviruses. , 2022, , 31-52.		0
726	D614G mutation and SARS-CoV-2: impact on S-protein structure, function, infectivity, and immunity. Applied Microbiology and Biotechnology, 2021, 105, 9035-9045.	3.6	34

#	Article	IF	CITATIONS
727	Receptome profiling identifies KREMEN1 and ASGR1 as alternative functional receptors of SARS-CoV-2. Cell Research, 2022, 32, 24-37.	12.0	98
728	A Multifunctional Neutralizing Antibodyâ€Conjugated Nanoparticle Inhibits and Inactivates SARSâ€CoVâ€2. Advanced Science, 2022, 9, e2103240.	11.2	16
729	A monoclonal antibody that neutralizes SARS-CoV-2 variants, SARS-CoV, and other sarbecoviruses. Emerging Microbes and Infections, 2022, 11, 147-157.	6.5	25
730	Analysis of Glycosylation and Disulfide Bonding of Wild-Type SARS-CoV-2 Spike Glycoprotein. Journal of Virology, 2022, 96, JVI0162621.	3.4	24
731	A Mycobacteriophage-Based Vaccine Platform: SARS-CoV-2 Antigen Expression and Display. Microorganisms, 2021, 9, 2414.	3.6	6
732	A Bacterial Cell-Based Assay To Study SARS-CoV-2 Protein-Protein Interactions. MBio, 2021, , e0293621.	4.1	1
735	XAV-19, a Swine Glyco-Humanized Polyclonal Antibody Against SARS-CoV-2 Spike Receptor-Binding Domain, Targets Multiple Epitopes and Broadly Neutralizes Variants. Frontiers in Immunology, 2021, 12, 761250.	4.8	7
736	Emerging mutations in the SARS-CoV-2 variants and their role in antibody escape to small molecule-based therapeutic resistance. Current Opinion in Pharmacology, 2022, 62, 64-73.	3.5	29
737	Broadening access to cryoEM through centralized facilities. Trends in Biochemical Sciences, 2022, 47, 106-116.	7.5	9
738	Mutations of SARS-CoV-2 spike protein: Implications on immune evasion and vaccine-induced immunity. Seminars in Immunology, 2021, 55, 101533.	5.6	72
739	Antibody responses to BNT162b2 mRNA vaccine: Infectionâ€naÃ⁻ve individuals with abdominal obesity warrant attention. Obesity, 2022, 30, 606-613.	3.0	28
740	Recombinant production of a functional SARS-CoV-2 spike receptor binding domain in the green algae Chlamydomonas reinhardtii. PLoS ONE, 2021, 16, e0257089.	2.5	20
741	Antibodies specific to SARS-CoV-2 proteins N, S and E in COVID-19 patients in the normal population and in historical samples. Journal of General Virology, 2021, 102, .	2.9	16
742	Performance Evaluation of the BZ COVID-19 Neutralizing Antibody Test for the Culture-Free and Rapid Detection of SARS-CoV-2 Neutralizing Antibodies. Diagnostics, 2021, 11, 2193.	2.6	4
743	A rapid simple point-of-care assay for the detection of SARS-CoV-2 neutralizing antibodies. Communications Medicine, 2021, 1, .	4.2	23
744	SARS-CoV-2–specific memory B cells can persist in the elderly who have lost detectable neutralizing antibodies. Journal of Clinical Investigation, 2022, 132, .	8.2	24
745	Modeling coronavirus spike protein dynamics: implications for immunogenicity and immune escape. Biophysical Journal, 2021, 120, 5592-5618.	0.5	17
746	Exosomes/microvesicles target SARS-CoV-2 via innate and RNA-induced immunity with PIWI-piRNA system. Life Science Alliance, 2022, 5, e202101240.	2.8	10

ARTICLE IF CITATIONS Humoral anti-SARS-CoV-2 immune response after two doses of Comirnaty vaccine in nursing home 748 3.8 6 residents by previous infection status. Vaccine, 2022, 40, 531-535. The emergence of SARS-CoV-2 variants threatens to decrease the efficacy of neutralizing antibodies 749 3.4 and vaccines. Biochemical Society Transactions, 2021, 49, 2879-2890. Spherical Neutralizing Aptamer Inhibits SARS-CoV-2 Infection and Suppresses Mutational Escape. 750 13.7 56 Journal of the American Chemical Society, 2021, 143, 21541-21548. Structure and Mutations of SARS-CoV-2 Spike Protein: A Focused Overview. ACS Infectious Diseases, 2022, 8, 29-58. Relative Ratios of Human Seasonal Coronavirus Antibodies Predict the Efficiency of 752 6.1 37 Cross-Neutralization of SARS-CoV-2 Spike Binding to ACE2. EBioMedicine, 2021, 74, 103700. A rigorous framework for detecting SARS-CoV-2 spike protein mutational ensemble from genomic and structural features. Current Research in Structural Biology, 2021, 3, 290-300. 2.2 Structural basis and mode of action for two broadly neutralizing antibodies against SARS-CoV-2 754 6.4 96 emerging variants of concern. Cell Reports, 2022, 38, 110210. Single-cell immunology of SARS-CoV-2 infection. Nature Biotechnology, 2022, 40, 30-41. 17.5 756 78 757 Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature, 2022, 602, 671-675. 27.8 1,202 Clonal Wars: Monoclonal Antibodies Against Infectious Pathogens. DNA and Cell Biology, 2022, 41, 1.9 34-37. Formation and Expansion of Memory B Cells against Coronavirus in Acutely Infected COVID-19 759 4 2.8 Individuals. Pathogens, 2022, 11, 186. Quantitative measurement of IgG to SARSâ€CoVâ€2 antigens using monoclonal antibodyâ€based enzymeâ€linked_{3.8} immunosorbent assays. Clinical and Translational Immunology, 2022, 11, e1369. Longitudinal waning of mRNA vaccine-induced neutralizing antibodies against SARS-CoV-2 detected by 761 1.9 6 an LFIA rapid test. Antibody Therapeutics, 2022, 5, 55-62. Clinical Application of Antibody Immunity Against SARS-CoV-2: Comprehensive Review on Immunoassay and Immunotherapy. Clinical Reviews in Allergy and Immunology, 2023, 64, 17-32. 6.5 SARS-CoV-2 reactive and neutralizing antibodies discovered by single-cell sequencing of plasma cells 764 6.4 13 and mammalian display. Cell Reports, 2022, 38, 110242. Mapping cross-variant neutralizing sites on the SARS-CoV-2 spike protein. Emerging Microbes and Infections, 2022, 11, 351-367. A bispecific monomeric nanobody induces spike trimer dimers and neutralizes SARS-CoV-2 in vivo. 766 12.8 49 Nature Communications, 2022, 13, 155. Homologous or heterologous booster of inactivated vaccine reduces SARS-CoV-2 Omicron variant 6.5 104 escape from neutralizing antibodies. Emerging Microbes and Infections, 2022, 11, 477-481.

#	Article	IF	CITATIONS
769	A Fc-enhanced NTD-binding non-neutralizing antibody delays virus spread and synergizes with a nAb to protect mice from lethal SARS-CoV-2 infection. Cell Reports, 2022, 38, 110368.	6.4	82
770	Evaluation of serological anti-SARS-CoV-2 chemiluminescent immunoassays correlated to live virus neutralization test, for the detection of anti-RBD antibodies as a relevant alternative in COVID-19 large-scale neutralizing activity monitoring. Clinical Immunology, 2022, 234, 108918.	3.2	15
771	Neutralizing SARS-CoV-2 by dimeric side chain-to-side chain cross-linked ACE2 peptide mimetics. Chemical Communications, 2022, 58, 1804-1807.	4.1	3
772	Discovery of ultrapotent broadly neutralizing antibodies from SARS-CoV-2 elite neutralizers. Cell Host and Microbe, 2022, 30, 69-82.e10.	11.0	42
773	The mutational dynamics of the SARS-CoV-2 virus in serial passages in vitro. Virologica Sinica, 2022, 37, 198-207.	3.0	12
774	Development and utilization of a surrogate SARS-CoV-2 viral neutralization assay to assess mRNA vaccine responses. PLoS ONE, 2022, 17, e0262657.	2.5	11
775	Computational Design of Miniproteins as SARS-CoV-2 Therapeutic Inhibitors. International Journal of Molecular Sciences, 2022, 23, 838.	4.1	15
776	Immunization with synthetic SARS-CoV-2 S glycoprotein virus-like particles protects macaques from infection. Cell Reports Medicine, 2022, 3, 100528.	6.5	6
777	A new testing platform using fingerstick blood for quantitative antibody response evaluation after SARS-CoV-2 vaccination. Emerging Microbes and Infections, 2022, 11, 250-259.	6.5	3
778	Functional Analysis of Human and Feline Coronavirus Cross-Reactive Antibodies Directed Against the SARS-CoV-2 Fusion Peptide. Frontiers in Immunology, 2021, 12, 790415.	4.8	7
779	Evidence of SARS-CoV-2 symptomatic reinfection in four healthcare professionals from the same hospital despite the presence of antibodies. International Journal of Infectious Diseases, 2022, 117, 146-154.	3.3	10
780	Preclinical evaluation of a SARS-CoV-2 mRNA vaccine PTX-COVID19-B. Science Advances, 2022, 8, eabj9815.	10.3	29
781	Limited Variation between SARS-CoV-2-Infected Individuals in Domain Specificity and Relative Potency of the Antibody Response against the Spike Glycoprotein. Microbiology Spectrum, 2022, 10, e0267621.	3.0	1
783	Receptor binding and complex structures of human ACE2 to spike RBD from omicron and delta SARS-CoV-2. Cell, 2022, 185, 630-640.e10.	28.9	358
784	Rapid identification of neutralizing antibodies against SARS-CoV-2 variants by mRNA display. Cell Reports, 2022, 38, 110348.	6.4	14
785	Longitudinal immune profiling reveals dominant epitopes mediating long-term humoral immunity in COVID-19–convalescent individuals. Journal of Allergy and Clinical Immunology, 2022, 149, 1225-1241.	2.9	5
786	Omicron: the highly mutational COVID-19 variant with immune escape. Pan African Medical Journal, 2022, 41, 84.	0.8	2
788	A pandemic-enabled comparison of discovery platforms demonstrates a nail^ve antibody library can match the best immune-sourced antibodies. Nature Communications, 2022, 13, 462.	12.8	17

ARTICLE IF CITATIONS Analysis of antibodies from HCV elite neutralizers identifies genetic determinants of broad 789 14.3 21 neutralization. Immunity, 2022, 55, 341-354.e7. Monoclonal antibodies for COVID-19 therapy and SARS-CoV-2 detection. Journal of Biomedical Science, 790 144 2022, 29, 1. Optimization of SARS-CoV-2 Spike Protein Expression in the Silkworm and Induction of Efficient 791 7 4.8 Protective Immunity by Inoculation With Alum Adjuvants. Frontiers in Immunology, 2021, 12, 803647. SARS-CoV-2 Omicron variant: Antibody evasion and cryo-EM structure of spike protein–ACE2 complex. 792 488 Science, 2022, 375, 760-764. Standardized two-step testing of antibody activity in COVID-19 convalescent plasma. IScience, 2022, 25, 794 4.1 6 103602. Nucleic acid delivery of immune-focused SARS-CoV-2 nanoparticles drives rapid and potent 796 6.4 immunogenicity capable of single-dose protection. Cell Reports, 2022, 38, 110318. Structural Comparison and Drug Screening of Spike Proteins of Ten SARS-CoV-2 Variants. Research, 798 5.7 15 2022, 2022, 9781758. Efficacy and Safety of Regdanvimab (CT-P59): A Phase 2/3 Randomized, Double-Blind, Placebo-Controlled Trial in Outpatient's With Mild-to-Moderate Coronavirus Disease 2019. Open Forum Infectious Diseases, 38 2022, 9, ofac053. An Immunoproteomic Survey of the Antibody Landscape: Insights and Opportunities Revealed by 802 9 4.8 Serological Repertoire Profiling. Frontiers in Ímmunology, 2022, 13, 832533. Regdanvimab in patients with mild-to-moderate SARS-CoV-2 infection: A propensity score–matched 3.8 retrospective cohort study. International Immunopharmacology, 2022, 106, 108570. SARS oVâ€2 variants preferentially emerge at intrinsically disordered protein sites helping immune 804 4.725 evasion. FEBS Journal, 2022, 289, 4240-4250. Ultrapotent neutralizing antibodies against SARS-CoV-2 with a high degree of mutation resistance. 8.2 Journal of Clinical Investigation, 2022, 132, . Monoclonal antibodies targeting two immunodominant epitopes on the Spike protein neutralize 806 6.1 14 emerging SARS-CoV-2 variants of concern. EBioMedicine, 2022, 76, 103818. Emergence and onward transmission of a SARS-CoV-2 E484K variant among household contacts of a 1.8 bamlanivimab-treated patient. Diagnostic Microbiology and Infectious Disease, 2022, 103, 115656. Quantifying the effect of government interventions and virus mutations on transmission advantage 808 4.1 6 during COVID-19 pandemic. Journal of Infection and Public Health, 2022, 15, 338-342. 501Y.V2 spike protein resists the neutralizing antibody in atomistic simulations. Computational Biology and Chemistry, 2022, 97, 107636. Neutralizing monoclonal antibodies against highly pathogenic coronaviruses. Current Opinion in 811 5.42 Virology, 2022, 53, 101199. A high-throughput single cell-based antibody discovery approach against the full-length SARS-CoV-2 spike protein suggests a lack of neutralizing antibodies targeting the highly conserved S2 domain. 6.5 Briefings in Bioinformatics, 2022, 23, .

#	Article	IF	CITATIONS
813	Multiple expansions of globally uncommon SARS-CoV-2 lineages in Nigeria. Nature Communications, 2022, 13, 688.	12.8	23
814	Development of SARS-CoV2 humoral response including neutralizing antibodies is not sufficient to protect patients against fatal infection. Scientific Reports, 2022, 12, 2077.	3.3	8
816	Antibody Response to SARS-CoV-2 Infection and Vaccination in COVID-19-naÃ⁻ve and Experienced Individuals. Viruses, 2022, 14, 370.	3.3	5
818	Cryo-EM structure of the SARS-CoV-2 Omicron spike. Cell Reports, 2022, 38, 110428.	6.4	82
820	End-to-End Deep Learning Model to Predict and Design Secondary Structure Content of Structural Proteins. ACS Biomaterials Science and Engineering, 2022, 8, 1156-1165.	5.2	22
821	Structural and biochemical rationale for enhanced spike protein fitness in delta and kappa SARS-CoV-2 variants. Nature Communications, 2022, 13, 742.	12.8	71
822	A SARS-CoV-2 variant elicits an antibody response with a shifted immunodominance hierarchy. PLoS Pathogens, 2022, 18, e1010248.	4.7	48
823	A Feasible Alternative Strategy Targeting Furin Disrupts SARS-CoV-2 Infection Cycle. Microbiology Spectrum, 2022, , e0236421.	3.0	0
824	SARS-CoV-2 Omicron Spike recognition by plasma from individuals receiving BNT162b2 mRNA vaccination with a 16-week interval between doses. Cell Reports, 2022, 38, 110429.	6.4	50
826	Analytical characterization of the SARS-CoV-2 EURM-017 reference material. Clinical Biochemistry, 2022, 101, 19-25.	1.9	5
827	Development of SARS-CoV-2 variant protein microarray for profiling humoral immunity in vaccinated subjects. Biosensors and Bioelectronics, 2022, 204, 114067.	10.1	9
828	A Potent and Protective Human Neutralizing Antibody Against SARS-CoV-2 Variants. Frontiers in Immunology, 2021, 12, 766821.	4.8	15
829	SARS-CoV-2 ferritin nanoparticle vaccines elicit broad SARS coronavirus immunogenicity. Cell Reports, 2021, 37, 110143.	6.4	94
830	Structural analysis of receptor binding domain mutations in SARS-CoV-2 variants of concern that modulate ACE2 and antibody binding. Cell Reports, 2021, 37, 110156.	6.4	67
831	Rapid characterization of spike variants via mammalian cell surface display. Molecular Cell, 2021, 81, 5099-5111.e8.	9.7	32
832	Next-Generation Serology by Mass Spectrometry: Readout of the SARS-CoV-2 Antibody Repertoire. Journal of Proteome Research, 2022, 21, 274-288.	3.7	16
833	Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature, 0, , .	27.8	90
834	Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature, 0, , .	27.8	72

#	Article	IF	CITATIONS
835	Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature, 0, , .	27.8	88
836	Mechanisms of SARS-CoV-2 neutralization by shark variable new antigen receptors elucidated through X-ray crystallography. Nature Communications, 2021, 12, 7325.	12.8	22
837	Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature, 2022, 602, 657-663.	27.8	1,350
838	Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature, 2022, 602, 676-681.	27.8	1,038
839	Rapid discovery of diverse neutralizing SARS-CoV-2 antibodies from large-scale synthetic phage libraries. MAbs, 2022, 14, 2002236.	5.2	14
851	Highly synergistic combinations of nanobodies that target SARS-CoV-2 and are resistant to escape. ELife, 2021, 10, .	6.0	36
853	SARS-CoV-2 Variants Increase Kinetic Stability of Open Spike Conformations as an Evolutionary Strategy. MBio, 2022, 13, e0322721.	4.1	48
854	Identification of a Novel Neutralizing Epitope on the N-Terminal Domain of the Human Coronavirus 229E Spike Protein. Journal of Virology, 2022, 96, JVI0195521.	3.4	2
857	Therapeutic antibodies for COVID-19: is a new age of IgM, IgA and bispecific antibodies coming?. MAbs, 2022, 14, 2031483.	5.2	15
859	A SARS-CoV-2 ferritin nanoparticle vaccine elicits protective immune responses in nonhuman primates. Science Translational Medicine, 2022, 14, .	12.4	73
860	A method comparison of three immunoassays for detection of neutralizing antibodies against SARSâ€CoVâ€2 receptorâ€binding domain in individuals with adenovirus typeâ€5â€vectored COVIDâ€19 vaccin Journal of Clinical Laboratory Analysis, 2022, 36, e24306.	at ian .	2
861	An engineered bispecific human monoclonal antibody against SARS-CoV-2. Nature Immunology, 2022, 23, 423-430.	14.5	38
862	Antibody attributes that predict the neutralization and effector function of polyclonal responses to SARS-CoV-2. BMC Immunology, 2022, 23, 7.	2.2	6
864	Anti-RBD IgA and IgG Response and Transmission in Breast Milk of Anti-SARS-CoV-2 Vaccinated Mothers. Pathogens, 2022, 11, 286.	2.8	14
865	Structural and antigenic variations in the spike protein of emerging SARS-CoV-2 variants. PLoS Pathogens, 2022, 18, e1010260.	4.7	81
867	Modeling how antibody responses may determine the efficacy of COVID-19 vaccines. Nature Computational Science, 2022, 2, 123-131.	8.0	39
868	Correlates of protection via modeling. Nature Computational Science, 2022, 2, 140-141.	8.0	1
869	Antibody evasion properties of SARS-CoV-2 Omicron sublineages. Nature, 2022, 604, 553-556.	27.8	649

#	Article	IF	CITATIONS
870	Profiling of the most reliable mutations from sequenced SARS-CoV-2 genomes scattered in Uzbekistan. PLoS ONE, 2022, 17, e0266417.	2.5	7
871	Multiple SARS-CoV-2 Variants Exhibit Variable Target Cell Infectivity and Ability to Evade Antibody Neutralization. Frontiers in Immunology, 2022, 13, 836232.	4.8	15
873	Pre-existing SARS-CoV-2 immunity influences potency, breadth, and durability of the humoral response to SARS-CoV-2 vaccination. Cell Reports Medicine, 2022, 3, 100603.	6.5	27
875	Fusogenicity and neutralization sensitivity of the SARS-CoV-2 Delta sublineage AY.4.2. EBioMedicine, 2022, 77, 103934.	6.1	10
876	Antibody-dependent enhancement (ADE) of SARS-CoV-2 pseudoviral infection requires Fcl ³ RIIB and virus-antibody complex with bivalent interaction. Communications Biology, 2022, 5, 262.	4.4	26
877	Structural basis of nanobodies neutralizing SARS-CoV-2 variants. Structure, 2022, 30, 707-720.e5.	3.3	11
878	Monospecific and bispecific monoclonal SARS-CoV-2 neutralizing antibodies that maintain potency against B.1.617. Nature Communications, 2022, 13, 1638.	12.8	11
879	Impact of new variants on SARS-CoV-2 infectivity and neutralization: A molecular assessment of the alterations in the spike-host protein interactions. IScience, 2022, 25, 103939.	4.1	32
880	Antigen–Antibody Complex-Guided Exploration of the Hotspots Conferring the Immune-Escaping Ability of the SARS-CoV-2 RBD. Frontiers in Molecular Biosciences, 2022, 9, 797132.	3.5	3
882	Gene-Delivery Ability of New Hydrogenated and Partially Fluorinated Gemini bispyridinium Surfactants with Six Methylene Spacers. International Journal of Molecular Sciences, 2022, 23, 3062.	4.1	6
883	Structural basis for potent antibody neutralization of SARS-CoV-2 variants including B.1.1.529. Science, 2022, 376, eabn8897.	12.6	119
884	SARS-CoV-2: vaccinology and emerging therapeutics; challenges and future developments. Therapeutic Delivery, 2022, 13, 187-203.	2.2	8
886	Neutralizing Antibody Activity Against the B.1.617.2 (delta) Variant Before and After a Third BNT162b2 Vaccine Dose in Hemodialysis Patients. Frontiers in Immunology, 2022, 13, 840136.	4.8	15
887	Real-World Efficacy of Regdanvimab on Clinical Outcomes in Patients with Mild to Moderate COVID-19. Journal of Clinical Medicine, 2022, 11, 1412.	2.4	9
888	Better, Faster, Cheaper: Recent Advances in Cryo–Electron Microscopy. Annual Review of Biochemistry, 2022, 91, 1-32.	11.1	45
889	Serum neutralization of SARS-CoV-2 Omicron sublineages BA.1 and BA.2 in patients receiving monoclonal antibodies. Nature Medicine, 2022, 28, 1297-1302.	30.7	235
890	Neutralizing Monoclonal Antibodies Inhibit SARS-CoV-2 Infection through Blocking Membrane Fusion. Microbiology Spectrum, 2022, 10, e0181421.	3.0	9
891	Immunogenic SARS-CoV-2 S and N Protein Peptide and Cytokine Combinations as Biomarkers for Early Prediction of Fatal COVID-19. Frontiers in Immunology, 2022, 13, 830715.	4.8	5

#	Article	IF	CITATIONS
895	Anti-SARS-CoV-2 IgG and Neutralizing Antibody Levels in Patients with Past COVID-19 Infection: A Longitudinal Study. Balkan Medical Journal, 2022, , .	0.8	6
896	Epitope mapping of neutralising antiâ€SARSâ€CoVâ€2 monoclonal antibodies: Implications for immunotherapy and vaccine design. Reviews in Medical Virology, 2022, 32, e2347.	8.3	7
897	RBD trimer mRNA vaccine elicits broad and protective immune responses against SARS-CoV-2 variants. IScience, 2022, 25, 104043.	4.1	19
898	Neutralization or enhancement of SARS-CoV-2 infection by a monoclonal antibody targeting a specific epitope in the spike receptor-binding domain. Antiviral Research, 2022, 200, 105290.	4.1	3
899	Analysis of memory B cells identifies conserved neutralizing epitopes on the N-terminal domain of variant SARS-Cov-2 spike proteins. Immunity, 2022, 55, 998-1012.e8.	14.3	86
902	Mechanistic Origin of Different Binding Affinities of SARS-CoV and SARS-CoV-2 Spike RBDs to Human ACE2. Cells, 2022, 11, 1274.	4.1	8
903	Computational Insights Into the Effects of the R190K and N121Q Mutations on the SARS-CoV-2 Spike Complex With Biliverdin. Frontiers in Molecular Biosciences, 2021, 8, 791885.	3.5	4
904	Human neutralizing antibodies for SARS-CoV-2 prevention and immunotherapy. Immunotherapy Advances, 2022, 2, .	3.0	9
906	An Intranasal OMV-Based Vaccine Induces High Mucosal and Systemic Protecting Immunity Against a SARS-CoV-2 Infection. Frontiers in Immunology, 2021, 12, 781280.	4.8	61
908	Neutralizing antibody responses over time in demographically and clinically diverse individuals recovered from SARS-CoV-2 infection in the United States and Peru: A cohort study. PLoS Medicine, 2021, 18, e1003868.	8.4	20
909	Use of simplified models for theoretical prediction of the interactions between available antibodies and the receptor-binding domain of SARS-CoV-2 spike protein. Journal of Biomolecular Structure and Dynamics, 2021, , 1-10.	3.5	1
910	Monoclonal Antibodies against SARS-CoV-2: Current Scenario and Future Perspectives. Pharmaceuticals, 2021, 14, 1272.	3.8	20
911	The atomic portrait of SARSâ€CoVâ€⊋ as captured by cryoâ€electron microscopy. Journal of Cellular and Molecular Medicine, 2022, 26, 25-34.	3.6	6
912	A Stabilized, Monomeric, Receptor Binding Domain Elicits High-Titer Neutralizing Antibodies Against All SARS-CoV-2 Variants of Concern. Frontiers in Immunology, 2021, 12, 765211.	4.8	16
914	The Development of SARS-CoV-2 Variants: The Gene Makes the Disease. Journal of Developmental Biology, 2021, 9, 58.	1.7	27
915	A vesicular stomatitis virus-based prime-boost vaccination strategy induces potent and protective neutralizing antibodies against SARS-CoV-2. PLoS Pathogens, 2021, 17, e1010092.	4.7	12
917	Protective Effect of Melatonin Administration against SARS-CoV-2 Infection: A Systematic Review. Current Issues in Molecular Biology, 2022, 44, 31-45.	2.4	7
918	State-of-the-art preclinical evaluation of COVID-19 vaccine candidates. Exploration of Immunology, 0, , 440-460.	0.3	0

#	Article	IF	CITATIONS
921	Recent Developments in SARS-CoV-2 Neutralizing Antibody Detection Methods. Current Medical Science, 2021, 41, 1052-1064.	1.8	16
922	Foxp3+ CD4+ regulatory T cells control dendritic cells in inducing antigen-specific immunity to emerging SARS-CoV-2 antigens. PLoS Pathogens, 2021, 17, e1010085.	4.7	13
923	A Safe Pseudotyped Lentivirus-Based Assay to Titer SARS-CoV-2 Neutralizing Antibodies. SSRN Electronic Journal, 0, , .	0.4	0
925	Scope of SARS-CoV-2 variants, mutations, and vaccine technologies. The Egyptian Journal of Internal Medicine, 2022, 34, 34.	0.9	5
926	ChAdOx1 nCoV-19 vaccine elicits monoclonal antibodies with cross-neutralizing activity against SARS-CoV-2 viral variants. Cell Reports, 2022, 39, 110757.	6.4	10
927	Structures of Omicron spike complexes and implications for neutralizing antibody development. Cell Reports, 2022, 39, 110770.	6.4	47
929	Binding and neutralizing abilities of antibodies towards SARS-CoV-2 S2 domain. Human Vaccines and Immunotherapeutics, 2022, 18, 1-11.	3.3	2
930	Dermal Delivery of a SARS-CoV-2 Subunit Vaccine Induces Immunogenicity against Variants of Concern. Vaccines, 2022, 10, 578.	4.4	7
931	An antibody class with a common CDRH3 motif broadly neutralizes sarbecoviruses. Science Translational Medicine, 2022, 14, eabn6859.	12.4	31
932	Peptide-Based Vaccine against SARS-CoV-2: Peptide Antigen Discovery and Screening of Adjuvant Systems. Pharmaceutics, 2022, 14, 856.	4.5	4
933	Detailed analysis of antibody responses to SARS-CoV-2 vaccination and infection in macaques. PLoS Pathogens, 2022, 18, e1010155.	4.7	6
934	Structural definition of a pan-sarbecovirus neutralizing epitope on the spike S2 subunit. Communications Biology, 2022, 5, 342.	4.4	41
935	First computational design using lambda-superstrings and in vivo validation of SARS-CoV-2 vaccine. Scientific Reports, 2022, 12, 6410.	3.3	4
936	Identification of B-Cell Epitopes for Eliciting Neutralizing Antibodies against the SARS-CoV-2 Spike Protein through Bioinformatics and Monoclonal Antibody Targeting. International Journal of Molecular Sciences, 2022, 23, 4341.	4.1	11
937	Cocktail of REGN Antibodies Binds More Strongly to SARS-CoV-2 Than Its Components, but the Omicron Variant Reduces Its Neutralizing Ability. Journal of Physical Chemistry B, 2022, 126, 2812-2823.	2.6	11
945	A single intranasal dose of human parainfluenza virus type 3-vectored vaccine induces effective antibody and memory T cell response in the lungs and protects hamsters against SARS-CoV-2. Npj Vaccines, 2022, 7, 47.	6.0	6
946	Structure of a Vaccine-Induced, Germline-Encoded Human Antibody Defines a Neutralizing Epitope on the SARS-CoV-2 Spike N-Terminal Domain. MBio, 2022, 13, e0358021.	4.1	12
947	Computational approach for binding prediction of SARS-CoV-2 with neutralizing antibodies. Computational and Structural Biotechnology Journal, 2022, 20, 2212-2222.	4.1	4

#	Article	IF	CITATIONS
948	COVID-19 vaccines and coronavirus 19 variants including alpha, delta, and omicron: present status and future directions. , 0, 2, .		7
949	Passive Immunotherapy Against SARS-CoV-2: From Plasma-Based Therapy to Single Potent Antibodies in the Race to Stay Ahead of the Variants. BioDrugs, 2022, 36, 231-323.	4.6	24
950	A combination of potently neutralizing monoclonal antibodies isolated from an Indian convalescent donor protects against the SARS-CoV-2 Delta variant. PLoS Pathogens, 2022, 18, e1010465.	4.7	8
951	LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants. Cell Reports, 2022, 39, 110812.	6.4	287
952	Dealing with a mucosal viral pandemic: lessons from COVID-19 vaccines. Mucosal Immunology, 2022, 15, 584-594.	6.0	41
953	Immunouniverse of SARS-CoV-2. Immunological Medicine, 2022, 45, 186-224.	2.6	8
954	Furin and TMPRSS2 Resistant Spike Induces Robust Humoral and Cellular Immunity Against SARS-CoV-2 Lethal Infection. Frontiers in Immunology, 2022, 13, 872047.	4.8	3
955	Structural mapping of antibody landscapes to human betacoronavirus spike proteins. Science Advances, 2022, 8, eabn2911.	10.3	28
956	Long-Term Immunity and Antibody Response: Challenges for Developing Efficient COVID-19 Vaccines. Antibodies, 2022, 11, 35.	2.5	3
957	Structural insights of a highly potent pan-neutralizing SARS-CoV-2 human monoclonal antibody. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120976119.	7.1	27
958	Genetic and Structural Analysis of SARS-CoV-2 Spike Protein for Universal Epitope Selection. Molecular Biology and Evolution, 2022, 39, .	8.9	7
959	Hexamerization of Anti-SARS CoV lgC1 Antibodies Improves Neutralization Capacity. Frontiers in Immunology, 2022, 13, .	4.8	2
960	Antibody evasion of SARS-CoV-2 Omicron BA.1, BA.1.1, BA.2, and BA.3 sub-lineages. Cell Host and Microbe, 2022, 30, 1077-1083.e4.	11.0	132
961	Development and performance of a point-of-care rapid antigen test for detection of SARS-COV-2 variants. Journal of Clinical Virology Plus, 2022, 2, 100080.	1.0	3
962	Virological and Clinical Determinants of the Magnitude of Humoral Responses to SARS-CoV-2 in Mild-Symptomatic Individuals. Frontiers in Immunology, 2022, 13, 860215.	4.8	6
963	Antibody response after two doses of the BNT162b2 vaccine among healthcare workers of a Greek Covid 19 referral hospital: A prospective cohort study. Heliyon, 2022, 8, e09438.	3.2	2
964	Antibody-mediated neutralization of SARS-CoV-2. Immunity, 2022, 55, 925-944.	14.3	74
965	Immune response in COVID-19: what is next?. Cell Death and Differentiation, 2022, 29, 1107-1122.	11.2	69

#	Article	IF	CITATIONS
966	Multifaceted membrane binding head of the SARS-CoV-2 spike protein. Current Research in Structural Biology, 2022, , .	2.2	6
967	Ultrapotent and broad neutralization of SARS-CoV-2 variants by modular, tetravalent, bi-paratopic antibodies. Cell Reports, 2022, 39, 110905.	6.4	5
968	Structure-Based Development of SARS-CoV-2 Spike Interactors. International Journal of Molecular Sciences, 2022, 23, 5601.	4.1	3
969	Antibody engineering improves neutralization activity against K417 spike mutant SARS-CoV-2 variants. Cell and Bioscience, 2022, 12, 63.	4.8	4
970	Neutralizing activity to SARSâ€CoVâ€2 in 1.2 to 10.0 month convalescent plasma samples of COVIDâ€19: A transversal surrogate in vitro study performed in Quitoâ€Ecuador. Journal of Medical Virology, 2022, , .	5.0	1
971	SARS-CoV-2 humoral immune response in patients with cardiovascular risk factors: the COmmunity Cohort Study protocol. BMJ Open, 2022, 12, e061345.	1.9	2
972	A Bacterially Expressed SARS-CoV-2 Receptor Binding Domain Fused With Cross-Reacting Material 197 A-Domain Elicits High Level of Neutralizing Antibodies in Mice. Frontiers in Microbiology, 2022, 13, 854630.	3.5	3
973	Point mutations in SARS-CoV-2 variants induce long-range dynamical perturbations in neutralizing antibodies. Chemical Science, 2022, 13, 7224-7239.	7.4	6
975	The chimera of S1 and N proteins of SARS-CoV-2: can it be a potential vaccine candidate for COVID-19?. Expert Review of Vaccines, 2022, 21, 1071-1086.	4.4	3
976	Phage-like particle vaccines are highly immunogenic and protect against pathogenic coronavirus infection and disease. Npj Vaccines, 2022, 7, .	6.0	8
977	Monoclonal antibody designed for SARS-nCoV-2 spike protein of receptor binding domain on antigenic targeted epitopes for inhibition to prevent viral entry. Molecular Diversity, 2023, 27, 695-708.	3.9	3
980	Self-derived peptides from the SARS-CoV-2 spike glycoprotein disrupting shaping and stability of the homotrimer unit. Biomedicine and Pharmacotherapy, 2022, 151, 113190.	5.6	0
981	Native, engineered and de novo designed ligands targeting the SARS-CoV-2 spike protein. Biotechnology Advances, 2022, 59, 107986.	11.7	4
982	A Single Dose of the Deactivated Rabies-Virus Vectored COVID-19 Vaccine, CORAVAX, Is Highly Efficacious and Alleviates Lung Inflammation in the Hamster Model. Viruses, 2022, 14, 1126.	3.3	2
983	Protective neutralizing epitopes in SARS oVâ€2. Immunological Reviews, 2022, 310, 76-92.	6.0	23
985	Molecular probes of spike ectodomain and its subdomains for SARS-CoV-2 variants, Alpha through Omicron. PLoS ONE, 2022, 17, e0268767.	2.5	18
987	Functional properties of the spike glycoprotein of the emerging SARS-CoV-2 variant B.1.1.529. Cell Reports, 2022, 39, 110924.	6.4	20
988	Principles of SARS-CoV-2 glycosylation. Current Opinion in Structural Biology, 2022, 75, 102402.	5.7	27

#	Article	IF	CITATIONS
989	p53/NF-kB Balance in SARS-CoV-2 Infection: From OMICs, Genomics and Pharmacogenomics Insights to Tailored Therapeutic Perspectives (COVIDomics). Frontiers in Pharmacology, 0, 13, .	3.5	18
990	Longitudinal variation in SARS-CoV-2 antibody levels and emergence of viral variants: a serological analysis. Lancet Microbe, The, 2022, 3, e493-e502.	7.3	22
991	The Role of Antibodies in the Treatment of SARS-CoV-2 Virus Infection, and Evaluating Their Contribution to Antibody-Dependent Enhancement of Infection. International Journal of Molecular Sciences, 2022, 23, 6078.	4.1	4
993	SARSâ€CoVâ€2 Spike Stem Protein Nanoparticles Elicited Broad ADCC and Robust Neutralization against Variants in Mice. Small, 2022, 18, .	10.0	11
994	Omicron BA.1 breakthrough infection drives cross-variant neutralization and memory B cell formation against conserved epitopes. Science Immunology, 2022, 7, .	11.9	144
995	Development of a Rapid Live SARS-CoV-2 Neutralization Assay Based on a qPCR Readout. Journal of Clinical Microbiology, 2022, 60, .	3.9	4
996	A novel high-throughput single B-cell cloning platform for isolation and characterization of high-affinity and potent SARS-CoV-2 neutralizing antibodies. Antiviral Research, 2022, 203, 105349.	4.1	3
997	A universal DNA aptamer as an efficient inhibitor against spike-protein/hACE2 interactions. Chemical Communications, 0, , .	4.1	4
998	Development of an efficient reproducible cell-cell transmission assay for rapid quantification of SARS-CoV-2 Spike interaction with hACE2. Cell Reports Methods, 2022, , 100252.	2.9	1
1000	Omicron-specific mRNA vaccination alone and as a heterologous booster against SARS-CoV-2. Nature Communications, 2022, 13, .	12.8	40
1001	Antibodies to combat viral infections: development strategies and progress. Nature Reviews Drug Discovery, 2022, 21, 676-696.	46.4	68
1002	Potent human broadly SARS-CoV-2–neutralizing IgA and IgG antibodies effective against Omicron BA.1 and BA.2. Journal of Experimental Medicine, 2022, 219, .	8.5	34
1003	Comparison of commercial SARS-CoV-2 surrogate neutralization assays with a full virus endpoint dilution neutralization test in two different cohorts. Journal of Virological Methods, 2022, 307, 114569.	2.1	6
1004	Peptide–Antibody Fusions Engineered by Phage Display Exhibit an Ultrapotent and Broad Neutralization of SARS-CoV-2 Variants. ACS Chemical Biology, 2022, 17, 1978-1988.	3.4	7
1005	Severe acute respiratory syndrome coronavirus 2 variants–Possibility of universal vaccine design: A review. Computational and Structural Biotechnology Journal, 2022, 20, 3533-3544.	4.1	3
1006	How to Evaluate COVID-19 Vaccine Effectiveness—An Examination of Antibody Production and T-Cell Response. Diagnostics, 2022, 12, 1401.	2.6	1
1007	Production and Quality Assurance of Human Polyclonal Hyperimmune Immunoglobulins Against SARS-CoV-2. Transfusion Medicine Reviews, 2022, 36, 125-132.	2.0	8
1008	Immunogenicity and protective efficacy of SARS-CoV-2 recombinant S-protein vaccine S-268019-b in cynomolgus monkeys. Vaccine, 2022, 40, 4231-4241.	3.8	11

#	Article	IF	CITATIONS
1009	Broadly Neutralizing Antibodies Against Omicron Variants of SARS-CoV-2 Derived from mRNA-Lipid Nanoparticle-Immunized Mice. SSRN Electronic Journal, 0, , .	0.4	0
1010	The potential of developing a protective peptideâ€based vaccines against SARSâ€CoVâ€2. Drug Development Research, 0, , .	2.9	2
1011	Preâ€existing humoral immune comebacks control the development of the severe form of coronavirus disease 2019 in Gaucher patients. Clinical and Translational Discovery, 2022, 2, .	0.5	4
1014	Spatially Patterned Neutralizing Icosahedral DNA Nanocage for Efficient SARS-CoV-2 Blocking. Journal of the American Chemical Society, 2022, 144, 13146-13153.	13.7	32
1016	The humoral response and antibodies against SARS-CoV-2 infection. Nature Immunology, 2022, 23, 1008-1020.	14.5	84
1017	Diagnostica molecolare di precisione: un'unica strategia per rilevare SARS-CoV-2 e il lineage B.1.1.7. Rivista Italiana Della Medicina Di Laboratorio, 0, , .	0.4	0
1018	Assessment of neutralizing antibody responses after natural SARS-CoV-2 infection and vaccination in congolese individuals. BMC Infectious Diseases, 2022, 22, .	2.9	6
1019	Vaccine-elicited murine antibody WS6 neutralizes diverse beta-coronaviruses by recognizing a helical stem supersite of vulnerability. Structure, 2022, 30, 1233-1244.e7.	3.3	13
1020	Multiplexed LNP-mRNA vaccination against pathogenic coronavirus species. Cell Reports, 2022, 40, 111160.	6.4	9
1021	SARS-CoV-2 Omicron sublineages exhibit distinct antibody escape patterns. Cell Host and Microbe, 2022, 30, 1231-1241.e6.	11.0	55
1022	Monoclonal antibody therapies against SARS-CoV-2. Lancet Infectious Diseases, The, 2022, 22, e311-e326.	9.1	114
1024	<scp>COVID</scp> â€19 and plasma cells: Is there longâ€lived protection?*. Immunological Reviews, 2022, 309, 40-63.	6.0	26
1025	Neutralizing Antibodies Against Allosteric Proteins: Insights From a Bacterial Adhesin. Journal of Molecular Biology, 2022, 434, 167717.	4.2	3
1026	SARS-CoV-2 Epitopes following Infection and Vaccination Overlap Known Neutralizing Antibody Sites. Research, 2022, 2022, .	5.7	2
1027	Antibody levels to <scp>SARSâ€CoV</scp> â€2 spike protein in mothers and children from delivery to six months later. Birth, 2023, 50, 418-427.	2.2	5
1028	Mosaic RBD nanoparticles protect against challenge by diverse sarbecoviruses in animal models. Science, 2022, 377, .	12.6	120
1029	Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5. Nature, 2022, 608, 603-608.	27.8	541
1030	A Complementary Union of SARS-CoV2 Natural and Vaccine Induced Immune Responses. Frontiers in Immunology, 0, 13, .	4.8	8

#	Article	IF	CITATIONS
1031	COVID-19: Clinical, Immunological, and Image Findings from Infection to Post-COVID Syndrome. , 2022, , 76-98.		0
1032	The Glycan-Binding Trait of the Sarbecovirus Spike N-Terminal Domain Reveals an Evolutionary Footprint. Journal of Virology, 2022, 96, .	3.4	4
1033	Structure-selected RBM immunogens prime polyclonal memory responses that neutralize SARS-CoV-2 variants of concern. PLoS Pathogens, 2022, 18, e1010686.	4.7	2
1034	Human IgG antibody responses to severe acute respiratory syndrome coronavirus 2 viral antigens receptor-binding domain, spike, and nucleocapsid, in vaccinated adults from Merida, Mexico. Frontiers in Medicine, 0, 9, .	2.6	0
1035	Respiratory mucosal immunity against SARS-CoV-2 after mRNA vaccination. Science Immunology, 2022, 7, .	11.9	170
1037	Potent and Broad Neutralization of SARS-CoV-2 Variants of Concern (VOCs) including Omicron Sub-lineages BA.1 and BA.2 by Biparatopic Human VH Domains. IScience, 2022, , 104798.	4.1	1
1038	Decreased Levels of SARS-CoV-2 Fusion-Inhibitory Antibodies in the Serum of Aged COVID-19 Patients. Diagnostics, 2022, 12, 1813.	2.6	0
1039	Effectiveness of SARS-CoV-2 Vaccines for Short- and Long-Term Immunity: A General Overview for the Pandemic Contrast. International Journal of Molecular Sciences, 2022, 23, 8485.	4.1	6
1040	Appraisal of SARS-CoV-2 mutations and their impact on vaccination efficacy: an overview. Journal of Diabetes and Metabolic Disorders, 2022, 21, 1763-1783.	1.9	4
1041	Tracking the turnover of SARS-CoV-2 VOCs Gamma to Delta in a Brazilian state (Minas Gerais) with a high-vaccination status. Virus Evolution, 2022, 8, .	4.9	10
1042	An antibody from single human V _H -rearranging mouse neutralizes all SARS-CoV-2 variants through BA.5 by inhibiting membrane fusion. Science Immunology, 2022, 7, .	11.9	34
1044	Conformational flexibility in neutralization of SARS-CoV-2 by naturally elicited anti-SARS-CoV-2 antibodies. Communications Biology, 2022, 5, .	4.4	5
1045	Evolutionary progression of collective mutations in Omicron sub-lineages towards efficient RBD-hACE2: Allosteric communications between and within viral and human proteins. Computational and Structural Biotechnology Journal, 2022, 20, 4562-4578.	4.1	3
1046	Genomic Epidemiology and Serology Associated with a SARS-CoV-2 R.1 Variant Outbreak in New Jersey. MBio, 2022, 13, .	4.1	6
1047	Physical-Chemical Regulation of Membrane Receptors Dynamics in Viral Invasion and Immune Defense. Journal of Molecular Biology, 2023, 435, 167800.	4.2	2
1049	Antibody escape and cryptic cross-domain stabilization in the SARS-CoV-2 Omicron spike protein. Cell Host and Microbe, 2022, 30, 1242-1254.e6.	11.0	27
1050	A comprehensive analysis of the mutational landscape of the newly emerging Omicron (B.1.1.529) variant and comparison of mutations with VOCs and VOIs. GeroScience, 2022, 44, 2393-2425.	4.6	13
1053	A key F27I substitution within HCDR1 facilitates the rapid maturation of P2C-1F11-like neutralizing antibodies in a SARS-CoV-2-infected donor. Cell Reports, 2022, 40, 111335.	6.4	2

#	Article	IF	Citations
1054	SARS-CoV-2 variants of concern: spike protein mutational analysis and epitope for broad neutralization. Nature Communications, 2022, 13, .	12.8	34
1055	Functional profiling of Covid 19 vaccine candidate by flow virometry. Vaccine, 2022, 40, 5529-5536.	3.8	3
1058	Structural basis of a two-antibody cocktail exhibiting highly potent and broadly neutralizing activities against SARS-CoV-2 variants including diverse Omicron sublineages. Cell Discovery, 2022, 8, .	6.7	13
1059	Research and development of Chinese anti-COVID-19 drugs. Acta Pharmaceutica Sinica B, 2022, 12, 4271-4286.	12.0	11
1060	Converting non-neutralizing SARS-CoV-2 antibodies into broad-spectrum inhibitors. Nature Chemical Biology, 2022, 18, 1270-1276.	8.0	8
1061	Photochemical Identification of Auxiliary Severe Acute Respiratory Syndrome Coronavirus 2 Host Entry Factors Using μMap. Journal of the American Chemical Society, 2022, 144, 16604-16611.	13.7	8
1062	Humoral cross-coronavirus responses against the S2 region in children with Kawasaki disease. Virology, 2022, 575, 83-90.	2.4	1
1063	Global Biologic Characteristics of Variants of Concern and Variants of Interest of SARS-CoV-2. , 2022, , 161-181.		0
1064	Nanoluciferase-based cell fusion assay for rapid and high-throughput assessment of SARS-CoV-2-neutralizing antibodies in patient samples. Methods in Enzymology, 2022, , 351-381.	1.0	2
1065	Biophysical and structural characterizations of the effects of mutations on the structure–activity relationships of SARS-CoV-2 spike protein. Methods in Enzymology, 2022, , 299-321.	1.0	2
1066	DNA aptamers inhibit SARS-CoV-2 spike-protein binding to hACE2 by an RBD- independent or dependent approach. Theranostics, 2022, 12, 5522-5536.	10.0	13
1067	Antibody-mediated immunity to SARS-CoV-2 spike. Advances in Immunology, 2022, , 1-69.	2.2	12
1069	Efficacy and Safety of COVID-19 Vaccine in Patients on Renal Replacement Therapy. Vaccines, 2022, 10, 1395.	4.4	6
1070	Mapping monoclonal anti-SARS-CoV-2 antibody repertoires against diverse coronavirus antigens. Frontiers in Immunology, 0, 13, .	4.8	2
1071	A molecularly engineered, broad-spectrum anti-coronavirus lectin inhibits SARS-CoV-2 and MERS-CoV infection inÂvivo. Cell Reports Medicine, 2022, 3, 100774.	6.5	14
1072	Novel Regioselective Approach to Cyclize Phage-Displayed Peptides in Combination with Epitope-Directed Selection to Identify a Potent Neutralizing Macrocyclic Peptide for SARS-CoV-2. ACS Chemical Biology, 2022, 17, 2911-2922.	3.4	6
1073	Structural topological analysis of spike proteins of SARS-CoV-2 variants of concern highlight distinctive amino acid substitution patterns. European Journal of Cell Biology, 2022, 101, 151275.	3.6	4
1074	Potential of conserved antigenic sites in development of universal SARS-like coronavirus vaccines. Frontiers in Immunology, 0, 13, .	4.8	0

#	Article	IF	CITATIONS
1077	Neutralization effect of plasma from vaccinated COVID-19 convalescents on SARS-CoV-2 Omicron variants. Frontiers in Immunology, 0, 13, .	4.8	0
1078	Longitudinal Comparison of Neutralizing Antibody Responses to COVID-19 mRNA Vaccines after Second and Third Doses. Vaccines, 2022, 10, 1459.	4.4	3
1079	Network design principle for robust oscillatory behaviors with respect to biological noise. ELife, 0, 11, .	6.0	17
1080	Receptor-Binding Domain (RBD) Antibodies Contribute More to SARS-CoV-2 Neutralization When Target Cells Express High Levels of ACE2. Viruses, 2022, 14, 2061.	3.3	15
1082	Design of the SARS-CoV-2 RBD vaccine antigen improves neutralizing antibody response. Science Advances, 2022, 8, .	10.3	22
1083	Potent monoclonal antibodies neutralize Omicron sublineages and other SARS-CoV-2 variants. Cell Reports, 2022, 41, 111528.	6.4	6
1084	Particulate Matter versus Airborne Viruses—Distinctive Differences between Filtering and Inactivating Air Cleaning Technologies. Atmosphere, 2022, 13, 1575.	2.3	3
1086	A potent synthetic nanobody with broad-spectrum activity neutralizes SARS-CoV-2 virus and the Omicron variant BA.1 through a unique binding mode. Journal of Nanobiotechnology, 2022, 20, .	9.1	10
1087	Antigenic characterization of the SARS-CoV-2 Omicron subvariant BA.2.75. Cell Host and Microbe, 2022, 30, 1512-1517.e4.	11.0	73
1088	Broadly neutralizing antibodies to SARS-CoV-2 and other human coronaviruses. Nature Reviews Immunology, 2023, 23, 189-199.	22.7	112
1089	SARS-CoV-2 in immunocompromised individuals. Immunity, 2022, 55, 1779-1798.	14.3	50
1090	Dynamics of Neutralizing Antibodies and Binding Antibodies to Domains of SARS-CoV-2 Spike Protein in COVID-19 Survivors. Viral Immunology, 2022, 35, 545-552.	1.3	4
1091	Biparatopic nanobodies targeting the receptor binding domain efficiently neutralize SARS-CoV-2. IScience, 2022, 25, 105259.	4.1	4
1092	Combating the SARS-CoV-2 Omicron (BA.1) and BA.2 with potent bispecific antibodies engineered from non-Omicron neutralizing antibodies. Cell Discovery, 2022, 8, .	6.7	10
1093	Plasma, cancer, immunity. Journal Physics D: Applied Physics, 2022, 55, 473003.	2.8	8
1094	Environmental Impacts on COVID-19: Mechanisms of Increased Susceptibility. Annals of Global Health, 2022, 88, .	2.0	4
1095	A pseudovirus-based platform to measure neutralizing antibodies in Mexico using SARS-CoV-2 as proof-of-concept. Scientific Reports, 2022, 12, .	3.3	10
1096	Cell Entry and Unusual Replication of SARS-CoV-2. Current Drug Targets, 2022, 23, 1539-1554.	2.1	1

#	Article	IF	CITATIONS
1098	Isolation of SARS-CoV-2-blocking recombinant antibody fragments and characterisation of their binding to variant spike proteins. Frontiers in Nanotechnology, 0, 4, .	4.8	0
1099	Molecular analysis of a public cross-neutralizing antibody response to SARS-CoV-2. Cell Reports, 2022, 41, 111650.	6.4	12
1102	Systemic and T cellâ€associated responses to <scp>SARSâ€CoV</scp> â€2 immunisation in gut inflammation (<scp>STAR SIGN</scp> study): effects of biologics on vaccination efficacy of the third dose of <scp>mRNA</scp> vaccines against <scp>SARSâ€CoV</scp> â€2. Alimentary Pharmacology and Therapeutics, 2023, 57, 103-116.	3.7	6
1103	Virological characteristics of the SARS-CoV-2 Omicron BA.2.75 variant. Cell Host and Microbe, 2022, 30, 1540-1555.e15.	11.0	96
1104	SARS-CoV-2 spike opening dynamics and energetics reveal the individual roles of glycans and their collective impact. Communications Biology, 2022, 5, .	4.4	37
1105	Gender and age features of the formation of a humoral immune response to COVID-19 vaccination. Laboratornaya Sluzhba, 2022, 11, 17.	0.2	0
1107	In Silico Approach for the Evaluation of the Potential Antiviral Activity of Extra Virgin Olive Oil (EVOO) Bioactive Constituents Oleuropein and Oleocanthal on Spike Therapeutic Drug Target of SARS-CoV-2. Molecules, 2022, 27, 7572.	3.8	3
1108	SARS-CoV-2 neutralizing antibody response in vaccinated and non-vaccinated hospital healthcare workers with or without history of infection. Microbes and Infection, 2022, , 105077.	1.9	2
1109	Structural insights into broadly neutralizing antibodies elicited by hybrid immunity against SARS-CoV-2. Emerging Microbes and Infections, 2023, 12, .	6.5	3
1110	Structural Modeling of Adaptive Immune Responses to Infection. Methods in Molecular Biology, 2023, , 283-294.	0.9	0
1111	Understanding Molecular Actors of SARS-CoV-2 Virulence to Tackle COVID-19 Outbreak. Cells, 2022, 11, 3597.	4.1	0
1112	A variant-proof SARS-CoV-2 vaccine targeting HR1 domain in S2 subunit of spike protein. Cell Research, 2022, 32, 1068-1085.	12.0	27
1113	Multiple pathways for SARS-CoV-2 resistance to nirmatrelvir. Nature, 2023, 613, 558-564.	27.8	159
1114	Host Cell Entry and Neutralization Sensitivity of SARS-CoV-2 Lineages B.1.620 and R.1. Viruses, 2022, 14, 2475.	3.3	0
1115	ACE2 N-glycosylation modulates interactions with SARS-CoV-2 spike protein in a site-specific manner. Communications Biology, 2022, 5, .	4.4	13
1116	A receptor-binding domain-based nanoparticle vaccine elicits durable neutralizing antibody responses against SARS-CoV-2 and variants of concern. Emerging Microbes and Infections, 2023, 12, .	6.5	5
1117	Development of receptor binding domain-based double-antigen sandwich lateral flow immunoassay for the detection and evaluation of SARS-CoV-2 neutralizing antibody in clinical sera samples compared with the conventional virus neutralization test. Talanta, 2023, 255, 124200.	5.5	8
1118	A highly sensitive bead-based flow cytometric competitive binding assay to detect SARS-CoV-2 neutralizing antibody activity. Frontiers in Immunology, 0, 13, .	4.8	Ο

#	Article	IF	CITATIONS
1120	Targeting the Complement–Sphingolipid System in COVID-19 and Gaucher Diseases: Evidence for a New Treatment Strategy. International Journal of Molecular Sciences, 2022, 23, 14340.	4.1	7
1122	Simultaneous detection of antibody responses to multiple SARS-CoV-2 antigens by a Western blot serological assay. Applied Microbiology and Biotechnology, 2022, 106, 8183-8194.	3.6	0
1123	Probing the biophysical constraints of SARS-CoV-2 spike N-terminal domain using deep mutational scanning. Science Advances, 2022, 8, .	10.3	16
1124	SARS-CoV-2 Delta Variant: Interplay between Individual Mutations and Their Allosteric Synergy. Biomolecules, 2022, 12, 1742.	4.0	6
1126	How Protective are Antibodies to SARS-CoV-2, the Main Weapon of the B-Cell Response?. Stem Cell Reviews and Reports, 0, , .	3.8	2
1127	Primary exposure to SARS-CoV-2 variants elicits convergent epitope specificities, immunoglobulin V gene usage and public B cell clones. Nature Communications, 2022, 13, .	12.8	5
1129	Characterization of Systemic and Mucosal Humoral Immune Responses to an Adjuvanted Intranasal SARS-CoV-2 Protein Subunit Vaccine Candidate in Mice. Vaccines, 2023, 11, 30.	4.4	3
1130	Longitudinal age differences in humoral responses to the COVID-19 vaccine in the elderly are lost after the third dose. Journal of Infection, 2022, , .	3.3	4
1131	The impact of pre-existing cross-reactive immunity on SARS-CoV-2 infection and vaccine responses. Nature Reviews Immunology, 2023, 23, 304-316.	22.7	56
1132	Isolation of Bat Sarbecoviruses, Japan. Emerging Infectious Diseases, 2022, 28, 2500-2503.	4.3	9
1133	Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell, 2023, 186, 279-286.e8.	28.9	455
1134	Identification and mechanistic basis of non-ACE2 blocking neutralizing antibodies from COVID-19 patients with deep RNA sequencing and molecular dynamics simulations. Frontiers in Molecular Biosciences, 0, 9, .	3.5	2
1135	Understanding the challenges to COVID-19 vaccines and treatment options, herd immunity and probability of reinfection. Journal of Taibah University Medical Sciences, 2023, 18, 600-638.	0.9	1
1136	Cross-Clade Memory Immunity in Adults Following SARS-CoV-1 Infection in 2003. JAMA Network Open, 2022, 5, e2247723.	5.9	0
1137	Neutralizing and enhancing antibodies against SARS-CoV-2. Inflammation and Regeneration, 2022, 42, .	3.7	6
1138	Cross-reaction of current available SARS-CoV-2 MAbs against the pangolin-origin coronavirus GX/P2V/2017. Cell Reports, 2022, 41, 111831.	6.4	2
1139	COVID-19 Vaccines, Effectiveness, and Immune Responses. International Journal of Molecular Sciences, 2022, 23, 15415.	4.1	9
1140	Development and Characterization of Phage-Display-Derived Novel Human Monoclonal Antibodies against the Receptor Binding Domain of SARS-CoV-2. Biomedicines, 2022, 10, 3274.	3.2	5

#	Article	IF	CITATIONS
1141	Computational epitope mapping of class I fusion proteins using low complexity supervised learning methods. PLoS Computational Biology, 2022, 18, e1010230.	3.2	1
1142	Longitudinal Characterization of a Neutralizing and Total Antibody Response in Patients with Severe COVID-19 and Fatal Outcomes. Vaccines, 2022, 10, 2063.	4.4	1
1143	The Development of Pharmacophore Models for the Search of New Natural Inhibitors of SARS-CoV-2 Spike RBD–ACE2 Binding Interface. Molecules, 2022, 27, 8938.	3.8	0
1144	Insight into free energy and dynamic cross-correlations of residue for binding affinity of antibody and receptor binding domain SARS-CoV-2. Heliyon, 2023, 9, e12667.	3.2	0
1145	Structural analysis of receptor engagement and antigenic drift within the BA.2 spike protein. Cell Reports, 2023, 42, 111964.	6.4	9
1146	Expanding repertoire of SARS-CoV-2 deletion mutations contributes to evolution of highly transmissible variants. Scientific Reports, 2023, 13, .	3.3	3
1147	A Review of the Currently Available Antibody Therapy for the Treatment of Coronavirus Disease 2019 (COVID-19). Antibodies, 2023, 12, 5.	2.5	15
1148	The rapid and highly parallel identification of antibodies with defined biological activities by SLISY. Nature Communications, 2023, 14, .	12.8	1
1149	From Immunogen to COVID-19 vaccines: Prospects for the post-pandemic era. Biomedicine and Pharmacotherapy, 2023, 158, 114208.	5.6	9
1150	Genomic Epidemiology of the SARS-CoV-2 Epidemic in Cyprus from November 2020 to October 2021: The Passage of Waves of Alpha and Delta Variants of Concern. Viruses, 2023, 15, 108.	3.3	3
1151	Mosaic RBD nanoparticles induce intergenus cross-reactive antibodies and protect against SARS-CoV-2 challenge. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	9
1152	Tracking of Mutational Signature of SARS-CoV-2 Omicron on Distinct Continents and Little Difference was Found. Viruses, 2023, 15, 321.	3.3	0
1153	Detection of Circulating SARS-CoV-2 Variants of Concern (VOCs) Using a Multiallelic Spectral Genotyping Assay. Life, 2023, 13, 304.	2.4	3
1154	Protective roles and protective mechanisms of neutralizing antibodies against SARS-CoV-2 infection and their potential clinical implications. Frontiers in Immunology, 0, 14, .	4.8	14
1155	Structural basis for a conserved neutralization epitope on the receptor-binding domain of SARS-CoV-2. Nature Communications, 2023, 14, .	12.8	8
1156	Functional nucleic acids as potent therapeutics against SARS-CoV-2 infection. Cell Reports Physical Science, 2023, , 101249.	5.6	1
1157	Electrostatic Surface Potential as a Key Parameter in Virus Transmission and Evolution: How to Manage Future Virus Pandemics in the Post-COVID-19 Era. Viruses, 2023, 15, 284.	3.3	10
1158	State of the art in epitope mapping and opportunities in COVID-19. Future Science OA, 2023, 9, .	1.9	4

#	Article	IF	CITATIONS
1160	SARS-CoV-2 omicron variants are susceptible in vitro to Artemisia annua hot water extracts. Journal of Ethnopharmacology, 2023, 308, 116291.	4.1	8
1161	Baculovirus-expressed self-assembling SARS-CoV-2 nanoparticle vaccines targeting the S protein induce protective immunity in mice. Process Biochemistry, 2023, 129, 200-208.	3.7	1
1162	Azido-Ceramides, a Tool to Analyse SARS-CoV-2 Replication and Inhibition—SARS-CoV-2 Is Inhibited by Ceramides. International Journal of Molecular Sciences, 2023, 24, 7281.	4.1	1
1164	High-throughput saturation mutagenesis generates a high-affinity antibody against SARS-CoV-2 variants using protein surface display assay on a human cell. PLoS Pathogens, 2023, 19, e1011119.	4.7	2
1165	The Role of Cyclodextrins in COVID-19 Therapy—A Literature Review. International Journal of Molecular Sciences, 2023, 24, 2974.	4.1	8
1166	Computational design of candidate multi-epitope vaccine against SARS-CoV-2 targeting structural (S) Tj ETQq1 1 Dynamics, 2023, 41, 13348-13367.	0.784314 3.5	rgBT /Over 4
1169	Towards Quantum-Chemical Level Calculations of SARS-CoV-2 Spike Protein Variants of Concern by First Principles Density Functional Theory. Biomedicines, 2023, 11, 517.	3.2	4
1170	Profiling Humoral Immunity After Mixing and Matching COVID-19 Vaccines Using SARS-CoV-2 Variant Proteomics, 2023, 22, 100507.	3.8	4
1171	A pseudovirus system enables deep mutational scanning of the full SARS-CoV-2 spike. Cell, 2023, 186, 1263-1278.e20.	28.9	54
1173	Development of neutralizing antibodies against SARS-CoV-2, using a high-throughput single-B-cell cloning method. Antibody Therapeutics, 2023, 6, 76-86.	1.9	0
1174	Computational pipeline provides mechanistic understanding of Omicron variant of concern neutralizing engineered ACE2 receptor traps. Structure, 2023, 31, 253-264.e6.	3.3	3
1175	Impact of BNT162b2 Booster Dose on SARS-CoV-2 Anti-Trimeric Spike Antibody Dynamics in a Large Cohort of Italian Health Care Workers. Vaccines, 2023, 11, 463.	4.4	3
1176	Potent Therapeutic Strategies for COVID-19 with Single-Domain Antibody Immunoliposomes Neutralizing SARS-CoV-2 and Lip/cGAMP Enhancing Protective Immunity. International Journal of Molecular Sciences, 2023, 24, 4068.	4.1	6
1177	OligoBinders: Bioengineered Soluble Amyloid-like Nanoparticles to Bind and Neutralize SARS-CoV-2. ACS Applied Materials & Interfaces, 2023, 15, 11444-11457.	8.0	2
1178	Pilot Study Results on Antibodies to the S- and N-Proteins of SARS-CoV-2 in Paired Sera from COVID-19 Patients with Varying Severity. Antibodies, 2023, 12, 19.	2.5	0
1179	SARS-CoV-2 versus Influenza A Virus: Characteristics and Co-Treatments. Microorganisms, 2023, 11, 580.	3.6	1
1180	Design of a stabilized RBD enables potently neutralizing SARS-CoV-2 single-component nanoparticle vaccines. Cell Reports, 2023, 42, 112266.	6.4	6
1181	Variants of SARS-CoV-2: Influences on the Vaccines' Effectiveness and Possible Strategies to Overcome Their Consequences. Medicina (Lithuania), 2023, 59, 507.	2.0	5

#	Article	IF	CITATIONS
1182	Changes in serum-neutralizing antibody potency and breadth post-SARS-CoV-2 mRNA vaccine boost. IScience, 2023, 26, 106345.	4.1	3
1183	Frequent use of IGHV3-30-3 in SARS-CoV-2 neutralizing antibody responses. Frontiers in Virology, 0, 3, .	1.4	0
1186	Infection with wild-type SARS-CoV-2 elicits broadly neutralizing and protective antibodies against omicron subvariants. Nature Immunology, 2023, 24, 690-699.	14.5	16
1187	Structural dynamics in the evolution of SARS-CoV-2 spike glycoprotein. Nature Communications, 2023, 14, .	12.8	21
1188	Distinct in vitro and in vivo neutralization profiles of monoclonal antibodies elicited by the receptor binding domain of the ancestral SARS oVâ€2. Journal of Medical Virology, 2023, 95, .	5.0	1
1191	Receptors and Cofactors That Contribute to SARS-CoV-2 Entry: Can Skin Be an Alternative Route of Entry?. International Journal of Molecular Sciences, 2023, 24, 6253.	4.1	3
1192	Identification of Potential Lead Compounds Targeting Novel Druggable Cavity of SARS-CoV-2 Spike Trimer by Molecular Dynamics Simulations. International Journal of Molecular Sciences, 2023, 24, 6281.	4.1	3
1193	Elicitation of potent neutralizing antibodies in obese mice by ISA 51-adjuvanted SARS-CoV-2 spike RBD-Fc vaccine. Applied Microbiology and Biotechnology, 2023, 107, 2983-2995.	3.6	1
1194	Fc-mediated pan-sarbecovirus protection after alphavirus vector vaccination. Cell Reports, 2023, 42, 112326.	6.4	13
1195	Potent NTD-Targeting Neutralizing Antibodies against SARS-CoV-2 Selected from a Synthetic Immune System. Vaccines, 2023, 11, 771.	4.4	4
1196	Rational strategies for enhancing mAb binding to SARS-CoV-2 variants through CDR diversification and antibody-escape prediction. Frontiers in Immunology, 0, 14, .	4.8	1
1197	Modular adjuvant-free pan-HLA-DR-immunotargeting subunit vaccine against SARS-CoV-2 elicits broad sarbecovirus-neutralizing antibody responses. Cell Reports, 2023, 42, 112391.	6.4	1
1198	Evolving Real-World Effectiveness of Monoclonal Antibodies for Treatment of COVID-19. Annals of Internal Medicine, 2023, 176, 496-504.	3.9	16
1199	Comprehensive structural analysis reveals broad-spectrum neutralizing antibodies against SARS-CoV-2 Omicron variants. Cell Discovery, 2023, 9, .	6.7	2
1200	Vaccine Basics and the Development and Rollout of COVID-19 Vaccines. , 2024, , 326-348.		0
1201	High-throughput identification of prefusion-stabilizing mutations in SARS-CoV-2 spike. Nature Communications, 2023, 14, .	12.8	12
1203	Structural basis of spike RBM-specific human antibodies counteracting broad SARS-CoV-2 variants. Communications Biology, 2023, 6, .	4.4	0
1204	A SARS-CoV-2 Vaccine Designed for Manufacturability Results in Unexpected Potency and Non-Waning Humoral Response. Vaccines, 2023, 11, 832.	4.4	1

#	Article	IF	CITATIONS
1205	Longitudinal Variations in Antibody Responses against SARS-CoV-2 Spike Epitopes upon Serial Vaccinations. International Journal of Molecular Sciences, 2023, 24, 7292.	4.1	2
1206	An update on lateral flow immunoassay for the rapid detection of SARS-CoV-2 antibodies. AIMS Microbiology, 2023, 9, 375-401.	2.2	4
1207	Inactivated vaccine-elicited potent antibodies can broadly neutralize SARS-CoV-2 circulating variants. Nature Communications, 2023, 14, .	12.8	12
1208	SARS-CoV-2: Immunity, Challenges with Current Vaccines, and a Novel Perspective on Mucosal Vaccines. Vaccines, 2023, 11, 849.	4.4	12
1209	Broadly neutralizing antibodies against Omicron variants of SARS-CoV-2 derived from mRNA-lipid nanoparticle-immunized mice. Heliyon, 2023, 9, e15587.	3.2	1
1210	Interim analysis of a phase 1 randomized clinical trial on the safety and immunogenicity of the mRNA-1283 SARS-CoV-2 vaccine in adults. Human Vaccines and Immunotherapeutics, 2023, 19, .	3.3	2
1211	Chemico-Physical Properties of Some 1,1â€2-Bis-alkyl-2,2â€2-hexane-1,6-diyl-bispyridinium Chlorides Hydrogenated and Partially Fluorinated for Gene Delivery. Molecules, 2023, 28, 3585.	3.8	0
1212	Immunogenicity and protective efficacy of SARS-CoV-2 mRNA vaccine encoding secreted non-stabilized spike in female mice. Nature Communications, 2023, 14, .	12.8	7
1213	An optimized thermodynamics integration protocol for identifying beneficial mutations in antibody design. Frontiers in Immunology, 0, 14, .	4.8	0
1215	Impaired potency of neutralizing antibodies against cell–cell fusion mediated by SARS-CoV-2. Emerging Microbes and Infections, 2023, 12, .	6.5	1
1216	Diagnostics and analysis of SARS-CoV-2: current status, recent advances, challenges and perspectives. Chemical Science, 2023, 14, 6149-6206.	7.4	12
1217	Lectin Fingerprinting Distinguishes Antibody Neutralization in SARS-CoV-2. ACS Central Science, 2023, 9, 947-956.	11.3	1
1218	Research progress in methods for detecting neutralizing antibodies against SARS-CoV-2. Analytical Biochemistry, 2023, 673, 115199.	2.4	5
1219	Identification of broad, potent antibodies to functionally constrained regions of SARS-CoV-2 spike following a breakthrough infection. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	9
1220	Multi-omics for COVID-19: driving development of therapeutics and vaccines. National Science Review, 2023, 10, .	9.5	2
1221	Large-scale antibody immune response mapping of splenic B cells and bone marrow plasma cells in a transgenic mouse model. Frontiers in Immunology, 0, 14, .	4.8	3
1222	Broadly neutralizing antibodies against COVID-19. Current Opinion in Virology, 2023, 61, 101332.	5.4	12
1223	Identification of key mutations responsible for the enhancement of receptor-binding affinity and immune escape of SARS-CoV-2 Omicron variant. Journal of Molecular Graphics and Modelling, 2023, 124, 108540.	2.4	4

#	Article	IF	CITATIONS
1224	Multidimensional futuristic approaches to address the pandemics beyond COVID-19. Heliyon, 2023, 9, e17148.	3.2	3
1225	Immunogenicity and efficacy of a novel multi-patch SARS-CoV-2/COVID-19 vaccine candidate. Frontiers in Immunology, 0, 14, .	4.8	1
1226	Evolutionary implications of SARS-CoV-2 vaccination for the future design of vaccination strategies. Communications Medicine, 2023, 3, .	4.2	7
1227	Long-lasting neutralizing antibodies and T cell response after the third dose of mRNA anti-SARS-CoV-2 vaccine in multiple sclerosis. Frontiers in Immunology, 0, 14, .	4.8	1
1228	Evolution of Sequence and Structure of SARS-CoV-2 Spike Protein: A Dynamic Perspective. ACS Omega, 0, , .	3.5	1
1229	Antibodies Capable of Enhancing SARS-CoV-2 Infection Can Circulate in Patients with Severe COVID-19. International Journal of Molecular Sciences, 2023, 24, 10799.	4.1	0
1230	The quantity and quality of anti-SARS-CoV-2 antibodies show contrariwise association with COVID-19 severity: lessons learned from IgG avidity. Medical Microbiology and Immunology, 2023, 212, 203-220.	4.8	1
1231	Convergence of immune escape strategies highlights plasticity of SARS-CoV-2 spike. PLoS Pathogens, 2023, 19, e1011308.	4.7	4
1233	The Screening of Broadly Neutralizing Antibodies Targeting the SARS-CoV-2 Spike Protein by mRNA Immunization in Mice. Pharmaceutics, 2023, 15, 1412.	4.5	0
1234	Topological data analysis of antibody dynamics of severe and non-severe patients with COVID-19. Mathematical Biosciences, 2023, 361, 109011.	1.9	0
1237	Enhanced stability of the SARS CoV-2 spike glycoprotein following modification of an alanine cavity in the protein core. PLoS Pathogens, 2023, 19, e1010981.	4.7	3
1238	Development of a Cost-Effective Process for the Heterologous Production of SARS-CoV-2 Spike Receptor Binding Domain Using Pichia pastoris in Stirred-Tank Bioreactor. Fermentation, 2023, 9, 497.	3.0	2
1239	A multi-specific, multi-affinity antibody platform neutralizes sarbecoviruses and confers protection against SARS-CoV-2 in vivo. Science Translational Medicine, 2023, 15, .	12.4	1
1240	Infectivity-enhancing antibodies against SARS-CoV-2. Uirusu, 2021, 71, 169-174.	0.1	0
1241	Novel neutralizing mouse-human chimeric monoclonal antibodies against the SARS-CoV-2 receptor binding domain. Journal of Medical Microbiology, 2023, 72, .	1.8	0
1242	Exploring the future of SARS-CoV-2 treatment after the first two years of the pandemic: A comparative study of alternative therapeutics. Biomedicine and Pharmacotherapy, 2023, 165, 115099.	5.6	2
1243	A rapid cell-free expression and screening platform for antibody discovery. Nature Communications, 2023, 14, .	12.8	2
1244	Structure basis of two nanobodies neutralizing SARS-CoV-2 Omicron variant by targeting ultra-conservative epitopes. Journal of Structural Biology, 2023, 215, 107996.	2.8	0

#	Article	IF	CITATIONS
1245	A design strategy to generate a SARSâ€CoVâ€2 RBD vaccine that abrogates ACE2 binding and improves neutralizing antibody responses. European Journal of Immunology, 2023, 53, .	2.9	2
1246	SARS-CoV-2 Serological Investigation of White-Tailed Deer in Northeastern Ohio. Viruses, 2023, 15, 1603.	3.3	0
1247	Potent antibodies against immune invasive SARS-CoV-2 Omicron subvariants. International Journal of Biological Macromolecules, 2023, 249, 125997.	7.5	0
1248	Potent pan huACE2-dependent sarbecovirus neutralizing monoclonal antibodies isolated from a BNT162b2-vaccinated SARS survivor. Science Advances, 2023, 9, .	10.3	2
1249	Cryo-EM and cryo-ET of the spike, virion, and antibody neutralization of SARS-CoV-2 and VOCs. Current Opinion in Structural Biology, 2023, 82, 102664.	5.7	1
1250	Evaluation of virus-neutralizing antibody level after novel coronavirus infection COVID-19: development of an instant assay assessing protective antibodies using a pseudovirus-based reaction. Russian Journal of Infection and Immunity, 2023, 13, 457-468.	0.7	0
1251	Profiling humoral responses to COVID-19 immunization in Kawasaki disease using SARS-CoV-2 variant protein microarrays. Analyst, The, 0, , .	3.5	1
1252	Current state-of-the-art and potential future therapeutic drugs against COVID-19. Frontiers in Cell and Developmental Biology, 0, 11, .	3.7	2
1254	Engineering Materials and Devices for the Prevention, Diagnosis, and Treatment of COVID-19 and Infectious Diseases. Nanomaterials, 2023, 13, 2455.	4.1	0
1255	Clinical characteristics, management, and prevention of coronavirus disease 2019. Frigid Zone Medicine, 2023, 3, 134-160.	0.3	0
1256	Engineered clinical-grade mesenchymal stromal cells combating SARS-CoV-2 omicron variants by secreting effective neutralizing antibodies. Cell and Bioscience, 2023, 13, .	4.8	1
1257	A Comprehensive Analysis of Structural and Functional Changes Induced by SARS-CoV-2 Spike Protein Mutations. Covid, 2023, 3, 1454-1472.	1.5	2
1258	Unraveling the Dynamics of Omicron (BA.1, BA.2, and BA.5) Waves and Emergence of the Deltacron Variant: Genomic Epidemiology of the SARS-CoV-2 Epidemic in Cyprus (Oct 2021–Oct 2022). Viruses, 2023, 15, 1933.	3.3	1
1259	Function and Cryo-EM structures of broadly potent bispecific antibodies against multiple SARS-CoV-2 Omicron sublineages. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	2
1260	A Candidate DNA Vaccine Encoding the Native SARS-CoV-2 Spike Protein Induces Anti-Subdomain 1 Antibodies. Vaccines, 2023, 11, 1451.	4.4	1
1261	In silico prediction of immune-escaping hot spots for future COVID-19 vaccine design. Scientific Reports, 2023, 13, .	3.3	0
1263	Novel B-Cell Epitopes of Non-Neutralizing Antibodies in the Receptor-Binding Domain of the SARS-CoV-2 S-Protein with Different Effects on the Severity of COVID-19. Biochemistry (Moscow), 2023, 88, 1205-1214.	1.5	0
1264	The smallest functional antibody fragment: Ultralong CDR H3 antibody knob regions potently neutralize SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	2

#	Article	IF	CITATIONS
1265	Characteristics of epitope dominance pattern and cross-variant neutralisation in 16 SARS-CoV-2 mRNA vaccine sera. Vaccine, 2023, 41, 6248-6254.	3.8	0
1266	Antigenicity and receptor affinity of SARS-CoV-2 BA.2.86 spike. Nature, 2023, 624, 639-644.	27.8	41
1267	SARS-CoV-2 Spike protein peptides displayed in the Pyrococcus furiosus RAD system preserve epitopes antigenicity, immunogenicity, and virus-neutralizing activity of antibodies. Scientific Reports, 2023, 13, .	3.3	1
1268	Broadly neutralizing humanized SARS-CoV-2 antibody binds to a conserved epitope on Spike and provides antiviral protection through inhalation-based delivery in non-human primates. PLoS Pathogens, 2023, 19, e1011532.	4.7	2
1270	An overview of protein-based SARS-CoV-2 vaccines. Vaccine, 2023, 41, 6174-6193.	3.8	0
1271	Unleashing the power of shark variable single domains (VNARs): broadly neutralizing tools for combating SARS-CoV-2. Frontiers in Immunology, 0, 14, .	4.8	0
1274	Antibodies targeting a quaternary site on SARS-CoV-2 spike glycoprotein prevent viral receptor engagement by conformational locking. Immunity, 2023, 56, 2442-2455.e8.	14.3	2
1275	Comparative Study of the Mutations Observed in the SARS-CoV-2 RBD Variants of Concern and Their Impact on the Interaction with the ACE2 Protein. Journal of Physical Chemistry B, 2023, 127, 8586-8602.	2.6	2
1277	RBD-specific single-chain antibody protects against acute lung injury in mice. International Immunopharmacology, 2023, 124, 111020.	3.8	0
1280	Recombinant rotavirus expressing the glycosylated S1 protein of SARS-CoV-2. Journal of General Virology, 2023, 104, .	2.9	2
1281	Rapid, high throughput, automated detection of SARS-CoV-2 neutralizing antibodies against Wuhan-WT, delta and omicron BA1, BA2 spike trimers. IScience, 2023, 26, 108256.	4.1	0
1282	Evolving antibody evasion and receptor affinity of the Omicron BA.2.75 sublineage of SARS-CoV-2. IScience, 2023, 26, 108254.	4.1	5
1283	Mutations in S2 subunit of SARS-CoV-2 Omicron spike strongly influence its conformation, fusogenicity, and neutralization sensitivity. Journal of Virology, 2023, 97, .	3.4	3
1285	Vaccine-induced SARS-CoV-2 antibody response: the comparability of S1-specific binding assays depends on epitope and isotype discrimination. Frontiers in Immunology, 0, 14, .	4.8	0
1286	Effects of N-glycan modifications on spike expression, virus infectivity, and neutralization sensitivity in ancestral compared to Omicron SARS-CoV-2 variants. PLoS Pathogens, 2023, 19, e1011788.	4.7	1
1287	Cell-based passive immunization for protection against SARS-CoV-2 infection. Stem Cell Research and Therapy, 2023, 14, .	5.5	0
1288	Potential and risks of nanotechnology applications in COVID-19-related strategies for pandemic control. Journal of Nanoparticle Research, 2023, 25, .	1.9	0
1289	Evolutionary trajectory of SARS-CoV-2 genome shifts during widespread vaccination and emergence of Omicron variant. , 2023, 1, .		1

#	Article	IF	CITATIONS
1290	Cryptic-site-specific antibodies to the SARS-CoV-2 receptor binding domain can retain functional binding affinity to spike variants. Journal of Virology, 0, , .	3.4	0
1291	Deep immunological imprinting due to the ancestral spike in the current bivalent COVID-19 vaccine. Cell Reports Medicine, 2023, 4, 101258.	6.5	4
1292	Antibodyâ€mediated <scp>SARSâ€CoV</scp> â€2 entry in cultured cells. EMBO Reports, 2023, 24, .	4.5	0
1293	Dissecting the intricacies of human antibody responses to SARS-CoV-1 and SARS-CoV-2 infection. Immunity, 2023, 56, 2635-2649.e6.	14.3	3
1294	SARS-CoV-2 antibodies from children exhibit broad neutralization and belong to adult public clonotypes. Cell Reports Medicine, 2023, 4, 101267.	6.5	1
1297	Evolution of the SARS-CoV-2 Omicron spike. Cell Reports, 2023, 42, 113444.	6.4	3
1298	Monoglycosylated SARS-CoV-2 receptor binding domain fused with HAstem-scaffolded protein vaccine confers broad protective immunity against SARS-CoV-2 and influenza viruses. Antiviral Research, 2023, 220, 105759.	4.1	0
1299	Nanomedicine approaches against SARS-CoV-2 and variants. Journal of Controlled Release, 2024, 365, 101-111.	9.9	1
1300	Enhanced neutralization of SARS-CoV-2 variant BA.2.86 and XBB sub-lineages by a tetravalent COVID-19 vaccine booster. Cell Host and Microbe, 2023, , .	11.0	2
1301	Somatic hypermutation introduces bystander mutations that prepare SARS-CoV-2 antibodies for emerging variants. Immunity, 2023, 56, 2803-2815.e6.	14.3	2
1302	The role of <i>N</i> -glycosylation in spike antigenicity for the SARS-CoV-2 gamma variant. Glycobiology, 2024, 34, .	2.5	0
1303	Surrogate Virus Neutralisation Test Based on Nanoluciferase-Tagged Antigens to Quantify Inhibitory Antibodies against SARS-CoV-2 and Characterise Omicron-Specific Reactivity in a Vaccination Cohort. Vaccines, 2023, 11, 1832.	4.4	1
1305	A broadly reactive antibody targeting the N-terminal domain of SARS-CoV-2 spike confers Fc-mediated protection. Cell Reports Medicine, 2023, 4, 101305.	6.5	1
1306	Development of automated microfluidic immunoassays for the detection of SARS-CoV-2 antibodies and antigen. Journal of Immunological Methods, 2024, 524, 113586.	1.4	0
1307	Approaches to Improve the Immunogenicity of Plasmid DNA-Based Vaccines against COVID-19. , 0, , .		0
1308	Unraveling viral drug targets: a deep learning-based approach for the identification of potential binding sites. Briefings in Bioinformatics, 2023, 25, .	6.5	0
1309	Cross-Reactivity of Human, Wild Boar, and Farm Animal Sera from Pre- and Post-Pandemic Periods with Î [·] Ipha- and Î'eta-Coronaviruses (CoV), Including SARS-CoV-2. Viruses, 2024, 16, 34.	3.3	1
1310	Diverse array of neutralizing antibodies elicited upon Spike Ferritin Nanoparticle vaccination in rhesus macaques. Nature Communications, 2024, 15, .	12.8	3

#	Article	IF	CITATIONS
1311	A comprehensive review on immunogen and immune-response proteins of SARS-CoV-2 and their applications in prevention, diagnosis, and treatment of COVID-19. International Journal of Biological Macromolecules, 2024, 259, 129284.	7.5	0
1312	SARS-CoV-2 biology and host interactions. Nature Reviews Microbiology, 2024, 22, 206-225.	28.6	1
1313	The role of nutritional support with probiotics in outpatients with symptomatic acute respiratory tract infections: a multicenter, randomized, double-blind, placebo-controlled dietary study. BMC Nutrition, 2024, 10, .	1.6	0
1317	SARS-CoV-2 infection causes dopaminergic neuron senescence. Cell Stem Cell, 2024, 31, 196-211.e6.	11.1	5
1318	COVID-19 therapy directed against pathogenic mechanisms of severe acute respiratory syndrome coronavirus 2. , 2024, , 2697-2726.		0
1320	Recombinant neutralizing secretory IgA antibodies for preventing mucosal acquisition and transmission of SARS-CoV-2. Molecular Therapy, 2024, 32, 689-703.	8.2	1
1321	Development of SARS-CoV-2 entry antivirals. , 2024, 3, 100144.		0
1322	Mammalian Antigen Display for Pandemic Countermeasures. Methods in Molecular Biology, 2024, , 191-216.	0.9	0
1324	Potent and broadly neutralizing antibodies against sarbecoviruses induced by sequential COVID-19 vaccination. Cell Discovery, 2024, 10, .	6.7	0
1325	Novel neutralizing SARS-CoV-2-specific mAbs offer detection of RBD linear epitopes. Virology Journal, 2024, 21, .	3.4	0
1326	Engineering a "mucoâ€trapping― <scp>ACE2</scp> â€immunoglobulin hybrid with picomolar affinity as an inhaled, panâ€variant immunotherapy for <scp>COVID</scp> â€19. Bioengineering and Translational Medicine, 0, , .	7.1	0
1327	Next-generation treatments: Immunotherapy and advanced therapies for COVID-19. Heliyon, 2024, 10, e26423.	3.2	0
1328	Antigen-Heterologous Vaccination Regimen Triggers Alternate Antibody Targeting in SARS-CoV-2-DNA-Vaccinated Mice. Vaccines, 2024, 12, 218.	4.4	0
1329	Antiviral Protein–Protein Interaction Inhibitors. Journal of Medicinal Chemistry, 2024, 67, 3205-3231.	6.4	0
1330	Immune Epitopes of SARS-CoV-2 Spike Protein and Considerations for Universal Vaccine Development. ImmunoHorizons, 2024, 8, 214-226.	1.8	0
1331	Fast-Track Discovery of SARS-CoV-2-Neutralizing Antibodies from Human B Cells by Direct Functional Screening. Viruses, 2024, 16, 339.	3.3	0
1332	Leveraging Nanotechnology for Addressing COVID-19: Revealing Antiviral Approaches and Hurdles. World Journal of Nano Science and Engineering, 2024, 14, 1-14.	0.3	0
1333	Nâ€glycosylation of the SARSâ€CoVâ€2 spike protein at Asn331 and Asn343 is involved in spikeâ€ACE2 binding, virus entry, and regulation of ILâ€6. Microbiology and Immunology, 2024, 68, 165-178.	1.4	0

		ATION REPORT			
#	Article	IF	CITATIONS		
1334	The receptor binding domain of SARS-CoV-2 Omicron subvariants targets Siglec-9 to decrease its immunogenicity by preventing macrophage phagocytosis. Nature Immunology, 2024, 25, 622-632.	14.5	0		
1335	Exploring cell-free assays for COVID-19 serosurvey. Scientific Reports, 2024, 14, .	3.3	Ο		
1336	Allosteric pathways of <scp>SARS</scp> and <scp>SARSâ€CoV</scp> â€2 spike protein identified by no relational inference. Proteins: Structure, Function and Bioinformatics, 0, , .	eural 2.6	0		