Realizing high zinc reversibility in rechargeable batterie

Nature Energy 5, 743-749 DOI: 10.1038/s41560-020-0674-x

Citation Report

#	Article	IF	CITATIONS
1	Phase Diagram and Conductivity of Zn(TFSI) ₂ –H ₂ O Electrolytes. Journal of Physical Chemistry C, 2020, 124, 25249-25253.	1.5	9
2	Potentiodynamics of the Zinc and Proton Storage in Disordered Sodium Vanadate for Aqueous Zn-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 54627-54636.	4.0	46
3	Strategies for the Stabilization of Zn Metal Anodes for Zn″on Batteries. Advanced Energy Materials, 2021, 11, .	10.2	431
4	Highly reversible and dendrite-free Zn electrodeposition enabled by a thin metallic interfacial layer in aqueous batteries. Chemical Engineering Journal, 2021, 416, 128062.	6.6	75
5	Innovative zinc-based batteries. Journal of Power Sources, 2021, 484, 229309.	4.0	70
6	Zn electrode/electrolyte interfaces of Zn batteries: A mini review. Electrochemistry Communications, 2021, 122, 106898.	2.3	57
7	The effect of Ti3AlC2 MAX phase synthetic history on the structure and electrochemical properties of resultant Ti3C2 MXenes. Materials and Design, 2021, 199, 109403.	3.3	42
8	Computational Screening of the Physical Properties of Waterâ€inâ€Salt Electrolytes**. Batteries and Supercaps, 2021, 4, 646-652.	2.4	19
9	High-performance aqueous Zn–MnO ₂ batteries enabled by the coupling engineering of K ⁺ pre-intercalation and oxygen defects. Journal of Materials Chemistry A, 2021, 9, 15637-15647.	5.2	46
10	An in-depth insight of a highly reversible and dendrite-free Zn metal anode in an hybrid electrolyte. Journal of Materials Chemistry A, 2021, 9, 4253-4261.	5.2	67
11	Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures. Energy and Environmental Science, 2021, 14, 3492-3501.	15.6	152
12	Assessment and progress of polyanionic cathodes in aqueous sodium batteries. Energy and Environmental Science, 2021, 14, 5788-5800.	15.6	39
13	Emerging trends in anion storage materials for the capacitive and hybrid energy storage and beyond. Chemical Society Reviews, 2021, 50, 6734-6789.	18.7	93
14	Highly reversible aqueous zinc metal batteries enabled by fluorinated interphases in localized high concentration electrolytes. Journal of Materials Chemistry A, 2021, 9, 22347-22352.	5.2	32
15	Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy and Environmental Science, 2021, 14, 5669-5689.	15.6	314
16	Designing a high-performance anode composed of carbon nanotubes and Fe–Fe ₃ C nanoparticles for quasi-solid-state fibrous Ni/Fe batteries. Materials Chemistry Frontiers, 2021, 5, 3636-3645.	3.2	14
17	Vanadium-based cathodes for aqueous zinc-ion batteries: from crystal structures, diffusion channels to storage mechanisms. Journal of Materials Chemistry A, 2021, 9, 5258-5275.	5.2	103
18	Liquid Alloy Interlayer for Aqueous Zinc-Ion Battery. ACS Energy Letters, 2021, 6, 675-683.	8.8	135

#	Article	IF	CITATIONS
19	<i>In situ</i> built interphase with high interface energy and fast kinetics for high performance Zn metal anodes. Energy and Environmental Science, 2021, 14, 3609-3620.	15.6	300
20	Mechanism for Zincophilic Sites on Zincâ€Metal Anode Hosts in Aqueous Batteries. Advanced Energy Materials, 2021, 11, 2003419.	10.2	233
21	From solid electrolyte to zinc cathode: vanadium substitution in ZnPS3. JPhys Materials, 2021, 4, 024005.	1.8	1
22	Toward Practical Highâ€Arealâ€Capacity Aqueous Zincâ€Metal Batteries: Quantifying Hydrogen Evolution and a Solidâ€Ion Conductor for Stable Zinc Anodes. Advanced Materials, 2021, 33, e2007406.	11.1	382
23	Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Low ost Antisolvents. Angewandte Chemie, 2021, 133, 7442-7451.	1.6	87
24	Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Low ost Antisolvents. Angewandte Chemie - International Edition, 2021, 60, 7366-7375.	7.2	516
25	Electrolyte Design for In Situ Construction of Highly Zn ²⁺ â€Conductive Solid Electrolyte Interphase to Enable Highâ€Performance Aqueous Znâ€Ion Batteries under Practical Conditions. Advanced Materials, 2021, 33, e2007416.	11.1	484
26	Comprehensive Analyses of Aqueous Zn Metal Batteries: Characterization Methods, Simulations, and Theoretical Calculations. Advanced Energy Materials, 2021, 11, 2003823.	10.2	66
27	Calendar Life of Zn Batteries Based on Zn Anode with Zn Powder/Current Collector Structure. Advanced Energy Materials, 2021, 11, 2003931.	10.2	122
28	A Dendriteâ€Free Tin Anode for Highâ€Energy Aqueous Redox Flow Batteries. Advanced Materials, 2021, 33, e2008095.	11.1	31
29	Towards Highâ€Performance Zincâ€Based Hybrid Supercapacitors via Macroporesâ€Based Charge Storage in Organic Electrolytes. Angewandte Chemie - International Edition, 2021, 60, 9610-9617.	7.2	90
30	Towards Highâ€Performance Zincâ€Based Hybrid Supercapacitors via Macroporesâ€Based Charge Storage in Organic Electrolytes. Angewandte Chemie, 2021, 133, 9696-9703.	1.6	5
31	Carbon Quantum Dots Promote Coupled Valence Engineering of V ₂ O ₅ Nanobelts for Highâ€Performance Aqueous Zincâ€ion Batteries. ChemSusChem, 2021, 14, 2076-2083.	3.6	29
32	Ni (II) Coordination Supramolecular Grids for Aqueous Nickelâ€Zinc Battery Cathodes. Advanced Functional Materials, 2021, 31, 2100443.	7.8	30
33	In-situ electrochemical conversion of vanadium dioxide for enhanced zinc-ion storage with large voltage range. Journal of Power Sources, 2021, 487, 229369.	4.0	61
34	Mechanistic Understanding of Oxygen Electrodes in Rechargeable Multivalent Metalâ€Oxygen Batteries. Batteries and Supercaps, 2021, 4, 1588-1598.	2.4	6
35	Functionalized Phosphonium Cations Enable Zinc Metal Reversibility in Aqueous Electrolytes. Angewandte Chemie - International Edition, 2021, 60, 12438-12445.	7.2	69
36	Eliminating Dendrites and Side Reactions via a Multifunctional ZnSe Protective Layer toward Advanced Aqueous Zn Metal Batteries. Advanced Functional Materials, 2021, 31, 2100186.	7.8	85

#	Article	IF	CITATIONS
37	Functionalized Phosphonium Cations Enable Zinc Metal Reversibility in Aqueous Electrolytes. Angewandte Chemie, 2021, 133, 12546-12553.	1.6	11
38	Heterometallic Seedâ€Mediated Zinc Deposition on Inkjet Printed Silver Nanoparticles Toward Foldable and Heatâ€Resistant Zinc Batteries. Advanced Functional Materials, 2021, 31, 2101607.	7.8	109
39	Surfaceâ€Preferred Crystal Plane for a Stable and Reversible Zinc Anode. Advanced Materials, 2021, 33, e2100187.	11.1	432
40	Achieving better aqueous rechargeable zinc ion batteries with heterostructure electrodes. Nano Research, 2021, 14, 3174-3187.	5.8	40
41	A Safe Flexible Self-Powered Wristband System by Integrating Defective MnO _{2–<i>x</i>} Nanosheet-Based Zinc-Ion Batteries with Perovskite Solar Cells. ACS Nano, 2021, 15, 10597-10608.	7.3	109
42	Stable Aqueous Anodeâ€Free Zinc Batteries Enabled by Interfacial Engineering. Advanced Functional Materials, 2021, 31, 2101886.	7.8	162
43	An Ultrahigh Performance Zincâ€Organic Battery using Poly(catechol) Cathode in Zn(TFSI) ₂ â€Based Concentrated Aqueous Electrolytes. Advanced Energy Materials, 2021, 11, 2100939.	10.2	93
44	Crossroads in the renaissance of rechargeable aqueous zinc batteries. Materials Today, 2021, 45, 191-212.	8.3	171
45	Uniform Magnesium Electrodeposition via Synergistic Coupling of Current Homogenization, Geometric Confinement, and Chemisorption Effect. Advanced Materials, 2021, 33, e2100224.	11.1	58
46	A reversible Zn-metal battery. Nature Nanotechnology, 2021, 16, 854-855.	15.6	41
47	Spatiotemporally super-resolved dendrites nucleation and early-stage growth dynamics in Zinc-ion batteries. Cell Reports Physical Science, 2021, 2, 100420.	2.8	19
48	Macromolecular Engineering of Poly(catechol) Cathodes towards High-Performance Aqueous Zinc-Polymer Batteries. Polymers, 2021, 13, 1673.	2.0	11
49	A Chemically Selfâ€Charging Flexible Solidâ€State Zincâ€ion Battery Based on VO ₂ Cathode and Polyacrylamide–Chitin Nanofiber Hydrogel Electrolyte. Advanced Energy Materials, 2021, 11, 2003902.	10.2	77
50	Rich Alkali Ions Preintercalated Vanadium Oxides for Durable and Fast Zinc-Ion Storage. ACS Energy Letters, 2021, 6, 2111-2120.	8.8	94
51	Realizing high-power and high-capacity zinc/sodium metal anodes through interfacial chemistry regulation. Nature Communications, 2021, 12, 3083.	5.8	167
52	Manipulating anion intercalation enables a high-voltage aqueous dual ion battery. Nature Communications, 2021, 12, 3106.	5.8	104
53	Synthesis and Electrochemical Properties of Aluminum Hexafluorophosphate. Journal of Physical Chemistry Letters, 2021, 12, 5903-5908.	2.1	11
54	Advances and Perspectives of Cathode Storage Chemistry in Aqueous Zinc-Ion Batteries. ACS Nano, 2021, 15, 9244-9272.	7.3	272

#	Article	IF	CITATIONS
55	Manipulating Crystallographic Orientation of Zinc Deposition for Dendriteâ€free Zinc Ion Batteries. Advanced Energy Materials, 2021, 11, 2101299.	10.2	304
56	Ultrahighâ€Rate and Longâ€Life Zinc–Metal Anodes Enabled by Selfâ€Accelerated Cation Migration. Advanced Energy Materials, 2021, 11, 2100982.	10.2	131
57	Electrolyte Salt Chemistry Enables 3D Nitrogen and Phosphorus Dualâ€Doped Graphene Aerogels for Highâ€Performance Potassiumâ€ion Batteries. Advanced Materials Technologies, 2021, 6, 2100207.	3.0	19
58	Waterâ€Repellent Ionic Liquid Skinny Gels Customized for Aqueous Znâ€Ion Battery Anodes. Advanced Functional Materials, 2021, 31, 2103850.	7.8	63
59	Constructing <scp>nanoâ€channeled</scp> tin layer on metal zinc for highâ€performance zincâ€ion batteries anode. EcoMat, 2021, 3, e12125.	6.8	55
60	Scalable and Controllable Synthesis of Interface-Engineered Nanoporous Host for Dendrite-Free and High Rate Zinc Metal Batteries. ACS Nano, 2021, 15, 11828-11842.	7.3	140
61	A Universal Compensation Strategy to Anchor Polar Organic Molecules in Bilayered Hydrated Vanadates for Promoting Aqueous Zincâ€lon Storage. Advanced Materials, 2021, 33, e2102701.	11.1	76
62	Ultrathin Surface Coating of Nitrogenâ€Doped Graphene Enables Stable Zinc Anodes for Aqueous Zincâ€lon Batteries. Advanced Materials, 2021, 33, e2101649.	11.1	302
63	Cations Coordinationâ€Regulated Reversibility Enhancement for Aqueous Znâ€Ion Battery. Advanced Functional Materials, 2021, 31, 2105736.	7.8	59
64	ZnSe Modified Zinc Metal Anodes: Toward Enhanced Zincophilicity and Ionic Diffusion. Small, 2021, 17, e2101728.	5.2	82
65	Current Advances on Zn Anodes for Aqueous Zincâ€ion Batteries. ChemNanoMat, 2021, 7, 1162-1176.	1.5	14
66	A Highâ€Voltage Zn–Organic Battery Using a Nonflammable Organic Electrolyte. Angewandte Chemie, 2021, 133, 21193-21200.	1.6	5
67	Rational Design of Sulfur-Doped Three-Dimensional Ti ₃ C ₂ T <i>_{<i>x</i>}</i> MXene/ZnS Heterostructure as Multifunctional Protective Layer for Dendrite-Free Zinc-Ion Batteries. ACS Nano, 2021, 15, 15259-15273.	7.3	167
68	A Highâ€Voltage Zn–Organic Battery Using a Nonflammable Organic Electrolyte. Angewandte Chemie - International Edition, 2021, 60, 21025-21032.	7.2	67
69	Stabilizing Zinc Anodes by Regulating the Electrical Double Layer with Saccharin Anions. Advanced Materials, 2021, 33, e2100445.	11.1	351
70	Extended iodine chemistry: Toward high-energy-density aqueous zinc-ion batteries. Matter, 2021, 4, 2637-2639.	5.0	14
71	Molecular Tailoring of an n/pâ€ŧype Phenothiazine Organic Scaffold for Zinc Batteries. Angewandte Chemie - International Edition, 2021, 60, 20826-20832.	7.2	77
72	Molecular Tailoring of an n/pâ€ŧype Phenothiazine Organic Scaffold for Zinc Batteries. Angewandte Chemie, 2021, 133, 20994-21000.	1.6	21

#	Article	IF	CITATIONS
73	Partial deployment of Al in Zn–MnO2 alkaline battery anodes to improve the capacity and reversibility. Journal of Power Sources, 2021, 506, 230167.	4.0	4
74	Stabilization of Zn Metal Anode through Surface Reconstruction of a Ceriumâ€Based Conversion Film. Advanced Functional Materials, 2021, 31, 2103227.	7.8	97
75	Designing Anionâ€Type Waterâ€Free Zn ²⁺ Solvation Structure for Robust Zn Metal Anode. Angewandte Chemie - International Edition, 2021, 60, 23357-23364.	7.2	179
76	A review of zinc-based battery from alkaline to acid. Materials Today Advances, 2021, 11, 100149.	2.5	64
77	Water or Anion? Uncovering the Zn ²⁺ Solvation Environment in Mixed Zn(TFSI) ₂ and LiTFSI Water-in-Salt Electrolytes. ACS Energy Letters, 2021, 6, 3458-3463.	8.8	45
78	Highly Reversible, Grainâ€Directed Zinc Deposition in Aqueous Zinc Ion Batteries. Advanced Energy Materials, 2021, 11, 2100676.	10.2	95
79	<i>N</i> , <i>N</i> -Dimethylacetamide-Diluted Nitrate Electrolyte for Aqueous Zn//LiMn ₂ O ₄ Hybrid Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 46634-46643.	4.0	14
80	Designing Anionâ€Type Waterâ€Free Zn ²⁺ Solvation Structure for Robust Zn Metal Anode. Angewandte Chemie, 2021, 133, 23545-23552.	1.6	57
81	Toward a Practical Zn Powder Anode: Ti ₃ C ₂ T <i>x</i> MXene as a Lattice-Match Electrons/Ions Redistributor. ACS Nano, 2021, 15, 14631-14642.	7.3	137
82	Suppressing Charge Disproportionation of MnO ₂ Cathodes in Rechargeable Zinc Ion Batteries via Cooperative Jahnâ€Teller Distortion. Batteries and Supercaps, 2021, 4, 1881-1888.	2.4	17
83	Hydrated titanic acid as an ultralow-potential anode for aqueous zinc-ion full batteries. Chemical Engineering Journal, 2021, 420, 129629.	6.6	23
84	Stabilizing Zinc Electrodes with a Vanillin Additive in Mild Aqueous Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 47650-47658.	4.0	70
85	Revealing the Effects of Structure Design and Operating Protocols on the Electrochemical Performance of Rechargeable Zn-Air Batteries. Journal of the Electrochemical Society, 2021, 168, 100510.	1.3	7
86	Electrode materials for aqueous multivalent metal-ion batteries: Current status and future prospect. Journal of Energy Chemistry, 2022, 67, 563-584.	7.1	36
87	Recent progress of carbon nanomaterials for high-performance cathodes and anodes in aqueous zinc ion batteries. Energy Storage Materials, 2021, 41, 715-737.	9.5	93
88	Recent Progress in MXene-Based Materials for Metal-Sulfur and Metal-Air Batteries: Potential High-Performance Electrodes. Electrochemical Energy Reviews, 2022, 5, 112-144.	13.1	99
89	The mystery and promise of multivalent metal-ion batteries. Current Opinion in Electrochemistry, 2021, 29, 100819.	2.5	17
90	Synergetic effect of water-in-bisalt electrolyte and hydrogen-bond rich additive improving the performance of aqueous batteries. Journal of Power Sources, 2021, 511, 230413.	4.0	19

#	Article	IF	CITATIONS
91	Aqueous rechargeable zinc batteries: Challenges and opportunities. Current Opinion in Electrochemistry, 2021, 30, 100801.	2.5	14
92	Engineering interfacial layers to enable Zn metal anodes for aqueous zinc-ion batteries. Energy Storage Materials, 2021, 43, 317-336.	9.5	154
93	Highly efficient phthalocyanine based aqueous Zn-ion flexible-batteries. Materials Letters, 2022, 306, 130954.	1.3	5
94	Interfacial parasitic reactions of zinc anodes in zinc ion batteries: Underestimated corrosion and hydrogen evolution reactions and their suppression strategies. Journal of Energy Chemistry, 2022, 64, 246-262.	7.1	128
95	Highly active cobalt-doped nickel sulfide porous nanocones for high-performance quasi-solid-state zinc-ion batteries. Journal of Energy Chemistry, 2022, 66, 237-249.	7.1	15
96	Zinc/selenium conversion battery: a system highly compatible with both organic and aqueous electrolytes. Energy and Environmental Science, 2021, 14, 2441-2450.	15.6	93
97	Strategies of structural and defect engineering for high-performance rechargeable aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2021, 9, 19245-19281.	5.2	41
98	Dendrite suppression by anode polishing in zinc-ion batteries. Journal of Materials Chemistry A, 2021, 9, 15355-15362.	5.2	41
99	Non-concentrated aqueous electrolytes with organic solvent additives for stable zinc batteries. Chemical Science, 2021, 12, 5843-5852.	3.7	273
100	A cation selective separator induced cathode protective layer and regulated zinc deposition for zinc ion batteries. Journal of Materials Chemistry A, 2021, 9, 4734-4743.	5.2	97
101	Recent progress in quasi-solid and solid polymer electrolytes for multivalent metal-ion batteries. Journal of Materials Chemistry A, 2021, 9, 24175-24194.	5.2	45
102	Conversion‶ype Nonmetal Elemental Tellurium Anode with High Utilization for Mild/Alkaline Zinc Batteries. Advanced Materials, 2021, 33, e2105426.	11.1	48
103	Interfacial thermodynamics-inspired electrolyte strategy to regulate output voltage and energy density of battery chemistry. Science Bulletin, 2022, 67, 626-635.	4.3	16
104	Interfacial Engineering Regulates Deposition Kinetics of Zinc Metal Anodes. ACS Applied Energy Materials, 2021, 4, 11743-11751.	2.5	8
105	Stretchable Znâ€Ion Hybrid Battery with Reconfigurable V ₂ CT <i>_x</i> and Ti ₃ C ₂ T <i>_x</i> MXene Electrodes as a Magnetically Actuated Soft Robot. Advanced Energy Materials, 2021, 11, 2101862.	10.2	26
106	Electrochemically Activated Cu _{2–} <i>_x</i> Te as an Ultraflat Discharge Plateau, Low Reaction Potential, and Stable Anode Material for Aqueous Znâ€ion Half and Full Batteries. Advanced Energy Materials, 2021, 11, 2102607.	10.2	37
107	Unraveling H ⁺ /Zn ²⁺ Sequential Conversion Reactions in Tellurium Cathodes for Rechargeable Aqueous Zinc Batteries. Journal of Physical Chemistry Letters, 2021, 12, 10163-10168.	2.1	19
108	Addressing thermodynamic Instability of Zn anode: classical and recent advancements. Energy Storage Materials, 2022, 44, 206-230.	9.5	88

#	Article	IF	CITATIONS
109	Enhanced reversibility of vanadium oxide cathode by diminished surface precipitation in Zn(TFSI)2 aqueous electrolyte. Electrochimica Acta, 2021, 399, 139432.	2.6	16
110	Spontaneous Formation of Porous Zinc in Rechargeable Zinc Batteries. Journal of the Electrochemical Society, 2021, 168, 110524.	1.3	2
111	Stable bismuth-antimony alloy cathode with a conversion-dissolution/deposition mechanism for high-performance zinc batteries. Materials Today, 2021, 51, 87-95.	8.3	10
112	Flexible Wide-Temperature Zinc-Ion Battery Enabled by an Ethylene Glycol-Based Organohydrogel Electrolyte. ACS Applied Energy Materials, 2021, 4, 12718-12727.	2.5	45
113	Fast-growing multifunctional ZnMoO4 protection layer enable dendrite-free and hydrogen-suppressed Zn anode. Energy Storage Materials, 2022, 44, 353-359.	9.5	73
114	Current Progress and Future Perspectives of Electrolytes for Rechargeable Aluminumâ€lon Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	20
115	A Highly Reversible Zinc Anode for Rechargeable Aqueous Batteries. ACS Applied Materials & Interfaces, 2021, 13, 52659-52669.	4.0	31
116	A comprehensive green utilization strategy of lignocellulose from rice husk for the fabrication of high-rate electrochemical zinc ion capacitors. Journal of Cleaner Production, 2021, 327, 129522.	4.6	25
117	Cotton-derived cellulose film as a dendrite-inhibiting separator to stabilize the zinc metal anode of aqueous zinc ion batteries. Energy Storage Materials, 2022, 44, 57-65.	9.5	211
118	Multifunctional porous carbon strategy assisting high-performance aqueous zinc-iodine battery. Carbon, 2022, 187, 145-152.	5.4	55
119	Uniform distribution of zinc ions achieved by functional supramolecules for stable zinc metal anode with long cycling lifespan. Energy Storage Materials, 2022, 45, 1074-1083.	9.5	57
120	Targeted design of advanced electrocatalysts by machine learning. Chinese Journal of Catalysis, 2022, 43, 11-32.	6.9	63
121	Carbon nanomaterials for highly stable Zn anode: Recent progress and future outlook. Journal of Electroanalytical Chemistry, 2022, 904, 115883.	1.9	19
122	High-Efficiency Zinc-Metal Anode Enabled by Liquefied Gas Electrolytes. ACS Energy Letters, 2021, 6, 4426-4430.	8.8	21
123	Stabilizing Interface pH by Nâ€Modified Graphdiyne for Dendriteâ€Free and Highâ€Rate Aqueous Znâ€ŀon Batteries. Angewandte Chemie, 2022, 134, .	1.6	24
124	Directing the Preferred Crystal Orientation by a Cellulose Acetate/Graphene Oxide Composite Separator for Dendrite-Free Zn-Metal Anodes. ACS Applied Energy Materials, 2021, 4, 14599-14607.	2.5	25
125	Stabilizing Interface pH by Nâ€Modified Graphdiyne for Dendriteâ€Free and Highâ€Rate Aqueous Znâ€ŀon Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	124
126	A non-flammable hydrous organic electrolyte for sustainable zinc batteries. Nature Sustainability, 2022, 5, 205-213.	11.5	277

#	Article	IF	CITATIONS
127	Dynamic interphase–mediated assembly for deep cycling metal batteries. Science Advances, 2021, 7, eabl3752.	4.7	81
128	Electrospun conductive carbon nanofiber hosts for stable zinc metal anode. International Journal of Energy Research, 2022, 46, 7201-7214.	2.2	11
129	Chaotropic anion based "water-in-salt―electrolyte realizes a high voltage Zn–graphite dual-ion battery. Journal of Materials Chemistry A, 2022, 10, 2064-2074.	5.2	28
130	Stable static zinc-iodine redox battery constructed with graphene quantum dots coated graphite felt. Journal of Power Sources, 2022, 520, 230861.	4.0	6
131	In-situ construction of a hydroxide-based solid electrolyte interphase for robust zinc anodes. Chemical Engineering Journal, 2022, 431, 134076.	6.6	55
132	Galvanically replaced artificial interfacial layer for highly reversible zinc metal anodes. Applied Physics Reviews, 2022, 9, .	5.5	40
133	Enable commercial Zinc powders for dendrite-free Zinc anode with improved utilization rate by pristine graphene hybridization. Energy Storage Materials, 2022, 45, 465-473.	9.5	76
134	A Selfâ€Regulated Interface toward Highly Reversible Aqueous Zinc Batteries. Advanced Energy Materials, 2022, 12, .	10.2	164
135	Antiâ€Corrosion for Reversible Zinc Anode via a Hydrophobic Interface in Aqueous Zinc Batteries. Advanced Energy Materials, 2022, 12, .	10.2	92
136	Revealing the effects of conductive carbon materials on the cycling stability of rechargeable Znâ€air batteries. International Journal of Energy Research, 2022, 46, 7694-7703.	2.2	9
137	Selfâ€Healing SeO ₂ Additives Enable Zinc Metal Reversibility in Aqueous ZnSO ₄ Electrolytes. Advanced Functional Materials, 2022, 32, .	7.8	71
138	Flexible Ti ₃ C ₂ T _{<i>x</i>} /Nanocellulose Hybrid Film as a Stable Zn-free Anode for Aqueous Hybrid Zn–Li Batteries. ACS Applied Materials & Interfaces, 2022, 14, 6876-6884.	4.0	16
139	Electrostatic Shielding Regulation of Magnetron Sputtered Al-Based Alloy Protective Coatings Enables Highly Reversible Zinc Anodes. Nano Letters, 2022, 22, 1017-1023.	4.5	118
140	Stability Enhancement of Zinc″on Batteries Using Nonâ€Aqueous Electrolytes. Batteries and Supercaps, 2022, 5, .	2.4	31
141	Waterâ€Processable and Multiscaleâ€Designed Vanadium Oxide Cathodes with Predominant Zn ²⁺ Intercalation Pseudocapacitance toward High Gravimetric/Areal/Volumetric Capacity. Small, 2022, 18, e2105796.	5.2	19
142	"Soft Shorts―Hidden in Zinc Metal Anode Research. Joule, 2022, 6, 273-279.	11.7	192
143	A dual conducting network corbelled hydrated vanadium pentoxide cathode for high-rate aqueous zinc-ion batteries. Nanoscale, 2022, 14, 1008-1013.	2.8	10
144	Strategies of regulating Zn ²⁺ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy and Environmental Science, 2022, 15, 499-528.	15.6	313

#	Article	IF	CITATIONS
145	Highly efficient hydrogen production via a zinc-carbon @ nickel system. International Journal of Hydrogen Energy, 2022, 47, 5354-5360.	3.8	5
146	Aluminum-copper alloy anode materials for high-energy aqueous aluminum batteries. Nature Communications, 2022, 13, 576.	5.8	61
147	Solvation, Rational Design, and Interfaces: Development of Divalent Electrolytes. Frontiers in Energy Research, 2022, 9, .	1.2	2
148	Highâ€Capacity and Longâ€Life Zinc Electrodeposition Enabled by a Selfâ€Healable and Desolvation Shield for Aqueous Zincâ€Ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	80
149	<scp>Twoâ€Dimensional</scp> Cathode Materials for Aqueous Rechargeable <scp>Zincâ€lon</scp> Batteries ^{â€} . Chinese Journal of Chemistry, 2022, 40, 973-988.	2.6	10
150	Highâ€Capacity and Longâ€Life Zinc Electrodeposition Enabled by a Selfâ€Healable and Desolvation Shield for Aqueous Zincâ€Ion Batteries. Angewandte Chemie, 2022, 134, e202114789.	1.6	8
151	Understanding and Performance of the Zinc Anode Cycling in Aqueous Zincâ€Ion Batteries and a Roadmap for the Future. Batteries and Supercaps, 2022, 5, .	2.4	27
152	Modulating residual ammonium in MnO ₂ for high-rate aqueous zinc-ion batteries. Nanoscale, 2022, 14, 3242-3249.	2.8	11
153	Gradient fluorinated alloy to enable highly reversible Zn-metal anode chemistry. Energy and Environmental Science, 2022, 15, 1086-1096.	15.6	141
154	Highly enhanced reversibility of a Zn anode by in-situ texturing. Energy Storage Materials, 2022, 47, 98-104.	9.5	56
155	High capacity and inexpensive multivalent cathode materials for aqueous rechargeable Zn-ion battery fabricated via in situ electrochemical oxidation of VO2 nanorods. Journal of Power Sources, 2022, 523, 231060.	4.0	22
156	Uniform zinc electrodeposition directed by interfacial cation reservoir for stable Zn–I2 battery. Journal of Power Sources, 2022, 523, 231036.	4.0	13
157	Tailoring Local Electrolyte Solvation Structure via a Mesoporous Molecular Sieve for Dendriteâ€Free Zinc Batteries. Advanced Functional Materials, 2022, 32, .	7.8	56
158	Electrochemical interface reconstruction to eliminate surface heterogeneity for dendrite-free zinc anodes. Energy Storage Materials, 2022, 47, 319-326.	9.5	39
159	A Versatile Cation Additive Enabled Highly Reversible Zinc Metal Anode. Advanced Energy Materials, 2022, 12, .	10.2	95
160	MXenes and their derivatives for advanced aqueous rechargeable batteries. Materials Today, 2022, 52, 225-249.	8.3	39
161	Uniform Zinc Electrodeposition Directed by Interfacial Cation Reservoir for Stable Zn-I ₂ Battery. SSRN Electronic Journal, 0, , .	0.4	0
162	Electrochemical Interface Reconstruction to Eliminate Surface Heterogeneity for Dendrite-Free Zinc Anodes. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
163	Modification on Water Electrochemical Environment for High Efficient Al-Air Battery: Achieved by a Low-Cost Sucrose Additive. SSRN Electronic Journal, 0, , .	0.4	0
164	An anticorrosive zinc metal anode with ultra-long cycle life over one year. Energy and Environmental Science, 2022, 15, 1638-1646.	15.6	107
165	Highly reversible zinc metal anodes enabled by a three-dimensional silver host for aqueous batteries. Journal of Materials Chemistry A, 2022, 10, 10043-10050.	5.2	25
166	Navigating fast and uniform zinc deposition <i>via</i> a versatile metal–organic complex interphase. Energy and Environmental Science, 2022, 15, 1872-1881.	15.6	145
167	A Hydrophobic and Fluorophilic Coating Layer for Stable and Reversible Aqueous Zinc Metal Anodes. SSRN Electronic Journal, 0, , .	0.4	0
168	Recent advances and future perspectives for aqueous zinc-ion capacitors. Materials Futures, 2022, 1, 022101.	3.1	34
169	Perspective on gallium-based room temperature liquid metal batteries. Frontiers in Energy, 2022, 16, 23-48.	1.2	21
170	Robust nitrogen/selenium engineered MXene/ZnSe hierarchical multifunctional interfaces for dendrite-free zinc-metal batteries. Energy Storage Materials, 2022, 49, 122-134.	9.5	57
171	Diminishing Interfacial Turbulence by Colloidâ€Polymer Electrolyte to Stabilize Zinc Ion Flux for Deepâ€Cycling Zn Metal Batteries. Advanced Materials, 2022, 34, e2200131.	11.1	54
172	Highâ€Energy and Stable Subfreezing Aqueous Zn–MnO ₂ Batteries with Selective and Pseudocapacitive Znâ€ion Insertion in MnO ₂ . Advanced Materials, 2022, 34, e2201510.	11.1	36
173	Confining Sn nanoparticles in interconnected N-doped hollow carbon spheres as hierarchical zincophilic fibers for dendrite-free Zn metal anodes. Science Advances, 2022, 8, eabm5766.	4.7	150
174	Artificial solid electrolyte interface layer based on sodium titanate hollow microspheres assembled by nanotubes to stabilize zinc metal electrodes. Journal of Energy Chemistry, 2022, 71, 539-546.	7.1	15
175	Nonâ€Electrode Components for Rechargeable Aqueous Zinc Batteries: Electrolytes, Solidâ€Electrolyteâ€Interphase, Current Collectors, Binders, and Separators. Advanced Materials, 2022, 34, e2108206.	11.1	58
176	Nitrogenâ€Doped Carbon Fibers Embedded with Zincophilic Cu Nanoboxes for Stable Znâ€Metal Anodes. Advanced Materials, 2022, 34, e2200342.	11.1	149
177	Long-Life Aqueous Zn–I ₂ Battery Enabled by a Low-Cost Multifunctional Zeolite Membrane Separator. Nano Letters, 2022, 22, 2538-2546.	4.5	65
178	Hydrated Eutectic Electrolyte with Ligandâ€Oriented Solvation Shell to Boost the Stability of Zinc Battery. Advanced Functional Materials, 2022, 32,	7.8	87
179	Recent progress, mechanisms, and perspectives for crystal and interface chemistry applying to the Zn metal anodes in aqueous zincâ€ion batteries. SusMat, 2022, 2, 114-141.	7.8	60
180	Rational Design Strategy of Novel Energy Storage Systems: Toward Highâ€Performance Rechargeable Magnesium Batteries. Small, 2022, 18, e2200418.	5.2	56

#	Article	IF	Citations
181	In Situ Constructing Coordination Compounds Interphase to Stabilize Zn Metal Anode for Highâ€Performance Aqueous Zn–SeS ₂ Batteries. Small, 2022, 18, e2200567.	5.2	19
182	Unveiling the Synergistic Effect of Ferroelectric Polarization and Domain Configuration for Reversible Zinc Metal Anodes. Advanced Science, 2022, 9, e2105980.	5.6	25
183	Eliminating Stubborn Insulated Deposition by Coordination Effect to Boost Zn Electrode Reversibility in Aqueous Electrolyte. Frontiers in Chemistry, 2022, 10, 851973.	1.8	4
184	Singleâ€Ionâ€Functionalized Nanocellulose Membranes Enable Leanâ€Electrolyte and Deeply Cycled Aqueous Zincâ€Metal Batteries. Advanced Functional Materials, 2022, 32, .	7.8	63
185	Additiveâ€Free Ultrastable Hydrated Vanadium Oxide Sol/Carbon Nanotube Ink for Durable and Highâ€Power Aqueous Zincâ€ion Battery. Advanced Materials Interfaces, 2022, 9, .	1.9	3
186	A Binary Hydrateâ€Melt Electrolyte with Acetateâ€Oriented Crossâ€Linking Solvation Shells for Stable Zinc Anodes. Advanced Materials, 2022, 34, e2201744.	11.1	90
187	Highly reversible and stable Zn metal anode under wide temperature conditions enabled by modulating electrolyte chemistry. Chemical Engineering Journal, 2022, 442, 136218.	6.6	30
188	Aqueous zinc batteries: Design principles toward organic cathodes for grid applications. IScience, 2022, 25, 104204.	1.9	20
189	Organic Macromolecule regulated the structure of vanadium oxide with high capacity and stability for aqueous Zinc-ion batteries. Applied Surface Science, 2022, 592, 153295.	3.1	9
190	Controllable C-N site assisting observable potential difference for homogeneous copper deposition in aqueous Cu-S batteries. Energy Storage Materials, 2022, 48, 74-81.	9.5	28
191	Austen Angell's legacy in electrolyte research. Journal of Non-Crystalline Solids: X, 2022, 14, 100088.	0.5	4
192	Microwave-assisted self-template synthesis of mesoporous anatase TiO2 spheres for non-aqueous Al-ion batteries: Textural property optimization and enhanced reversible Al3+ storage. Sustainable Materials and Technologies, 2022, 32, e00419.	1.7	7
193	Monosodium glutamate, an effective electrolyte additive to enhance cycling performance of Zn anode in aqueous battery. Nano Energy, 2022, 98, 107220.	8.2	144
194	Lattice Matching and Halogen Regulation for Synergistically Induced Uniform Zinc Electrodeposition by Halogenated Ti ₃ C ₂ MXenes. ACS Nano, 2022, 16, 813-822.	7.3	90
195	Separator Effect on Zinc Electrodeposition Behavior and Its Implication for Zinc Battery Lifetime. Nano Letters, 2021, 21, 10446-10452.	4.5	94
196	Cathode Materials Challenge Varied with Different Electrolytes in Zinc Batteries. , 2022, 4, 190-204.		24
197	Regulating Interfacial Desolvation and Deposition Kinetics Enables Durable Zn Anodes with Ultrahigh Utilization of 80%. Small, 2022, 18, e2106441.	5.2	51
198	Co-Solvent Electrolyte Engineering for Stable Anode-Free Zinc Metal Batteries. Journal of the American Chemical Society, 2022, 144, 7160-7170.	6.6	252

#	Article	IF	Citations
199	Rich 1Tâ€MoS ₂ Nanoflowers Decorated on Reduced Graphene Oxide Nanosheet for Ultraâ€Quick Zn ²⁺ Storage. Batteries and Supercaps, 2022, 5, .	2.4	4
200	Mechanistic Study of Interfacial Modification for Stable Zn Anode Based on a Thin Separator. Small, 2022, 18, e2201045.	5.2	24
201	Bis-ammonium salts with strong chemisorption to halide ions for fast and durable aqueous redox Zn ion batteries. Nano Energy, 2022, 98, 107278.	8.2	17
202	Stimulating Cu–Zn alloying for compact Zn metal growth towards high energy aqueous batteries and hybrid supercapacitors. Energy and Environmental Science, 2022, 15, 2889-2899.	15.6	63
203	A hydrophobic and fluorophilic coating layer for stable and reversible aqueous zinc metal anodes. Chemical Engineering Journal, 2022, 446, 136607.	6.6	38
204	Quasiâ€Solid Electrolyte Design and In Situ Construction of Dual Electrolyte/Electrode Interphases for Highâ€Stability Zinc Metal Battery. Advanced Energy Materials, 2022, 12, .	10.2	42
205	Flexible self-charging power sources. Nature Reviews Materials, 2022, 7, 870-886.	23.3	159
206	Bifunctional Catalytic Activity of Solvothermally Synthesized CeO ₂ Nanosphere/NiO Nanoflake Nanocomposites. ACS Applied Energy Materials, 2022, 5, 5666-5679.	2.5	17
207	Three-Dimensional Ordered Structure for Highly Reversible Neutral Zinc-Air Battery. Materials Letters, 2022, , 132438.	1.3	0
208	An in-depth understanding of improvement strategies and corresponding characterizations towards Zn anode in aqueous Zn-ions batteries. Green Energy and Environment, 2023, 8, 1006-1042.	4.7	15
209	Interface Coordination Stabilizing Reversible Redox of Zinc for Highâ€Performance Zincâ€lodine Batteries. Small, 2022, 18, e2200168.	5.2	35
210	Progress in interface structure and modification of zinc anode for aqueous batteries. Nano Energy, 2022, 98, 107333.	8.2	93
211	Three-functional ether-based co-solvents for suppressing water-induced parasitic reactions in aqueous Zn-ion batteries. Energy Storage Materials, 2022, 49, 445-453.	9.5	49
212	Manipulating Horizontal Zn Deposition with Graphene Interpenetrated Zn Hybrid Foils for <scp>Dendriteâ€Free</scp> Aqueous Zinc Ion Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	13
213	An in-depth mechanistic insight into the redox reaction and degradation of aqueous Zn-MnO2 batteries. Chinese Chemical Letters, 2023, 34, 107525.	4.8	8
214	Oxygen Plasma Modified Carbon Cloth with C=O Zincophilic Sites as a Stable Host for Zinc Metal Anodes. Frontiers in Chemistry, 2022, 10, 899810.	1.8	7
215	Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry. Joule, 2022, 6, 1103-1120.	11.7	131
216	Polypyrrole/reduced graphene oxide composites coated zinc anode with dendrite suppression feature for boosting performances of zinc ion battery. Scientific Reports, 2022, 12, .	1.6	15

ARTICLE IF CITATIONS # Stabilized Zn Anode Based on SO₄^{2â€"} Trapping Ability and High Hydrogen 217 7.8 33 Evolution Barrier. Advanced Functional Materials, 2022, 32, . Dual polymer engineering enables high-performance 3D printed Zn-organic battery cathodes. Applied 2.3 Materials Today, 2022, 28, 101515. Microgrid Operational Planning using a Hybrid Neural Network with Resource-aware Scenario 219 2.2 7 Selection. Simulation Modelling Practice and Theory, 2022, 119, 102583. Interface Engineering to Improve the Rate Performance and Stability of the Mn-Cathode Electrode for 4.0 Aqueous Zinc-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2022, 14, 24386-24395. The Emergence of 2D MXenes Based Znâ€ion Batteries: Recent Development and Prospects. Small, 2022, 18, 221 5.2 76 Phytic acid conversion film interfacial engineering for stabilizing zinc metal anode. Chemical 6.6 Engineering Journal, 2022, 446, 137295. Cholinium Cations Enable Highly Compact and Dendriteâ€Free Zn Metal Anodes in Aqueous Electrolytes. 223 7.8 91 Advanced Functional Materials, 2022, 32, . An Air-Rechargeable Zn/Organic Battery with Proton Storage. Journal of the American Chemical 6.6 58 Society, 2022, 144, 10301-10308. Unraveling a cathode/anode compatible electrolyte for high-performance aqueous rechargeable zinc 225 9.5 23 batteries. Energy Storage Materials, 2022, 50, 464-472. Dendrite-free aqueous Zn-ion batteries via a multifunctional Se protective layer. Materials Letters, 1.3 2022, 323, 132519. Recyclable Nanopaper Separators with Uniform Sub-20 Nm Nanopores for High-Power and 227 0.4 0 High-Capacity Zinc Metal Anodes. SSRN Electronic Journal, 0, , . Towards the practical application of Zn metal anodes for mild aqueous rechargeable Zn batteries. 228 Chemical Science, 2022, 13, 8243-8252. A piece of common cellulose paper but with outstanding functions for advanced aqueous zinc-ion 229 2.5 27 batteries. Materials Today Energy, 2022, 28, 101076. A high-voltage and stable zinc-air battery enabled by dual-hydrophobic-induced proton shuttle shielding. Joule, 2022, 6, 1617-1631. 11.7 Anion Concentration Gradient-Assisted Construction of a Solid–Electrolyte Interphase for a Stable 231 6.6 94 Zinc Metal Anode at High Rates. Journal of the American Chemical Society, 2022, 144, 11168-11177. Revealing the Electrochemistry in a Voltaic Cell by In Situ Electron Microscopy. ChemElectroChem, 2022, 9, . Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition. 233 5.8 174 Nature Communications, 2022, 13, . Spontaneous Construction of Nucleophilic Carbonylâ€Containing Interphase toward Ultrastable 234 11.1 138 Zincâ€Metal Anodes. Advanced Materials, 2022, 34, .

#	Article	IF	CITATIONS
235	Surface-Alloyed Nanoporous Zinc as Reversible and Stable Anodes for High-Performance Aqueous Zinc-Ion Battery. Nano-Micro Letters, 2022, 14, .	14.4	65
236	Identifying soft breakdown in all-solid-state lithium battery. Joule, 2022, 6, 1770-1781.	11.7	71
237	Recent progress of artificial interfacial layers in aqueous Zn metal batteries. EnergyChem, 2022, 4, 100076.	10.1	59
238	A stable "rocking-chair" zinc-ion battery boosted by low-strain Zn3V4(PO4)6 cathode. Nano Energy, 2022, 100, 107520.	8.2	24
239	Stabilization of Zn anode via a multifunctional cysteine additive. Chemical Engineering Journal, 2022, 447, 137471.	6.6	62
240	Promoting ion adsorption and desolvation kinetics enables high capacity and rate capability of stibium anode for advanced alkaline battery. Journal of Materials Science and Technology, 2022, 131, 60-67.	5.6	6
241	Regulating zinc metal anodes <i>via</i> novel electrolytes in rechargeable zinc-based batteries. Journal of Materials Chemistry A, 2022, 10, 14692-14708.	5.2	12
242	Advances in the structure and composition design of zinc anodes for high performance zinc ion batteries. Sustainable Energy and Fuels, 0, , .	2.5	5
243	In-Situ Regulated Competitive Proton Intercalation and Deposition/Dissolution Reaction of Mno2 for High-Performance Flexible Zinc-Manganese Battery. SSRN Electronic Journal, 0, , .	0.4	0
244	Corrosion engineering towards a high-energy Mn doped Co ₃ O ₄ nanoflake cathode for rechargeable Zn-based batteries. Materials Advances, 2022, 3, 6441-6445.	2.6	1
245	Reducing Zn-Ion Concentration Gradient by So42Immobilized Interface Coating for Dendrite-Free Zn Anode. SSRN Electronic Journal, 0, , .	0.4	0
246	Theoretical calculation guided materials design and capture mechanism for Zn–Se batteries via heteroatomâ€doped carbon. , 2022, 1, 59-67.		19
247	Highly reversible Zn metal anode enabled by sustainable hydroxyl chemistry. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	41
248	A Selfâ€Regulated Electrostatic Shielding Layer toward Dendriteâ€Free Zn Batteries. Advanced Materials, 2022, 34, .	11.1	119
249	Tailoring the metal electrode morphology via electrochemical protocol optimization for long-lasting aqueous zinc batteries. Nature Communications, 2022, 13, .	5.8	101
250	Polymer Hydrogel Electrolytes for Flexible and Multifunctional Zincâ€ion Batteries and Capacitors. Energy and Environmental Materials, 2023, 6, .	7.3	34
251	Realizing high-voltage aqueous zinc-ion batteries with expanded electrolyte electrochemical stability window. Chinese Chemical Letters, 2023, 34, 107629.	4.8	16
252	Determination of Average Coulombic Efficiency for Rechargeable Magnesium Metal Anodes in Prospective Electrolyte Solutions. ACS Applied Materials & amp; Interfaces, 2022, 14, 30952-30961.	4.0	6

#	Article	IF	CITATIONS
253	Electrolyte design strategies towards long-term Zn metal anode for rechargeable batteries. Journal of Energy Chemistry, 2022, 73, 575-587.	7.1	24
254	Anhydrous Fast Proton Transport Boosted by the Hydrogen Bond Network in a Dense Oxideâ€lon Array of αâ€MoO ₃ . Advanced Materials, 2022, 34, .	11.1	23
255	Anti-catalytic and zincophilic layers integrated zinc anode towards efficient aqueous batteries for ultra-long cycling stability. Nano Research, 2022, 15, 8076-8082.	5.8	28
256	Zn ₃ V ₄ (PO ₄) ₆ : A New Rocking-Chair-Type Cathode Material with High Specific Capacity Derived from Zn ²⁺ /H ⁺ Cointercalation for Aqueous Zn-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 32066-32074.	4.0	8
257	Pathways towards Highâ€Performance Aqueous Zincâ€Organic Batteries. Batteries and Supercaps, 2022, 5, .	2.4	6
258	Manipulating alloying reaction to achieve the stable and dendrite-free zinc metal anodes. Chemical Engineering Journal, 2022, 450, 138048.	6.6	26
259	Surface Transformation Enables a Dendriteâ€Free Zincâ€Metal Anode in Nonaqueous Electrolyte. Advanced Materials, 2022, 34, .	11.1	34
260	Promoting Reversible Dissolution/Deposition of MnO ₂ for Highâ€Energyâ€Density Zinc Batteries via Enhancing Cutâ€Off Voltage. ChemSusChem, 2022, 15, .	3.6	41
261	Uneven Stripping Behavior, an UnheededÂKiller of Mg Anodes. Advanced Materials, 2022, 34, .	11.1	25
262	lon pumping synergy with atomic anchoring for dendrite-free Zn anodes. Energy Storage Materials, 2022, 51, 610-619.	9.5	23
263	Wood-based electrodes enabling stable, anti-freezing, and flexible aqueous zinc-ion batteries. Energy Storage Materials, 2022, 51, 286-293.	9.5	28
264	Highly active crystal planes-oriented texture for reversible high-performance Zn metal batteries. Energy Storage Materials, 2022, 51, 550-558.	9.5	29
265	A static three-chamber zinc-polyiodide redox battery for decoupling of active anions and cations. Journal of Energy Storage, 2022, 54, 105258.	3.9	1
266	Construction of V1.11S2 flower spheres for efficient aqueous Zn-ion batteries. Journal of Colloid and Interface Science, 2022, 625, 1002-1011.	5.0	6
267	Symmetric is nonidentical: Operation history matters for Zn metal anode. , 2022, 1, e9120023.		58
268	Critical factors to inhibit waterâ€splitting side reaction in carbonâ€based electrode materials for zinc metal anodes. , 2022, 4, 1080-1092.		7
269	Utilization of Phosphogypsum as a Zinc–Ion–Conductor Interface Towards Highly Stable Zinc Anode. SSRN Electronic Journal, 0, , .	0.4	0
270	Toward practical aqueous zinc-ion batteries for electrochemical energy storage. Joule, 2022, 6, 1733-1738.	11.7	201

	CITATION R	EPORT	
#	Article	IF	Citations
271	Artificial Interphase Layer for Stabilized Zn Anodes: Progress and Prospects. Small, 2022, 18, .	5.2	49
272	Synergistic Manipulation of Hydrogen Evolution and Zinc Ion Flux in Metal ovalent Organic Frameworks for Dendriteâ€free Znâ€based Aqueous Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	74
273	Crystal Water Boosted Zn ²⁺ Transfer Kinetics in Artificial Solid Electrolyte Interphase for High-Rate and Durable Zn Anodes. ACS Applied Energy Materials, 2022, 5, 10581-10590.	2.5	3
274	Synergistic Manipulation of Hydrogen Evolution and Zinc Ion Flux in Metal ovalent Organic Frameworks for Dendriteâ€free Znâ€based Aqueous Batteries. Angewandte Chemie, 2022, 134, .	1.6	10
275	Long Shelfâ€Life Efficient Electrolytes Based on Trace <scp>l</scp> â€Cysteine Additives toward Stable Zinc Metal Anodes. Small, 2022, 18, .	5.2	23
276	Applicationâ€Based Prospects for Dualâ€ion Batteries. ChemSusChem, 2023, 16, .	3.6	4
277	Activating ZnV ₂ O ₄ by an Electrochemical Oxidation Strategy for Enhanced Energy Storage in Zinc-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 10196-10206.	2.5	10
278	Cationâ€Anion Redox Active Organic Complex for High Performance Aqueous Zinc Ion Battery. Energy and Environmental Materials, 2024, 7, .	7.3	7
279	Reducing Zn-ion concentration gradient by SO42â^'-immobilized interface coating for dendrite-free Zn anode. Chemical Engineering Journal, 2023, 451, 138772.	6.6	22
280	Recyclable nanopaper separators with uniform sub-20Ânm nanopores for high-power and high-capacity zinc metal anodes. Electrochimica Acta, 2022, 430, 141081.	2.6	10
281	Intrinsic structural optimization of zinc anode with uniform second phase for stable zinc metal batteries. Energy Storage Materials, 2022, 52, 161-168.	9.5	24
282	Synergistic co-reaction of Zn2+ and H+ with carbonyl groups towards stable aqueous zinc–organic batteries. Energy Storage Materials, 2022, 52, 386-394.	9.5	31
283	Advances and perspectives on separators of aqueous zinc ion batteries. , 2022, 1, 100005.		43
284	Towards Highâ€Performance Aqueous Zinc Batteries via a Semiâ€Conductive Bipolarâ€Type Polymer Cathode. Angewandte Chemie, 2022, 134, .	1.6	2
285	Tripleâ€Function Electrolyte Regulation toward Advanced Aqueous Znâ€ion Batteries. Advanced Materials, 2022, 34, .	11.1	118
286	Regulating the plating process of zinc with highly efficient additive for long-life zinc anode. Journal of Power Sources, 2022, 549, 232078.	4.0	7
287	Planar and dendrite-free zinc deposition enabled by exposed crystal plane optimization of zinc anode. Energy Storage Materials, 2022, 53, 273-304.	9.5	63
288	In-situ regulated competitive proton intercalation and deposition/dissolution reaction of MnO2 for high-performance flexible zinc-manganese batteries. Energy Storage Materials, 2022, 53, 72-78.	9.5	16

#	Article	IF	Citations
289	One-step targeted treatment for Zn flatting and protection. Energy Storage Materials, 2022, 53, 13-21.	9.5	9
290	Choline chloride enhances the electrochemical stability of zinc plating/stripping. Chemical Communications, 2022, 58, 10088-10090.	2.2	3
291	Non-flammable, dilute, and hydrous organic electrolytes for reversible Zn batteries. Chemical Science, 2022, 13, 11320-11329.	3.7	43
292	Subtly manipulating Zn ²⁺ -coordinated configurations with a complexing agent to boost the reversibility of the zinc anode. Chemical Communications, 2022, 58, 9104-9107.	2.2	3
293	A two-dimensional conductive polymer/V ₂ O ₅ composite with rapid zinc-ion storage kinetics for high-power aqueous zinc-ion batteries. Nanoscale, 2022, 14, 12013-12021.	2.8	7
294	Stabilizing Zn Anode Interface by Simultaneously Manipulating the Thermodynamics of Zn Nucleation and Overpotential of Hydrogen Evolution. Advanced Functional Materials, 2022, 32, .	7.8	43
295	Operando Optoelectrochemical Analysis of Single Zinc Dendrites with a Reflective Nanopore Electrode. Chemistry - an Asian Journal, 2022, 17, .	1.7	6
296	Regulating Surface Reaction Kinetics through Ligand Field Effects for Fast and Reversible Aqueous Zinc Batteries. Angewandte Chemie, 2022, 134, .	1.6	10
297	Ultrathin Zn-free anode based on Ti3C2Tx and nanocellulose enabling high-durability aqueous hybrid Zn-Na battery with Zn2+/Na+ co-intercalation mechanism. Nano Research, 2023, 16, 536-544.	5.8	8
298	Heteroleptic Coordination Polymer Electrolytes Initiated by Lewis-Acidic Eutectics for Solid Zinc–Metal Batteries. Chemistry of Materials, 2022, 34, 8975-8986.	3.2	13
299	Stable Sodiumâ€Metal Batteries in Carbonate Electrolytes Achieved by Bifunctional, Sustainable Separators with Tailored Alignment. Advanced Materials, 2022, 34, .	11.1	15
300	Localized Hydrophobicity in Aqueous Zinc Electrolytes Improves Zinc Metal Reversibility. Nano Letters, 2022, 22, 7535-7544.	4.5	51
301	Towards Highâ€Performance Aqueous Zinc Batteries via a Semiâ€Conductive Bipolarâ€Type Polymer Cathode. Angewandte Chemie - International Edition, 2022, 61, .	7.2	35
302	Regulating Surface Reaction Kinetics through Ligand Field Effects for Fast and Reversible Aqueous Zinc Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	31
303	Chemical Welding of the Electrode–Electrolyte Interface by Znâ€Metalâ€Initiated In Situ Gelation for Ultralongâ€Life Znâ€Ion Batteries. Advanced Materials, 2022, 34, .	11.1	84
304	Oxygen functionalized interface enables high MnO2 electrolysis kinetics for high energy aqueous Zn-MnO2 decoupled battery. Applied Physics Letters, 2022, 121, .	1.5	4
305	Ionic liquid additive enabling anti-freezing aqueous electrolyte and dendrite-free Zn metal electrode with organic/inorganic hybrid solid electrolyte interphase layer. Energy Storage Materials, 2022, 53, 629-637.	9.5	52
306	Bilayer separator enabling dendrite-free zinc anode with ultralong lifespan >5000Âh. Green Energy and Environment, 2024, 9, 771-776.	4.7	2

#	Article		CITATIONS
307	Supermolecule-mediated defect engineering of porous carbons for zinc-ion hybrid capacitors. Nano Energy, 2022, 103, 107827.		37
308	Multiscale modulation of vanadium oxides <i>via</i> one-step facile reduction to synergistically boost zinc-ion battery performance. Inorganic Chemistry Frontiers, 2022, 9, 6482-6489.	3.0	5
309	Super-resolved dynamics of isolated zinc formation during extremely fast electrochemical deposition/dissolution processes. Chemical Science, 2022, 13, 12782-12790.	3.7	8
310	Ultraconformal Horizontal Zinc Deposition toward Dendriteâ€Free Anode. Small Structures, 2023, 4, .	6.9	14
311	Real-Time Monitoring of Oxygen Released During Charging of Alkaline Zn-air Batteries with a Redox Mediator. Journal of the Electrochemical Society, 2022, 169, 100551.	1.3	5
312	In situ growing 3D-Cu coating to improve the reversibility and reaction kinetics of Zn metal anodes. Frontiers in Chemistry, 0, 10, .	1.8	0
313	Uniformly MXeneâ€Grafted Eutectic Aluminumâ€Cerium Alloys as Flexible and Reversible Anode Materials for Rechargeable Aluminumâ€ion Battery. Advanced Functional Materials, 2023, 33, .	7.8	28
314	Perspective—Reversibility of Electro-Plating/Stripping Reactions: Metal Anodes for Rechargeable Batteries. Journal of the Electrochemical Society, 2022, 169, 100532.	1.3	2
315	Polymeric Singleâ€Ion Conductors with Enhanced Sideâ€Chain Motion for Highâ€Performance Solid Zincâ€Ion Batteries. Advanced Materials, 2022, 34, .	11.1	34
316	Three Birds with One Stone: Tetramethylurea as Electrolyte Additive for Highly Reversible Znâ€Metal Anode. Advanced Functional Materials, 2022, 32, .	7.8	62
317	Heterostructures Stimulate Electricâ€Field to Facilitate Optimal Zn ²⁺ Intercalation in MoS ₂ Cathode. Small, 2022, 18, .	5.2	24
318	Molecular rowding Effect Mimicking Coldâ€Resistant Plants to Stabilize the Zinc Anode with Wider Service Temperature Range. Advanced Materials, 2023, 35, .	11.1	68
319	Dispersed Zn Nucleation and Growth Induced by Functional Nano-TiO2 Particles for a Stable Zn Metal Anode. Journal of Electronic Materials, 2022, 51, 6645-6653.	1.0	3
320	Solid Electrolyte Interface in Zn-Based Battery Systems. Nano-Micro Letters, 2022, 14, .	14.4	64
321	Rational Design of Sulfonamideâ€Based Additive Enables Stable Solid Electrolyte Interphase for Reversible Zn Metal Anode. Advanced Functional Materials, 2023, 33, .	7.8	28
322	MXeneâ€Boosted Imine Cathodes with Extended Conjugated Structure for Aqueous Zincâ€lon Batteries. Advanced Materials, 2022, 34, .	11.1	41
323	Zn metal anodes stabilized by an intrinsically safe, dilute, and hydrous organic electrolyte. Energy Storage Materials, 2023, 54, 276-283.	9.5	47
324	High Zinc Utilization Aqueous Zinc Ion Batteries Enabled by 3D Printed Graphene Arrays. Energy Storage Materials, 2023, 54, 75-84.	9.5	36

#	Article	IF	CITATIONS
325	lodine conversion chemistry in aqueous batteries: Challenges, strategies, and perspectives. Energy Storage Materials, 2023, 54, 339-365.	9.5	41
326	Design principles for heterointerfacial alloying kinetics at metallic anodes in rechargeable batteries. Science Advances, 2022, 8, .	4.7	30
327	Deposition behavior regulated by an SPSF@PMIA nanofiber separator for high-performance zinc ion batteries. Journal of Materials Chemistry A, 2022, 10, 24761-24771.	5.2	23
328	Stainless steel foil: A more appropriate current collector than titanium foil for the cathodes of aqueous zinc ion batteries. Electrochimica Acta, 2023, 437, 141519.	2.6	6
329	Boosting Zn2+ kinetics via the multifunctional pre-desolvation interface for dendrite-free Zn anodes. Journal of Energy Chemistry, 2023, 77, 632-641.	7.1	20
330	Highâ€Performance Aqueous Zincâ€Organic Battery Achieved by Reasonable Molecular Design. Batteries and Supercaps, 2023, 6, .	2.4	8
332	Enabling High-Rate and High-Areal-Capacity Zn Deposition via an Interfacial Preferentially Adsorbed Molecular Layer. ACS Energy Letters, 2023, 8, 31-39.	8.8	39
333	Simultaneous Dangling Bond and Zincophilic Site Engineering of SiN _{<i>x</i>} Protective Coatings toward Stable Zinc Anodes. ACS Energy Letters, 2022, 7, 4443-4450.	8.8	27
334	Electrolyte additive enhances the electrochemical performance of Cu for rechargeable Cu//Zn batteries. Journal of Energy Chemistry, 2023, 77, 172-179.	7.1	8
335	A review on solutions to overcome the structural transformation of manganese dioxide-based cathodes for aqueous rechargeable zinc ion batteries. Journal of Power Sources, 2023, 555, 232385.	4.0	27
336	High-Performance Aqueous Zinc-Ion Batteries Enabled by Binder-Free and Ultrathin V ₂ O _{5–<i>x</i>} @Graphene Aerogels with Intercalation Pseudocapacitance. ACS Applied Materials & Interfaces, 0, , .	4.0	5
337	Differentiating contribution to desolvation ability from molecular structure and composition for screening highly-effective additives to boost reversibility of zinc metal anode. Energy Storage Materials, 2023, 55, 669-679.	9.5	16
338	An "immobilizing and relocating―strategy for a highly reversible metallic zinc anode. Journal of Materials Chemistry A, 2023, 11, 1361-1368.	5.2	3
339	Uniform Zn2+ distribution and deposition regulated by ultrathin hydroxyl-rich silica ion sieve in zinc metal anodes. Energy Storage Materials, 2023, 55, 264-271.	9.5	17
340	Ultrahigh-capacity epitaxial deposition of planar Zn flakes enabled by amino-rich adhesive hydrogel electrolytes for durable low-temperature zinc batteries. Energy Storage Materials, 2023, 55, 597-605.	9.5	12
341	Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity. Energy and Environmental Science, 2023, 16, 275-284.	15.6	100
342	Suppressing the dissolution of vanadium by organic-inorganic hybrid for aqueous zinc-ion batteries. Journal of Materials Science and Technology, 2023, 145, 93-100.	5.6	6
343	A dendrite-free and corrosion-suppressive metallic Zn anode regulated by the hybrid aqueous/organic electrolyte. , 2022, , .		0

#	Article	IF	Citations
344	Monolayer Thiol Engineered Covalent Interface toward Stable Zinc Metal Anode. ACS Nano, 2022, 16, 21152-21162.	7.3	17
345	Three-in-one organic-inorganic heterostructures: From scalable ball-milling synthesis to freestanding cathodes with high areal capacity for aqueous zinc-ion batteries. Chemical Engineering Journal, 2023, 457, 141140.	6.6	11
346	A Semiâ€solid Zinc Powderâ€based Slurry Anode for Advanced Aqueous Zincâ€ion Batteries. Angewandte Chemie, 2023, 135, .	1.6	8
347	A Semiâ€solid Zinc Powderâ€based Slurry Anode for Advanced Aqueous Zincâ€ion Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	34
348	A comparative study of hydroxyethylcelluloseâ€based solid polymer electrolytes for solid state Zn batteries. Nano Select, 2023, 4, 102-111.	1.9	5
349	Interfacial Chemistry Modulation via Amphoteric Glycine for a Highly Reversible Zinc Anode. ACS Nano, 2023, 17, 552-560.	7.3	65
350	Mesoporous Ti ₄ O ₇ Spheres with Enhanced Zinc-Anchoring Effect for High-Performance Zinc–Nickel Batteries. ACS Applied Materials & Interfaces, 2022, 14, 56856-56866.	4.0	4
351	Recent Advances of Transition Metal Sulfides/Selenides Cathodes for Aqueous Zincâ€lon Batteries. Advanced Energy Materials, 2023, 13, .	10.2	35
352	Direct Ink Writing of 3D Zn Structures as High apacity Anodes for Rechargeable Alkaline Batteries. Small Structures, 2023, 4, .	6.9	6
353	Aminosilane Molecular Layer Enables Successive Capture-Diffusion-Deposition of Ions toward Reversible Zinc Electrochemistry. ACS Nano, 2023, 17, 668-677.	7.3	30
354	Metallic Zinc Anode Working at 50 and 50ÂmAhÂcm ^{â^'2} with High Depth of Discharge via Electrical Double Layer Reconstruction. Advanced Functional Materials, 2023, 33, .	7.8	46
355	Designing better electrolytes. Science, 2022, 378, .	6.0	146
356	Intrinsic Interfacial Dynamic Engineering of Zincophilic Microbrushes via Regulating Zn Deposition for Highly Reversible Aqueous Zinc Ion Battery. Advanced Materials, 2023, 35, .	11.1	24
357	Binder-Free Freestanding 3D Zn-Graphene Anode Induced from Commercial Zinc Powders and Graphene Oxide for Zinc Ion Battery with High Utilization Rate. ACS Applied Energy Materials, 2022, 5, 15222-15232.	2.5	21
358	Aqueous Zinc–Chalcogen Batteries: Emerging Conversion-Type Energy Storage Systems. Batteries, 2023, 9, 62.	2.1	5
359	A Liquid Crystal Ionomerâ€Type Electrolyte toward Orderingâ€Induced Regulation for Highly Reversible Zinc Ion Battery. Advanced Science, 2023, 10, .	5.6	11
360	Olivineâ€Type MgMn _{0.5} Zn _{0.5} SiO ₄ Cathode for Mgâ€Batteries: Experimental Studies and First Principles Calculations. Small, 2023, 19, .	5.2	6
361	Stable Zn electrodes enabled by an ultra-thin Zn phosphate protective layer. Journal of Materials Chemistry A, 2023, 11, 3051-3059.	5.2	10

	CITATION	REPORT	
#	Article	IF	CITATIONS
362	A New Zinc Salt Chemistry for Aqueous Zincâ€Metal Batteries. Advanced Materials, 2023, 35, .	11.1	11
363	Recent advances in material chemistry for zinc enabled redox flow batteries. , 2023, 2, 90-114.		9
364	Realizing Textured Zinc Metal Anodes through Regulating Electrodeposition Current for Aqueous Zinc Batteries. Angewandte Chemie, 2023, 135, .	1.6	7
365	Moisture-activated deep eutectic electrolyte enabling stable metal Zn anode. Energy Storage Materials, 2023, 56, 218-226.	9.5	20
366	In situ construction of a stable composite solid electrolyte interphase for dendrite-free Zn batteries. Journal of Energy Chemistry, 2023, 79, 450-458.	7.1	14
367	Interface Engineering of Zinc Electrode for Rechargeable Alkaline Zincâ€Based Batteries. Small Methods, 2023, 7, .	4.6	13
368	Electrocrystallization Regulation Enabled Stacked Hexagonal Platelet Growth toward Highly Reversible Zinc Anodes. Angewandte Chemie, 2023, 135, .	1.6	5
369	A New Insight of Antiâ€Solvent Electrolytes for Aqueous Zincâ€Ion Batteries by Molecular Modeling. Small Structures, 2023, 4, .	6.9	9
370	Dendrite-free Zn anode enabled by anionic surfactant-induced horizontal growth for highly-stable aqueous Zn-ion pouch cells. Energy and Environmental Science, 2023, 16, 687-697.	15.6	66
371	Recent advances in manipulating strategy of aqueous electrolytes for Zn anode stabilization. Energy Storage Materials, 2023, 56, 227-257.	9.5	35
372	Nanoscale Ultrafine Zinc Metal Anodes for High Stability Aqueous Zinc Ion Batteries. Nano Letters, 2023, 23, 541-549.	4.5	30
373	Electrocrystallization Regulation Enabled Stacked Hexagonal Platelet Growth toward Highly Reversible Zinc Anodes. Angewandte Chemie - International Edition, 2023, 62, .	7.2	30
374	Multifunctional Electrolyte Additive Enables Highly Reversible Anodes and Enhanced Stable Cathodes for Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2023, 15, 4152-4165.	4.0	8
375	Realizing Textured Zinc Metal Anodes through Regulating Electrodeposition Current for Aqueous Zinc Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	61
376	Electrolyte additive of sorbitol rendering aqueous zinc-ion batteries with dendrite-free behavior and good anti-freezing ability. Chemical Engineering Journal, 2023, 458, 141392.	6.6	23
377	Reconstructing anode/electrolyte interface and solvation structure towards high stable zinc anode. Chemical Engineering Journal, 2023, 457, 141272.	6.6	26
378	Chemical and electrochemical synergistic weaving stable interface enabling longevous zinc plating/stripping process. Chemical Engineering Journal, 2023, 457, 141305.	6.6	10
379	Electrolyte engineering strategies for regulation of the Zn metal anode in aqueous Znâ€ion batteries. , 2023, 2, .		28

ARTICLE IF CITATIONS Symmetric Cells as an Analytical Tool for Battery Research: Assembly, Operation, and Data Analysis 380 1.3 6 Strategies. Journal of the Electrochemical Society, 2023, 170, 020521. How About Vanadiumâ€Based Compounds as Cathode Materials for Aqueous Zinc Ion Batteries?. 5.6 Advanced Science, 2023, 10, . Efficient Charge Storage in Zinc–lodine Batteries based on Preâ€Embedded Iodineâ€lons with Reduced 382 Electrochemical Reaction Barrier and Suppression of Polyiodide Selfâ€Shuttle Effect. Advanced 7.8 18 Functional Materials, 2023, 33, . A dendrite-free and anticaustic Zn anode enabled by high current-induced reconstruction of the electrical double layer. Chemical Communications, 2023, 59, 2437-2440. Quasiâ€Decoupled Solid–Liquid Hybrid Electrolyte for Highly Reversible Interfacial Reaction in Aqueous 384 10.2 29 Zinc–Manganese Battery. Advanced Energy Materials, 2023, 13, . Creating water-in-salt-like environment using coordinating anions in non-concentrated aqueous electrolytes for efficient Zn batteries. Energy and Environmental Science, 2023, 16, 1982-1991. 15.6 Defect engineering of two-dimensional materials for advanced energy conversion and storage. 386 18.7 66 Chemical Society Reviews, 2023, 52, 1723-1772. Selection criteria for electrical double layer structure regulators enabling stable Zn metal anodes. 15.6 48 Energy and Environmental Science, 2023, 16, 1721-1731. 388 Design Strategies toward Highâ€Performance Zn Metal Anode. Small Methods, 0, , . 4.6 51 Angstromâ€Level Ionic Sieve 2Dâ€MOF Membrane for High Power Aqueous Zinc Anode. Advanced 389 Functional Materials, 2023, 33, . Interfacial chemistry regulation via dibenzenesulfonamide-functionalized additives enables 390 9.5 14 high-performance Zn metal anodes. Energy Storage Materials, 2023, 58, 85-93. Microbeâ€Mediated Biosynthesis of Multidimensional Carbonâ€Based Materials for Energy Storage Applications. Advanced Energy Materials, 2023, 13, . Challenges and perspectives of hydrogen evolution-free aqueous Zn-Ion batteries. Energy Storage 392 9.5 22 Materials, 2023, 59, 102767. Recent progress and challenges of Zn anode modification materials in aqueous Zn-ion batteries. Coordination Chemistry Reviews, 2023, 485, 215142. A new shape-conformable battery concept: The 3D printed injectable battery filled with semi-solid 394 2 4.0 electrodes. Journal of Power Sources, 2023, 570, 233063. Highly flexible and compressible zinc-ion batteries with superb electrochemical performance enabled by a dual structural regulation strategy. Energy Storage Materials, 2023, 56, 478-488. State of the art of lithium-ion battery material potentials: An analytical evaluations, issues and future 396 4.6 28 research directions. Journal of Cleaner Production, 2023, 394, 136246. Weakly Solvating Effect Spawning Reliable Interfacial Chemistry for Aqueous Zn/Na Hybrid Batteries. Advanced Energy Materials, 2023, 13, .

#	ARTICLE	IF	CITATIONS
398	electrodeposition at the anode. Current Opinion in Electrochemistry, 2023, 38, 101230.	2.5	2
399	Addition of Dioxane in Electrolyte Promotes (002)-Textured Zinc Growth and Suppressed Side Reactions in Zinc-Ion Batteries. ACS Nano, 2023, 17, 3765-3775.	7.3	99
400	2D Materials Boost Advanced Zn Anodes: Principles, Advances, and Challenges. Nano-Micro Letters, 2023, 15, .	14.4	19
401	Decoupling, quantifying, and restoring aging-induced Zn-anode losses in rechargeable aqueous zinc batteries. Joule, 2023, 7, 366-379.	11.7	36
402	Performance improvement of aqueous zinc batteries by zinc oxide and Ketjen black co-modified glass fiber separators. RSC Advances, 2023, 13, 6453-6458.	1.7	1
403	Zinc electrodes: Overview. , 2023, , .		0
404	Regulating Inorganic and Organic Components to Build Amorphousâ€ZnF _x Enriched Solidâ€Electrolyte Interphase for Highly Reversible Zn Metal Chemistry. Advanced Materials, 2023, 35, .	11.1	34
405	Zn-Ion Transporting, <i>In Situ</i> Formed Robust Solid Electrolyte Interphase for Stable Zinc Metal Anodes over a Wide Temperature Range. ACS Energy Letters, 2023, 8, 1613-1625.	8.8	48
406	Quasi-Solid Electrolyte Interphase Boosting Charge and Mass Transfer for Dendrite-Free Zinc Battery. Nano-Micro Letters, 2023, 15, .	14.4	24
407	A Theoryâ€Driven Complementary Interface Effect for Fastâ€Kinetics and Ultrastable Zn Metal Anodes in Aqueous/Solid Electrolytes. Advanced Energy Materials, 2023, 13, .	10.2	26
408	Ultralowâ€Saltâ€Concentration Electrolyte for Highâ€Voltage Aqueous Zn Metal Batteries. Advanced Functional Materials, 2023, 33, .	7.8	24
409	Regulation of desolvation process and dense electrocrystalization behavior for stable Zn metal anode. Energy Storage Materials, 2023, 57, 628-638.	9.5	21
410	Electrolyte Modulation Strategies for High Performance Zinc Batteries. Batteries and Supercaps, 2023, 6, .	2.4	3
411	Progress and perspective on multi-dimensional structured carbon nanomaterials for cathodes in aqueous zinc-based energy storage. Materials Research Letters, 2023, 11, 481-516.	4.1	5
412	Observation of Zn Dendrite Growth via Operando Digital Microscopy and Time-Lapse Tomography. ACS Applied Materials & Interfaces, 0, , .	4.0	1
413	Kinetics-Driven MnO ₂ Nanoflowers Supported by Interconnected Porous Hollow Carbon Spheres for Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 0, , .	4.0	1
414	Research progress of "rocking chair―type zinc-ion batteries with zinc metal-free anodes. Chinese Chemical Letters, 2023, 34, 108307.	4.8	9
415	Eutectic electrolytes with leveling effects achieving high depth-of-discharge of rechargeable zinc batteries. Energy Storage Materials, 2023, 58, 9-19.	9.5	23

#	Article	IF	CITATIONS
416	Advanced Aqueous Ammonium-Ion Batteries Enabled by Hydrogen Bond Modulation. Journal of Physical Chemistry C, 2023, 127, 6233-6238.	1.5	1
417	Interphases in aqueous rechargeable zinc metal batteries. Journal of Materials Chemistry A, 2023, 11, 8470-8496.	5.2	6
418	Fluoride-Based Stable Quasi-Solid-State Zinc Metal Battery with Superior Rate Capability. ACS Applied Materials & Interfaces, 2023, 15, 15574-15584.	4.0	2
419	Sustainable high-energy aqueous zinc–manganese dioxide batteries enabled by stress-governed metal electrodeposition and fast zinc diffusivity. Energy and Environmental Science, 2023, 16, 2133-2141.	15.6	15
420	Inhibition of side reactions and dendrite growth using a low-cost and non-flammable eutectic electrolyte for high-voltage and super-stable zinc hybrid batteries. Journal of Materials Chemistry A, 2023, 11, 8368-8379.	5.2	6
421	Chloride electrolyte enabled practical zinc metal battery with a near-unity Coulombic efficiency. Nature Sustainability, 2023, 6, 806-815.	11.5	52
422	Stabilizing zinc anodes for long-lifespan zinc–nickel battery through the in-situ construction of zincophilic interface layer. Energy Storage Materials, 2023, 58, 311-321.	9.5	8
423	Mitigating the interfacial concentration gradient by negatively charged quantum dots toward dendrite-free Zn anodes. Energy Storage Materials, 2023, 58, 215-221.	9.5	32
424	Low-Cost and Large-Scale Preparation of H ₂ O and Mg ²⁺ Co-Preintercalated Vanadium Oxide with High-Performance Aqueous Zn-Ion Batteries. Energy & Fuels, 2023, 37, 5530-5539.	2.5	1
425	Rational design of zinc powder anode with high utilization and long cycle life for advanced aqueous Zn–S batteries. Materials Horizons, 2023, 10, 2436-2444.	6.4	5
426	Water Confinement by a Zn ²⁺ -Conductive Aqueous/Inorganic Hybrid Electrolyte for High-Voltage Zinc-Ion Batteries. ACS Applied Energy Materials, 2023, 6, 3705-3713.	2.5	2
427	Effect of Na2SiO3 and SDBS electrolyte additives on corrosion inhibition of zinc electrodes and electrochemical performance of zinc–air batteries. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	1
428	Enhanced Zn ²⁺ Transport in Ionic Liquid Electrolyte by Hydrofluoroether Dilution for Highâ€Power and Longâ€Life Zn/Graphite Cells. Batteries and Supercaps, 2023, 6, .	2.4	2
429	Manipulating Electric Double Layer Adsorption for Stable Solidâ€Electrolyte Interphase in 2.3â€Ah Znâ€Pouch Cells. Angewandte Chemie - International Edition, 2023, 62, .	7.2	25
430	Manipulating Electric Double Layer Adsorption for Stable Solidâ€Electrolyte Interphase in 2.3â€Ah Znâ€Pouch Cells. Angewandte Chemie, 2023, 135, .	1.6	1
431	Simultaneously Regulating Solvation Structure and Interphase by Strong Donor Cosolvent for Stable Zn-Metal Batteries. Journal of Physical Chemistry C, 2023, 127, 7078-7086.	1.5	4
432	Lowâ€Concentration Redoxâ€Electrolytes for Highâ€Rate and Longâ€Life Zinc Metal Batteries. Small, 0, , .	5.2	11
433	Enhancing Hydrophilicity of Thick Electrodes for High Energy Density Aqueous Batteries. Nano-Micro Letters, 2023, 15, .	14.4	8

	CITATION	Report	
#	ARTICLE	IF	CITATIONS
435	Three-dimensionally ordered Co3O4@WO3 composite arrays as a binder-free air cathode for	2.3	3
436	A hydrated deep eutectic electrolyte with finely-tuned solvation chemistry for high-performance zinc-ion batteries. Energy and Environmental Science, 2023, 16, 2540-2549.	15.6	50
437	Refining the Grain Size of Zinc Electrodeposit by Pb ²⁺ Ion Grinding for Compact and Stable Zinc Anode. Batteries and Supercaps, 2023, 6, .	2.4	1
438	Distinct chemistry between Zn and Li at varied temperature. Science Bulletin, 2023, 68, 998-1007.	4.3	5
439	A Novel Plasticâ€Crystal Electrolyte with Fast Ionâ€Transport Channels for Solid Zincâ€Ion Batteries. Advanced Energy Materials, 2023, 13, .	10.2	1
445	Magneto-electrochemistry driven ultralong-life Zn-VS ₂ aqueous zinc-ion batteries. Materials Horizons, 2023, 10, 3162-3173.	6.4	3
449	Building better aqueous Zn-organic batteries. Energy and Environmental Science, 2023, 16, 2398-2431.	15.6	38
462	Aqueous Batteries for Human Body Electronic Devices. ACS Energy Letters, 2023, 8, 2904-2918.	8.8	9
479	Charge-Transfer Complex-Based Artificial Layers for Stable and Efficient Zn Metal Anodes. ACS Energy Letters, 2023, 8, 2718-2727.	8.8	29
486	Ag _{<i>x</i>} Zn _{<i>y</i>} Protective Coatings with Selective Zn ²⁺ /H ⁺ Binding Enable Reversible Zn Anodes. Nano Letters, 2023, 23, 6156-6163.	4.5	18
495	One-Nanometer-Thick Interfaces of Titania Nanosheets for Reversible Zn-Metal Electrodes. , 2023, 5, 2156-2163.		2
499	The pitfalls of using stainless steel (SS) coin cells in aqueous zinc battery research. Energy and Environmental Science, 2023, 16, 4320-4325.	15.6	1
510	Versatile nicotinamide enabling dendrite-free and efficient deposition for aqueous Zn-l ₂ batteries. Chemical Communications, 2023, 59, 11847-11850.	2.2	0
557	Functional dielectric materials for high-performance solidâ€state batteries. Materials Chemistry Frontiers, 0, , .	3.2	0
564	Progress in research on metal-based materials in stabilized Zn anodes. Rare Metals, 2024, 43, 20-40.	3.6	3
597	Roadmap for rechargeable batteries: present and beyond. Science China Chemistry, 0, , .	4.2	0
614	Best practices for zinc metal batteries. Nature Sustainability, 2024, 7, 98-99.	11.5	1

		CITATION REPORT	
#	ARTICLE	IF	CITATIONS
615	Metal-organic frameworks and their derivatives for metal-air batteries. , 2024, , 221-257.		0
623	Double-sided engineering for space-confined reversible Zn anodes. Energy and Environmental Scien 2024, 17, 1894-1903.	ce, 15.6	0