From Liâ€Ion Batteries toward Naâ€Ion Chemistries: C

Advanced Energy Materials 10, 2001310 DOI: 10.1002/aenm.202001310

Citation Report

#	Article	IF	CITATIONS
1	A phosphite-based layered framework as a novel positive electrode material for Na-ion batteries. Journal of Materials Chemistry A, 2021, 9, 5045-5052.	5.2	7
2	The rise and rise of lithium. Nature Chemistry, 2021, 13, 107-109.	6.6	25
3	A g-C3N4-coated paper-based separator for sodium metal batteries. Journal of Solid State Electrochemistry, 2021, 25, 1373-1381.	1.2	7
4	Preparation and electrochemical properties of ionic-liquid-modified Na3SbS4 membrane composite electrolytes. Journal of Materials Science, 2021, 56, 10565-10574.	1.7	9
5	Electrochemically Anodized V ₂ O ₅ as an Efficient Sodium Cathode. Energy & Fuels, 2021, 35, 8358-8364.	2.5	8
6	Effect of the Mn/V ratio to optimize the kinetic properties of Na3+xMnxV1-xCr(PO4)3 positive electrode for sodium-ion batteries. Electrochimica Acta, 2021, 375, 137982.	2.6	15
7	Recent Advances on Sodiumâ€ion Batteries and Sodium Dualâ€ion Batteries: Stateâ€ofâ€theâ€Art Na ^{+Host Anode Materials. Small Science, 2021, 1, 2100014.}	up> 5.8	65
8	"Self-doping―defect engineering in SnP3@gamma-irradiated hard carbon anode for rechargeable sodium storage. Journal of Colloid and Interface Science, 2021, 592, 279-290.	5.0	7
9	Selfâ€Assembled VS ₄ Hierarchitectures with Enhanced Capacity and Stability for Sodium Storage. Energy and Environmental Materials, 2022, 5, 592-598.	7.3	30
10	2021 roadmap for sodium-ion batteries. JPhys Energy, 2021, 3, 031503.	2.3	125
11	Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendriteâ€Free Zn Ion Batteries Achieved by a Lowâ€Cost Glucose Additive. Angewandte Chemie - International Edition, 2021, 60, 18247-18255.	7.2	529
12	Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendriteâ€Free Zn Ion Batteries Achieved by a Lowâ€Cost Glucose Additive. Angewandte Chemie, 2021, 133, 18395-18403.	1.6	97
13	Fast and highly reversible Na+ intercalation/extraction in Zn/Mg dual-doped P2-Na0.67MnO2 cathode material for high-performance Na-ion batteries. Nano Research, 2021, 14, 3531-3537.	5.8	35
14	Anionic redox reaction in Na-deficient layered oxide cathodes: Role of Sn/Zr substituents and in-depth local structural transformation revealed by solid-state NMR. Energy Storage Materials, 2021, 39, 60-69.	9.5	35
15	Promises and Challenges of <scp>Snâ€Based</scp> Anodes for <scp>Sodiumâ€Ion</scp> Batteries ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2931-2942.	2.6	11
16	Insights of the Electrochemical Reversibility of P2-Type Sodium Manganese Oxide Cathodes via Modulation of Transition Metal Vacancies. ACS Applied Materials & Interfaces, 2021, 13, 38305-38314.	4.0	13
17	Oxocarbons Electrode Materials for Alkali Ion Batteries: Challenges, Strategies and Development. Batteries and Supercaps, 2021, 4, 1791-1802.	2.4	2
18	Sucrose–Thiourea-Derived Nitrogen and Sulfur Co-doped Hierarchically Porous Carbon Nanosheets as a High-Performance Negative Electrode for Sodium-Ion Batteries. Energy & Fuels, 2021, 35, 16174-16182	2.5	5

#	Article	IF	CITATIONS
19	Ab initio study of the structural and electronic properties of Al/Mg-doped NaMO2 (M = V, Cr and Ni) for sodium-ion batteries application. Theoretical Chemistry Accounts, 2021, 140, 1.	0.5	3
20	N, O and S co-doped hierarchical porous carbon derived from a series of samara for lithium and sodium storage: Insights into surface capacitance and inner diffusion. Journal of Colloid and Interface Science, 2021, 598, 250-259.	5.0	30
21	Advanced Nanocelluloseâ€Based Composites for Flexible Functional Energy Storage Devices. Advanced Materials, 2021, 33, e2101368.	11.1	251
22	Supercritical CO2 foaming strategy to fabricate nitrogen/oxygen co-doped bi-continuous nanoporous carbon scaffold for high-performance potassium-ion storage. Journal of Power Sources, 2021, 507, 230275.	4.0	6
23	Rational Design of Yolk–Shell ZnCoSe@Nâ€Doped Dual Carbon Architectures as Longâ€Life and Highâ€Rate Anodes for Half/Full Naâ€Ion Batteries. Small, 2021, 17, e2101887.	5.2	46
24	Structural engineering of electrode materials to boost high-performance sodium-ion batteries. Cell Reports Physical Science, 2021, 2, 100551.	2.8	19
25	First-principles investigation on the crystal, electronic structures and diffusion barriers of F-doped NaMO2 (M=V, Cr, Co and Ni) for rechargeable Na-ion batteries. Journal of Solid State Chemistry, 2021, 302, 122440.	1.4	3
26	High ionic conductivity and stable phase Na11.5Sn2Sb0.5Ti0.5S12 for all-solid-state sodium batteries. Journal of Power Sources, 2021, 512, 230485.	4.0	10
27	Strong oxidation induced quinone-rich dopamine polymerization onto porous carbons as ultrahigh-capacity organic cathode for sodium-ion batteries. Energy Storage Materials, 2021, 43, 120-129.	9.5	26
28	N-doped and oxygen vacancy-rich NiCo2O4 nanograss for supercapacitor electrode. Chemical Engineering Journal, 2022, 429, 132242.	6.6	124
29	A safe, low-cost and high-efficiency presodiation strategy for pouch-type sodium-ion capacitors with high energy density. Journal of Energy Chemistry, 2022, 64, 442-450.	7.1	24
30	Stable cycling of Prussian blue/Zn battery in a nonflammable aqueous/organic hybrid electrolyte. RSC Advances, 2021, 11, 30383-30391.	1.7	8
31	Amorphization driven Na-alloying in Si _{<i>x</i>} Ge _{1â^²<i>x</i>} alloy nanowires for Na-ion batteries. Journal of Materials Chemistry A, 2021, 9, 20626-20634.	5.2	12
32	Recyclable amphiphilic porous thin-films as electrodes for high-performance potassium-ion transport and storage. Materials Chemistry Frontiers, 2021, 5, 3099-3109.	3.2	3
33	Sponge-like NaFe ₂ PO ₄ (SO ₄) ₂ @rGO as a high-performance cathode material for sodium-ion batteries. New Journal of Chemistry, 2021, 45, 4854-4859.	1.4	7
34	Modulation of MoS ₂ interlayer dynamics by <i>in situ</i> N-doped carbon intercalation for high-rate sodium-ion half/full batteries. Nanoscale, 2021, 13, 18322-18331.	2.8	9
35	Recent Advanced Development of Artificial Interphase Engineering for Stable Sodium Metal Anodes. Small, 2022, 18, e2102250.	5.2	46
36	Recent Advances in Heterostructured Carbon Materials as Anodes for Sodiumâ€Ion Batteries. Small Structures, 2021, 2, .	6.9	80

#	Article	IF	CITATIONS
37	An experimental and modeling study of sodium-ion battery electrolytes. Journal of Power Sources, 2021, 516, 230658.	4.0	7
38	Validating the Structural (In)stability of P3- and P2-Na _{0.67} Mg _{0.1} Mn _{0.9} O ₂ -Layered Cathodes for Sodium-Ion Batteries: A Time-Decisive Approach. ACS Applied Materials & Interfaces, 2021, 13, 53877-53891.	4.0	10
39	Sodium-ion battery technology: Advanced anodes, cathodes and electrolytes. Journal of Physics: Conference Series, 2021, 2109, 012004.	0.3	5
40	Comparing lithium―and sodiumâ€ion batteries for their applicability within energy storage systems. Energy Storage, 2022, 4, .	2.3	4
41	Physics-based modeling of sodium-ion batteries part I: Experimental parameter determination. Electrochimica Acta, 2022, 404, 139726.	2.6	3
42	Physics-based modeling of sodium-ion batteries part II. Model and validation. Electrochimica Acta, 2022, 404, 139764.	2.6	3
43	An In-depth analysis of the electrochemical processing parameters for monolithic solid electrolyte interphase (SEI) formation at Ti-SiO @C anode for high performance Lithium-ion batteries. Chemical Engineering Journal, 2022, 432, 134282.	6.6	3
44	High-Voltage Polyanion Positive Electrode Materials. Molecules, 2021, 26, 5143.	1.7	6
45	High-performance Ni/Fe-codoped manganese hexacyanoferrate by scale-up synthesis for practical Na-ion batteries. Materials Today Sustainability, 2022, 18, 100113.	1.9	6
46	Oxides free materials as anodes for sodium-ion batteries. , 2022, , 177-199.		1
47	Coupling of 3D Porous Hosts for Li Metal Battery Anodes with Viscous Polymer Electrolytes. Journal of the Electrochemical Society, 2022, 169, 010511.	1.3	2
48	Green economy and waste management: An inevitable plan for materials science. Progress in Natural Science: Materials International, 2022, 32, 1-9.	1.8	59
49	Regulated Synthesis of α-NaVOPO ₄ with an Enhanced Conductive Network as a High-Performance Cathode for Aqueous Na-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 6841-6851.	4.0	12
50	Application of Guar Gum and its Derivatives as Green Binder/Separator for Advanced Lithiumâ€lon Batteries. ChemistryOpen, 2022, 11, e202100209.	0.9	10
51	Revealing Na-segregation at the Si/Graphene Interface and Its Implications toward the Na-storage Behavior of Si-Based Electrodes. ACS Applied Materials & Interfaces, 2022, , .	4.0	1
52	Dual-Functional C-Composited Na _{3.16} Fe _{2.42} (P) Tj ETQq1 1 0.78 Electrochemical Performances for Sodium Ion Battery. SSRN Electronic Journal, 0, , .	34314 rgB 0.4	T /Overlock 0
53	Magnesene: a theoretical prediction of a metallic, fast, high-capacity, and reversible anode material for sodium-ion batteries. Nanoscale, 2022, 14, 6118-6125.	2.8	13
54	Ge nanowires on top of a Ge substrate for applications in anodes of Li and Na ion batteries: a first-principles study. RSC Advances, 2022, 12, 9163-9169.	1.7	6

#	Article	IF	CITATIONS
55	Transport and Electrochemical Properties of Na _{<i>x</i>} Fe _{1– <i>y</i>} Mn _{<i>y</i>} O ₂ â€Cathode Materials for Naâ€Ion batteries. Experimental and Theoretical Studies. Energy Technology, 2022, 10, 2101105.	1.8	2
56	Electrolyte Modification for Long‣ife Zn Ion Batteries: Achieved by Methanol Additive. ChemElectroChem, 2022, 9, .	1.7	13
57	Inâ€situ Polymerized Gel Polymer Electrolytes with High Roomâ€Temperature Ionic Conductivity and Regulated Na ⁺ Solvation Structure for Sodium Metal Batteries. Advanced Functional Materials, 2022, 32, .	7.8	31
58	Selfâ€Sacrifice Template Construction of Uniform Yolk–Shell ZnS@C for Superior Alkaliâ€Ion Storage. Advanced Science, 2022, 9, e2200247.	5.6	46
59	From spent lithium-ion batteries to high performance sodium-ion batteries: a case study. Materials Today Energy, 2022, 26, 100997.	2.5	7
60	A significant enhancement of cycling stability at fast charging rate through incorporation of Li3N into LiF-based SEI in SiO anode for Li-ion batteries. Electrochimica Acta, 2022, 412, 140107.	2.6	17
61	Superior cycling stability of saturated graphitic carbon nitride in hydrogel reduced graphene oxide anode for Sodium-ion battery. FlatChem, 2022, 33, 100351.	2.8	9
62	Tungsten and oxygen co-doped stable tetragonal phase Na3SbS4 with ultrahigh ionic conductivity for all-solid-state sodium batteries. Applied Materials Today, 2022, 27, 101448.	2.3	16
63	Strengthened the structural stability of in-situ Fâ^' doping Ni-rich LiNi0.8Co0.15Al0.05O2 cathode materials for lithium-ion batteries. Chemical Engineering Journal, 2022, 438, 135537.	6.6	50
64	A silk sericin-confined in-situ synthesis strategy: Fe7S8 inserted N,S co-doped carbon nano-aggregates for high-performance sodium storage. Journal of Alloys and Compounds, 2022, 910, 164875.	2.8	6
65	Effects of Nitriles additives on performances of SiOx/Graphite NCM811 pouch cell at elevated temperature. International Journal of Electrochemical Science, 0, , ArticleID:220549.	0.5	1
66	Expanded solid-solution behavior and charge-discharge asymmetry in NaxCrO2 Na-ion battery electrodes. Journal of Power Sources, 2022, 535, 231317.	4.0	8
67	<i>In situ</i> preparation of an anatase/rutile-TiO ₂ /Ti ₃ C ₂ T _{<i>x</i>} hybrid electrode for durable sodium ion batteries. RSC Advances, 2022, 12, 12219-12225.	1.7	1
68	Electrode materials for reversible sodium ions de/intercalation. , 2022, , .		1
69	Unfolding the structural features of NASICON materials for sodiumâ€ion full cells. , 2022, 4, 776-819.		39
70	Building a flexible and applicable sodium ion full battery based on self-supporting large-scale CNT films intertwined with ultra-long cycling NiCo ₂ S ₄ . Nanoscale, 2022, 14, 10226-10235.	2.8	6
71	Computational delving into conceivable thermoelectric and spintronic applications of NH ₄ AF ₃ (AÂ=ÂFe and Co) ferromagnets. Canadian Journal of Physics, 2022, 100, 319-328.	0.4	1
72	Understanding of Sodium Storage Mechanism in Hard Carbons: Ongoing Development under Debate. Advanced Energy Materials, 2022, 12, .	10.2	88

#	ARTICLE	IF	CITATIONS
73	Plant-derived hard carbon as anode for sodium-ion batteries: A comprehensive review to guide interdisciplinary research. Chemical Engineering Journal, 2022, 447, 137468.	6.6	63
74	Investigation of ion-electrode interactions of linear polyimides and alkali metal ions for next generation alternative-ion batteries. Chemical Science, 2022, 13, 9191-9201.	3.7	11
75	Chemomechanics of Rechargeable Batteries: Status, Theories, and Perspectives. Chemical Reviews, 2022, 122, 13043-13107.	23.0	59
76	<scp>P2</scp> â€type <scp> Na _{<i>x</i>} TmO ₂ </scp> oxides as cathodes for <scp>nonâ€aqueous</scp> sodiumâ€ion batteries—Structural evolution and commercial prospects. International Journal of Energy Research, 2022, 46, 21894-21927.	2.2	5
77	Hierarchical MoS ₂ Nanotubes Supported by Tubular CoS ₂ on Carbon Cloth as Flexible Electrodes for Durable Lithium-Ion Storage. ACS Applied Energy Materials, 2022, 5, 10056-10066.	2.5	4
78	Applicationâ€Based Prospects for Dualâ€Ion Batteries. ChemSusChem, 2023, 16, .	3.6	4
79	Critical overview of polyanionic frameworks as positive electrodes for Na-ion batteries. Journal of Materials Research, 2022, 37, 3169-3196.	1.2	8
80	Molten Salts Etching Route Driven Universal Construction of MXene/Transition Metal Sulfides Heterostructures with Interfacial Electronic Coupling for Superior Sodium Storage. Advanced Energy Materials, 2022, 12, .	10.2	58
81	Effects of nitrogen and sulfur atom regulation on electrochemical properties of Na3V2(PO4)2F3 cathode material for Na-ion batteries. Ceramics International, 2022, , .	2.3	3
82	Advanced sodium-ion capacitor based on antimony-carbon composite anode. Rare Metals, 2022, 41, 3360-3369.	3.6	9
83	Recent progresses and perspectives of VN-based materials in the application of electrochemical energy storage. Journal of Industrial and Engineering Chemistry, 2022, 114, 52-76.	2.9	5
84	Investigation of W6+-doped in high-nickel LiNi0.83Co0.11Mn0.06O2 cathode materials for high-performance lithium-ion batteries. Journal of Colloid and Interface Science, 2022, 628, 338-349.	5.0	15
85	Improved Na-ion kinetics of 1T MoS2 nanopatterned porous hard carbon as an ultra-long life anode. Electrochimica Acta, 2022, 432, 141130.	2.6	4
86	Performance analysis of Na-ion batteries by machine learning. Journal of Power Sources, 2022, 549, 232126.	4.0	5
87	Assessment of the first commercial Prussian blue based sodium-ion battery. Journal of Power Sources, 2022, 548, 232036.	4.0	22
88	A bifunctional nitrogen doped carbon network as the interlayer for dendrite-free Zn anode. Chemical Engineering Journal, 2023, 452, 139264.	6.6	9
89	A high-rate capability and energy density sodium ion full cell enabled by F-doped Na ₂ Ti ₃ O ₇ hollow spheres. Journal of Materials Chemistry A, 2022, 10, 23232-23243.	5.2	5
90	Theoretical Research of two-dimensional germanether in sodium-ion battery. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	0

#	Article	IF	CITATIONS
91	Battery Cell Temperature Sensing Towards Smart Sodium-Ion Cells for Energy Storage Applications. , 2022, , .		1
93	Polycyclic Aromatic Hydrocarbon-Enabled Wet Chemical Prelithiation and Presodiation for Batteries. Batteries, 2022, 8, 99.	2.1	7
94	Safety Evaluation of a Sodium-Ion Cell: Assessment of Vent Gas Emissions under Thermal Runaway. ACS Energy Letters, 2022, 7, 3386-3391.	8.8	4
95	Structureâ€Activity Relationships of a Niâ€MOF, a Niâ€MOFâ€rGO, and pyrolyzed Ni/C@rGO Structures for Sodium―ion Batteries. ChemistrySelect, 2022, 7, .	0.7	2
96	Chemical presodiation of alloy anodes with improved initial coulombic efficiencies for the advanced sodium-ion batteries. Journal of Applied Electrochemistry, 2023, 53, 9-18.	1.5	3
97	Scalable Preparation of Mn/Ni Binary Prussian Blue as Sustainable Cathode for Harsh-Condition-Tolerant Sodium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 13277-13287.	3.2	8
98	Interfacial Bonding of SnSb Alloys with Graphene toward Ultrafast and Cycle-Stable Na-Ion Battery Anodes. ACS Sustainable Chemistry and Engineering, 2022, 10, 12177-12187.	3.2	7
99	One-step synthesis of graphene-wrapped ZnS-MoS2@carbon composites as an ultrastable lithium storage anode material. Electrochimica Acta, 2022, 436, 141264.	2.6	5
100	A Surface Modification Strategy Towards Reversible Na-ion Intercalation on Graphitic Carbon Using Fluorinated Few-Layer Graphene. Journal of the Electrochemical Society, 2022, 169, 106522.	1.3	7
101	Na ⁺ -Activation Engineering in the Na ₃ V ₂ (PO ₄) ₃ Cathode with Boosting Kinetics for Fast-Charging Na-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 47685-47695.	4.0	14
102	Reforming Magnet Waste to Prussian Blue for Sustainable Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 47747-47757.	4.0	10
103	Prospective Sustainability Screening of Sodiumâ€ion Battery Cathode Materials. Advanced Energy Materials, 2022, 12, .	10.2	31
104	Facile fabrication of a series of Cu-doped Co3O4 with controlled morphology for alkali metal-ion batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656, 130459.	2.3	1
105	High-performance and sodiation mechanism of a pulse potential-electrodeposited Sb-Zn alloy as an anode for sodium-ion batteries. Applied Surface Science, 2023, 609, 155243.	3.1	5
106	Cu triggered phase transitions in Fe7S8@NS-C anode: A neglected factor affecting the electrochemical performance of sodium storage. Applied Surface Science, 2023, 609, 155407.	3.1	6
107	Weak coulomb interaction between anions and Na+ during solvation enabling desirable solid electrolyte interphase and superior kinetics for HC-based sodium ion batteries. Chemical Engineering Journal, 2023, 453, 139932.	6.6	7
108	Multi-layered MXene V4C3T as new low-voltage insertion anode for Na-ion battery applications. Electrochimica Acta, 2023, 437, 141505.	2.6	3
109	MoS2/MoO2 nanosheets anchored on carbon cloth for high-performance magnesium- and sodium-ion storage. Journal of Materials Science and Technology, 2023, 143, 43-53.	5.6	8

#	Article	IF	CITATIONS
110	Tracing the technology development and trends of hard carbon anode materials - A market and patent analysis. Journal of Energy Storage, 2022, 56, 105964.	3.9	9
111	Effects of Mg-doping on distorted structure and enhanced electrochemical performance of V1-Mg O2 nanorods. Materials Today Communications, 2022, 33, 104948.	0.9	1
112	Na2Mn(CO3)2: A carbonate based prototype cathode material for Na-ion batteries with high rate capability — An ab-initio study. Electrochimica Acta, 2023, 439, 141687.	2.6	1
113	Building optimal SEI through control of morphology and chemical composition for high-performance lithium-ion batteries. Applied Surface Science, 2023, 612, 155888.	3.1	1
114	3D heterojunction assembled via interlayer-expanded MoSe2 nanosheets anchored on N-doped branched TiO2@C nanofibers as superior anode material for sodium-ion batteries. Journal of Alloys and Compounds, 2023, 938, 168350.	2.8	5
115	Effect of Electrolyte Additives on the Performance of Zinc Ion Batteries. International Journal of Electrochemical Science, 2022, 17, 221250.	0.5	1
116	Unexpectedly High Cycling Stability Induced by a High Charge Cutâ€Off Voltage of Layered Sodium Oxide Cathodes. Advanced Energy Materials, 2023, 13, .	10.2	16
117	Recent Advances in the Preparation and Performance of Porous Titanium-Based Anode Materials for Sodium-Ion Batteries. Energies, 2022, 15, 9495.	1.6	10
118	Two dimensional MnPSe3 layer stacking composites with superior storage performance for alkali metal-ion batteries. Journal of Colloid and Interface Science, 2023, 635, 336-347.	5.0	6
119	Fe, Ni-modified ZIF-8 as a tensive precursor to derive N-doped carbon as Na and Li-ion batteries anodes. Nanotechnology, 2023, 34, 085401.	1.3	5
120	Coral-like cobalt selenide/carbon nanosheet arrays attached on carbon nanofibers for high-rate sodium-ion storage. Rare Metals, 2023, 42, 916-928.	3.6	20
121	Structure evolution of layered transition metal oxide cathode materials for Na-ion batteries: Issues, mechanism and strategies. Materials Today, 2023, 62, 271-295.	8.3	18
122	Flexible hardâ^'soft carbon heterostructure based on mesopore confined carbonization for ultrafast and highly durable sodium storage. Carbon, 2023, 205, 310-320.	5.4	11
123	Terminal Groupâ€Oriented Selfâ€Assembly to Controllably Synthesize a Layerâ€byâ€Layer SnSe ₂ and MXene Heterostructure for Ultrastable Lithium Storage. Small, 2023, 19, .	5.2	33
124	Activating zinc-ion storage in MXene through Mn ⁴⁺ loading on surface terminations. New Journal of Chemistry, 0, , .	1.4	0
125	Constructing SnS/Fe2O3 heterostructure anchored on few-layered graphene as an ion-adsorption/diffusion enhancer for ultrafast and cycle-stable sodium storage. Chemical Engineering Journal, 2023, 457, 141243.	6.6	8
126	Revealing the Phase Evolution in Na ₄ Fe _{<i>x</i>} P ₄ O _{12+<i>x</i>} (2 ≤i>x ≤4) Cathode Materials. ACS Energy Letters, 2023, 8, 753-761.	8.8	20
127	Hard carbon anodes derived from phenolic resin/sucrose crossâ€linking network for highâ€performance sodiumâ€ion batteries. , 2023, 2, .		20

ARTICLE IF CITATIONS Sacrificial Catalyst of Carbothermal-Shock-Synthesized 1T-MoS₂ Layers for 128 4.5 4 Ultralong-Lifespan Seawater Battery. Nano Letters, 2023, 23, 344-352. The synergistic effect of Ti and Nb in TiNbC leads to enhanced anode performance for Na-ion batteries -129 1.2 first-principles calculations. Physica Scripta, 2023, 98, 025710. Assessment of the calendar aging of lithium-ion batteries for a long-termâ€"Space missions. Frontiers 130 1.2 6 in Energy Research, 0, 11, . Design advanced nitrogen/oxygen co-doped hard carbon microspheres from phenolic resin with 4.0 boosted Na-storage performance. Journal of Power Sources, 2023, 564, 232879. Promoting amorphization of commercial TiO2 upon sodiation to boost the sodium storage 132 7.1 5 performance. Journal of Energy Chemistry, 2023, 81, 379-388. Mild pretreatment synthesis of coal-based phosphorus-doped hard carbon with extended plateau capacity as anodes for sodium-ion batteries. Journal of Alloys and Compounds, 2023, 946, 169384. 2.8 Selfâ€Formed Fluorinated Interphase with Fe Valence Gradient for Dendriteâ€Free Solidâ€State Sodiumâ€Metal 134 7.8 5 Batteries. Advanced Functional Materials, 2024, 34, . Recent progress of Mn-based NASICON-type sodium ion cathodes. Energy Storage Materials, 2023, 57, 16 69-80. Surface-driven fast sodium storage enabled by Se-doped honeycomb-like macroporous carbon. Physical 136 1.3 1 Chemistry Chemical Physics, 2023, 25, 7213-7222. In-situ synthesis of covalently-bonded SnS2/FeS2 heterostructures for high rate sodium storage. 6.6 Chemical Engineering Journal, 2023, 460, 141827. Moving toward Smart Hybrid Vertical Carbon/MoS₂ Binder-Free Electrodes for 138 4 3.2 High-Performing Sodium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2023, 11, 3260-3269. Nanometer-thin ZrO₂ Coating for NiO on MWCNTs as Anode for Improved Performance of 2.4 Sodium-Ion Batteries. ACS Applied Nano Materials, 2023, 6, 2507-2516. Oxygen Redox Activation at Initial Cycle to Improve Cycling Stability for the Na_{0.83}Li_{0.12}Ni_{0.22}Mn_{0.66}O₂ System. ACS 140 4.0 1 Applied Materials & amp; Interfaces, 2023, 15, 10709-10717. Lowâ€Temperature Carbonized Nitrogenâ€Doped Hard Carbon Nanofiber Toward Highâ€Performance Sodiumâ€Ion Capacitors. Energy and Environmental Materials, 2023, 6, . 141 Unveiling a high capacity multi-redox (Nb⁵⁺/Nb⁴⁺/Nb³⁺) NASICON-Nb₂(PO₄)₃ anode for Li- and Na-ion batteries. Journal of Materials Chemistry A, 2023, 11, 8173-8183. 142 5.27 Metalâ€Organic Assembly Strategy for the Synthesis of Layered Metal Chalcogenide Anodes for 143 Na⁺/K⁺â€Ion Batteries. ChemSusChem, 2023, 16, . A perspective on the role of anions in highly concentrated aqueous electrolytes. Energy and 144 15.6 37 Environmental Science, 2023, 16, 1480-1501. xmlns:mml= http://www.w3.org/1998/Math/MathML_display= inline overflow="scroll"></mml:mi>Na</mml:mi></mml:math></mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" 145 1.5 overflow="scroll"><mml:msub><mml:mi /><mml:mn>3</mml:mn></mml:msub></mml:math><mml:math

#	Article	IF	CITATIONS
146	A Systematic Study on the Effects of Solvating Solvents and Additives in Localized High oncentration Electrolytes over Electrochemical Performance of Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
147	A Systematic Study on the Effects of Solvating Solvents and Additives in Localized Highâ€Concentration Electrolytes over Electrochemical Performance of Lithiumâ€Ion Batteries. Angewandte Chemie, 2023, 135, •	1.6	3
148	Ammonium Ion Batteries: Material, Electrochemistry and Strategy. Angewandte Chemie - International Edition, 2023, 62, .	7.2	32
149	Ammonium Ion Batteries: Material, Electrochemistry and Strategy. Angewandte Chemie, 2023, 135, .	1.6	2
150	Progress and Perspectives for Solarâ€Driven Water Electrolysis to Produce Green Hydrogen. Advanced Energy Materials, 2023, 13, .	10.2	28
151	Ultralow diffusion barrier induced by intercalation in layered N-based cathode materials for sodium-ion batteries. RSC Advances, 2023, 13, 8182-8189.	1.7	1
152	Boosting sodium-storage properties of hierarchical Na3V2(PO4)3@C micro-flower cathodes by tiny Cr doping: The effect of "four ounces moving a thousand pounds― Nano Research, 2024, 17, 235-244.	5.8	7
153	Microstructure regulation of resin-based hard carbons <i>via</i> esterification cross-linking for high-performance sodium-ion batteries. Inorganic Chemistry Frontiers, 2023, 10, 2404-2413.	3.0	3
154	Opportunities for moderate-range electric vehicles using sustainable sodium-ion batteries. Nature Energy, 2023, 8, 215-218.	19.8	64
155	Intrinsic effects of precursor functional groups on the Na storage performance in carbon anodes. Nano Research, 0, , .	5.8	2
157	The Anode Materials for Lithiumâ€lon and Sodiumâ€lon Batteries Based on Conversion Reactions: a Review. ChemElectroChem, 2023, 10, .	1.7	12
158	The Status of Representative Anode Materials for Lithiumâ€ion Batteries. Chemical Record, 2023, 23, .	2.9	19
159	Revealing alkali metal ions transport mechanism in the atomic channels of Au@α-MnO2. Journal of Energy Chemistry, 2023, 82, 350-358.	7.1	2
160	Ultra-fine SnO ₂ nanocrystals anchored on reduced graphene oxide as a high-performance anode material for sodium-ion batteries. Nanotechnology, 2023, 34, 325602.	1.3	4
161	Heterostructured NiS/TiO ₂ Nanosheets Assembled into Microflowers with Enhanced Cycling Stability for Sodium-Ion Storage. ACS Applied Energy Materials, 2023, 6, 4971-4981.	2.5	1
178	Crystal Facet Design in Layered Oxide Cathode Enables Low-Temperature Sodium-Ion Batteries. , 2023, 5, 2233-2242.		7
179	Recycling of sodium-ion batteries. Nature Reviews Materials, 2023, 8, 623-634.	23.3	32
190	NaCrO ₂ @C Flexible Free-standing Cathode via Electrospinning Technique for Sodium Ion Batteries. Chemical Communications, 0, , .	2.2	0

#	Article	IF	CITATIONS
195	Controllable fabrication of vanadium selenium nanosheets for a high-performance Na-ion battery anode. Chemical Communications, 2023, 59, 11365-11368.	2.2	1
201	Fluorophosphates and fluorosulfates cathode materials: Progress towards high energy density sodium-ion battery. Nano Research, 2024, 17, 1427-1440.	5.8	0
225	Modular preparation of functional bimetallic spinels from metal–organic frameworks: a deep exploration from macro and micro perspectives. Journal of Materials Chemistry A, O, , .	5.2	0
242	Comprehensive analysis and mitigation strategies for safety issues of sodium-ion batteries. Rare Metals, 2024, 43, 1343-1349.	3.6	0