Highly selective electrocatalytic CO2 reduction to ethan dynamically formed from atomically dispersed copper

Nature Energy 5, 623-632 DOI: 10.1038/s41560-020-0666-x

Citation Report

#	Article	IF	CITATIONS
1	Regulating the coordination structure of metal single atoms for efficient electrocatalytic CO ₂ reduction. Energy and Environmental Science, 2020, 13, 4609-4624.	15.6	188
2	Active and Selective Ensembles in Oxide-Derived Copper Catalysts for CO ₂ Reduction. ACS Energy Letters, 2020, 5, 3176-3184.	8.8	71
3	Photo-electrochemical CO ₂ reduction at CuInS ₂ thin-film cathodes modified with CuIn alloy particles derived from Cu ₂ O particles. Composite Interfaces, 2021, 28, 1053-1066.	1.3	3
4	From doubleâ€atom catalysts to singleâ€eluster catalysts: A new frontier in heterogeneous catalysis. Nano Select, 2021, 2, 251-270.	1.9	40
5	Recent Advances in Strategies for Improving the Performance of CO ₂ Reduction Reaction on Single Atom Catalysts. Small Science, 2021, 1, 2000028.	5.8	57
6	Unveiling the effects of dimensionality of tin oxide-derived catalysts on CO ₂ reduction by using gas-diffusion electrodes. Reaction Chemistry and Engineering, 2021, 6, 345-352.	1.9	20
7	Ag@ZnO porous nanoparticle wrapped by rGO for the effective CO2 electrochemical reduction. Chemical Engineering Science, 2021, 232, 116381.	1.9	30
8	NiSn Atomic Pair on an Integrated Electrode for Synergistic Electrocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 7382-7388.	7.2	137
9	Efficient Electrocatalytic CO2 Reduction to C2+ Alcohols at Defect-Site-Rich Cu Surface. Joule, 2021, 5, 429-440.	11.7	194
10	Photocatalytic and electrocatalytic transformations of C1 molecules involving C–C coupling. Energy and Environmental Science, 2021, 14, 37-89.	15.6	110
11	Sizeâ€Dependent Activity and Selectivity of Atomicâ€Level Copper Nanoclusters during CO/CO ₂ Electroreduction. Angewandte Chemie, 2021, 133, 470-476.	1.6	16
12	Sizeâ€Dependent Activity and Selectivity of Atomicâ€Level Copper Nanoclusters during CO/CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2021, 60, 466-472.	7.2	130
13	Synergistic carbon and hydrogen reactions in the electrochemical reduction of CO ₂ to liquid fuels. Journal of Materials Chemistry A, 2021, 9, 10546-10561.	5.2	18
14	Pt ₁ –O ₄ as active sites boosting CO oxidation <i>via</i> a non-classical Mars–van Krevelen mechanism. Catalysis Science and Technology, 2021, 11, 3578-3588.	2.1	5
15	CO ₂ valorisation towards alcohols by Cu-based electrocatalysts: challenges and perspectives. Green Chemistry, 2021, 23, 1896-1920.	4.6	32
16	Engineering a conductive network of atomically thin bismuthene with rich defects enables CO ₂ reduction to formate with industry-compatible current densities and stability. Energy and Environmental Science, 2021, 14, 4998-5008.	15.6	119
17	Designing electrode materials for the electrochemical reduction of carbon dioxide. Materials Horizons, 2021, 8, 2420-2443.	6.4	18
18	Screening of transition metal doped copper clusters for CO ₂ activation. Physical Chemistry Chemical Physics, 2021, 23, 21738-21747.	1.3	9

#	Article	IF	CITATIONS
19	Structure Sensitivity in Single-Atom Catalysis toward CO ₂ Electroreduction. ACS Energy Letters, 2021, 6, 713-727.	8.8	149
20	Electrochemical oxidation of biomass derived 5-hydroxymethylfurfural (HMF): pathway, mechanism, catalysts and coupling reactions. Green Chemistry, 2021, 23, 4228-4254.	4.6	191
21	Electrochemical CO ₂ Reduction to Ethanol with Copper-Based Catalysts. ACS Energy Letters, 2021, 6, 694-706.	8.8	130
22	Operando XAS/SAXS: Guiding Design of Singleâ€Atom and Subnanocluster Catalysts. Small Methods, 2021, 5, e2001194.	4.6	41
23	Structural transformations of solid electrocatalysts and photocatalysts. Nature Reviews Chemistry, 2021, 5, 256-276.	13.8	93
24	Active Site Engineering in Transition Metal Based Electrocatalysts for Green Energy Applications. Accounts of Materials Research, 2021, 2, 147-158.	5.9	11
25	NiSn Atomic Pair on an Integrated Electrode for Synergistic Electrocatalytic CO ₂ Reduction. Angewandte Chemie, 2021, 133, 7458-7464.	1.6	25
26	Electrodeposition of Ni on MWNTs as a promising catalyst for CO ₂ RR. Energy Science and Engineering, 2021, 9, 1042-1047.	1.9	10
27	Adsorption and Activation of CO ₂ on Small-Sized Cu–Zr Bimetallic Clusters. Journal of Physical Chemistry A, 2021, 125, 2558-2572.	1.1	25
28	Analysis of the possibility and molecular mechanism of carbon dioxide consumption in the Diels-Alder processes. Pure and Applied Chemistry, 2021, 93, 427-446.	0.9	19
29	Recent Advancements of Porphyrin‣ike Singleâ€Atom Catalysts: Synthesis and Applications. Small Structures, 2021, 2, 2100007.	6.9	77
30	Core-Shell ZnO@Cu2O as Catalyst to Enhance the Electrochemical Reduction of Carbon Dioxide to C2 Products. Catalysts, 2021, 11, 535.	1.6	13
31	Designing Copperâ€Based Catalysts for Efficient Carbon Dioxide Electroreduction. Advanced Materials, 2021, 33, e2005798.	11.1	145
32	Recent Advances in Catalyst Structure and Composition Engineering Strategies for Regulating CO ₂ Electrochemical Reduction. Advanced Materials, 2021, 33, e2005484.	11.1	100
33	Selectivity Map for the Late Stages of CO and CO ₂ Reduction to C ₂ Species on Copper Electrodes. Angewandte Chemie - International Edition, 2021, 60, 10784-10790.	7.2	30
34	Oxygenated Transport Fuels from Carbon Dioxide. Johnson Matthey Technology Review, 2021, 65, 170-179.	0.5	7
35	Selectivity Map for the Late Stages of CO and CO 2 Reduction to C 2 Species on Copper Electrodes. Angewandte Chemie, 2021, 133, 10879-10885.	1.6	3
36	Rational design of copper-based electrocatalysts and electrochemical systems for CO2 reduction: From active sites engineering to mass transfer dynamics. Materials Today Physics, 2021, 18, 100354.	2.9	39

#	Article	IF	CITATIONS
37	A review of non-noble metal-based electrocatalysts for CO2 electroreduction. Rare Metals, 2021, 40, 3019.	3.6	74
38	A review of energy materials studied by in situ/operando synchrotron x-ray spectro-microscopy. Journal Physics D: Applied Physics, 2021, 54, 343001.	1.3	12
39	Recent Progresses in Electrochemical Carbon Dioxide Reduction on Copperâ€Based Catalysts toward Multicarbon Products. Advanced Functional Materials, 2021, 31, 2102151.	7.8	123
40	CO ₂ electrolysis to multicarbon products in strong acid. Science, 2021, 372, 1074-1078.	6.0	541
41	Recent progress on single-atom catalysts for CO2 electroreduction. Materials Today, 2021, 48, 95-114.	8.3	63
42	Carbon nanosheets supporting Ni–N3S single-atom sites for efficient electrocatalytic CO2 reduction. Carbon, 2021, 178, 488-496.	5.4	48
43	Atomically Structural Regulations of Carbonâ€Based Singleâ€Atom Catalysts for Electrochemical CO ₂ Reduction. Small Methods, 2021, 5, e2100102.	4.6	61
44	Approaches to achieve surface sensitivity in the in situ XAS of electrocatalysts. Current Opinion in Electrochemistry, 2021, 27, 100681.	2.5	17
45	CdSâ€Enhanced Ethanol Selectivity in Electrocatalytic CO ₂ Reduction at Sulfideâ€Derived Cuâ^'Cd. ChemSusChem, 2021, 14, 2924-2934.	3.6	18
46	Microâ€Electrode with Fast Mass Transport for Enhancing Selectivity of Carbonaceous Products in Electrochemical CO ₂ Reduction. Advanced Functional Materials, 2021, 31, 2103966.	7.8	16
47	Singleâ€Atom Electrocatalysts for Multiâ€Electron Reduction of CO ₂ . Small, 2021, 17, e2101443.	5.2	44
48	Electrochemical CO ₂ Reduction on Transition-Metal Chalcogenide Catalysts: Recent Advances and Future Perspectives. Energy & Fuels, 2021, 35, 12869-12883.	2.5	33
49	Boosting CO ₂ Electroreduction over a Cadmium Singleâ€Atom Catalyst by Tuning of the Axial Coordination Structure. Angewandte Chemie, 2021, 133, 20971-20978.	1.6	16
50	Electrocatalytic Reactions for Converting CO ₂ to Valueâ€Added Products. Small Science, 2021, 1, 2100043.	5.8	66
51	Catalysts design for higher alcohols synthesis by CO2 hydrogenation: Trends and future perspectives. Applied Catalysis B: Environmental, 2021, 291, 120073.	10.8	90
52	Application of Xâ€Ray Absorption Spectroscopy in Electrocatalytic Water Splitting and CO ₂ Reduction. Small Science, 2021, 1, 2100023.	5.8	16
53	Manipulating Cu Nanoparticle Surface Oxidation States Tunes Catalytic Selectivity toward CH ₄ or C ₂₊ Products in CO ₂ Electroreduction. Advanced Energy Materials, 2021, 11, 2101424.	10.2	71
54	Boosting CO ₂ Electroreduction over a Cadmium Singleâ€Atom Catalyst by Tuning of the Axial Coordination Structure. Angewandte Chemie - International Edition, 2021, 60, 20803-20810.	7.2	86

#	Article	IF	CITATIONS
55	Mapping Composition–Selectivity Relationships of Supported Sub-10 nm Cu–Ag Nanocrystals for High-Rate CO ₂ Electroreduction. ACS Nano, 2021, 15, 14858-14872.	7.3	28
56	Regulation of the activity, selectivity, and durability of Cu-based electrocatalysts for CO2 reduction. Science China Chemistry, 2021, 64, 1660-1678.	4.2	38
57	Singleâ€Atom Catalysis: From Simple Reactions to the Synthesis of Complex Molecules. Advanced Materials, 2022, 34, e2103882.	11.1	38
58	Investigating the Effect of the Initial Valence States of Copper on CO ₂ Electroreduction. ChemElectroChem, 2021, 8, 3366-3370.	1.7	5
59	Role of oxygen in copper-based catalysts for carbon dioxide electrochemical reduction. Materials Today Physics, 2021, 20, 100443.	2.9	19
60	Insight into Structural Evolution, Active Sites, and Stability of Heterogeneous Electrocatalysts. Angewandte Chemie - International Edition, 2022, 61, .	7.2	140
61	Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nature Nanotechnology, 2021, 16, 1386-1393.	15.6	282
62	In Situ Growth and Activation of Ag/Ag ₂ S Nanowire Clusters by H ₂ S Plasma Treatment for Promoted Electrocatalytic CO ₂ Reduction. Advanced Sustainable Systems, 2021, 5, 2100256.	2.7	7
63	Insight into Structural Evolution, Active Sites, and Stability of Heterogeneous Electrocatalysts. Angewandte Chemie, 2022, 134, .	1.6	38
64	Catalyst Design for Electrochemical Reduction of CO ₂ to Multicarbon Products. Small Methods, 2021, 5, e2100736.	4.6	74
65	Atomic-Level Copper Sites for Selective CO ₂ Electroreduction to Hydrocarbon. ACS Sustainable Chemistry and Engineering, 2021, 9, 13536-13544.	3.2	14
66	Effects of the Catalyst Dynamic Changes and Influence of the Reaction Environment on the Performance of Electrochemical CO ₂ Reduction. Advanced Materials, 2022, 34, e2103900.	11.1	61
67	M-N-C-based single-atom catalysts for H2, O2 & amp; CO2 electrocatalysis: activity descriptors, active sites identification, challenges and prospects. Fuel, 2021, 304, 121420.	3.4	63
68	Efficient carboxylation of styrene and carbon dioxide by single-atomic copper electrocatalyst. Journal of Colloid and Interface Science, 2021, 601, 378-384.	5.0	27
69	A general strategy for obtaining BiOX nanoplates derived Bi nanosheets as efficient CO2 reduction catalysts by enhancing CO2•- adsorption and electron transfer. Journal of Colloid and Interface Science, 2021, 602, 740-747.	5.0	22
70	Toward efficient catalysts for electrochemical CO2 conversion to C2 products. Current Opinion in Electrochemistry, 2021, 30, 100807.	2.5	11
71	Exploring the CO2 reduction reaction mechanism on Pt/TiO2 with the ambient-pressure X-ray photoelectron spectroscopy. Applied Surface Science, 2021, 568, 150933.	3.1	4
72	Electrochemical CO2 reduction improved by tuning the Cu-Cu distance in halogen-bridged dinuclear cuprous coordination polymers. Journal of Catalysis, 2021, 404, 12-17.	3.1	5

#	Article	IF	CITATIONS
73	A perspective on the electrocatalytic conversion of carbon dioxide to methanol with metallomacrocyclic catalysts. Journal of Energy Chemistry, 2022, 64, 263-275.	7.1	28
74	C2 feedstock-based biomanufacturing of value-added chemicals. Current Opinion in Biotechnology, 2022, 73, 240-245.	3.3	16
75	Surface reconstruction induced highly efficient N-doped carbon nanosheet supported copper cluster catalysts for dimethyl carbonate synthesis. Applied Catalysis B: Environmental, 2022, 300, 120718.	10.8	18
76	Electrochemical CO ₂ reduction to ethanol: from mechanistic understanding to catalyst design. Journal of Materials Chemistry A, 2021, 9, 12474-12494.	5.2	36
77	Tuning metal single atoms embedded in N _x C _y moieties toward high-performance electrocatalysis. Energy and Environmental Science, 2021, 14, 3455-3468.	15.6	176
78	Carbonâ€Supported Single Metal Site Catalysts for Electrochemical CO ₂ Reduction to CO and Beyond. Small, 2021, 17, e2005148.	5.2	86
79	Recent advances in single atom catalysts for the electrochemical carbon dioxide reduction reaction. Chemical Science, 2021, 12, 6800-6819.	3.7	130
80	Direct growth of two-dimensional phthalocyanine-based COF on Cu-MOF to construct a photoelectrochemical-electrochemical dual-mode biosensing platform for high-efficiency determination of Cr(<scp>iii</scp>). Dalton Transactions, 2021, 50, 14285-14295.	1.6	19
81	Efficient electroreduction of CO ₂ to C ₂₊ products on CeO ₂ modified CuO. Chemical Science, 2021, 12, 6638-6645.	3.7	89
82	Wetting-regulated gas-involving (photo)electrocatalysis: biomimetics in energy conversion. Chemical Society Reviews, 2021, 50, 10674-10699.	18.7	63
83	The Hallmarks of Copper Single Atom Catalysts in Direct Alcohol Fuel Cells and Electrochemical CO ₂ Fixation. Advanced Materials Interfaces, 2021, 8, 2001822.	1.9	43
84	N-Bridged Co–N–Ni: new bimetallic sites for promoting electrochemical CO ₂ reduction. Energy and Environmental Science, 2021, 14, 3019-3028.	15.6	128
85	Electrocatalytic reduction of CO ₂ and CO to multi-carbon compounds over Cu-based catalysts. Chemical Society Reviews, 2021, 50, 12897-12914.	18.7	266
86	Electrochemical CO ₂ Reduction on Cu: Synthesisâ€Controlled Structure Preference and Selectivity. Advanced Science, 2021, 8, e2101597.	5.6	42
87	Single-Atom (Iron-Based) Catalysts: Synthesis and Applications. Chemical Reviews, 2021, 121, 13620-13697.	23.0	136
88	Factors Influencing the Performance of Copper-Bearing Catalysts in the CO ₂ Reduction System. ACS Energy Letters, 2021, 6, 3992-4022.	8.8	58
89	Control over Electrochemical CO ₂ Reduction Selectivity by Coordination Engineering of Tin Singleâ€Atom Catalysts. Advanced Science, 2021, 8, e2102884.	5.6	77
91	MOF-Directed Construction of Cu–Carbon and Cu@N-Doped Carbon as Superior Supports of Metal Nanoparticles toward Efficient Hydrogen Generation. ACS Applied Materials & Interfaces, 2021, 13, 52921-52930.	4.0	8

#	Article	IF	CITATIONS
92	Molecular Stabilization of Subâ€Nanometer Cu Clusters for Selective CO ₂ Electromethanation. ChemSusChem, 2022, 15, .	3.6	11
93	Inâ€Liquid Plasma for Surface Engineering of Cu Electrodes with Incorporated SiO ₂ Nanoparticles: From Micro to Nano. Advanced Functional Materials, 2022, 32, 2107058.	7.8	12
94	The targeted multi-electrons transfer for acetic acid and ethanol obtained with (n-Bu4N)3SVW11O40 and in synergetic catalysis in CO2 electroreduction. Journal of Power Sources, 2022, 517, 230665.	4.0	10
95	Electrochemical Reduction of Carbon Dioxide to Ethanol: A Review. ChemistrySelect, 2021, 6, 11603-11629.	0.7	9
96	Promoting ethylene production over a wide potential window on Cu crystallites induced and stabilized via current shock and charge delocalization. Nature Communications, 2021, 12, 6823.	5.8	61
97	Coupling electrochemical CO2 conversion with CO2 capture. Nature Catalysis, 2021, 4, 952-958.	16.1	272
98	Electrochemical Reductive N-Methylation with CO ₂ Enabled by a Molecular Catalyst. Journal of the American Chemical Society, 2021, 143, 19983-19991.	6.6	50
99	Metal-containing covalent organic framework: a new type of photo/electrocatalyst. Rare Metals, 2022, 41, 1160-1175.	3.6	16
100	Imparting CO ₂ Electroreduction Auxiliary for Integrated Morphology Tuning and Performance Boosting in a Porphyrinâ€based Covalent Organic Framework. Angewandte Chemie - International Edition, 2022, 61, e202114648.	7.2	78
101	Imparting CO ₂ Electroreduction Auxiliary for Integrated Morphology Tuning and Performance Boosting in a Porphyrinâ€based Covalent Organic Framework. Angewandte Chemie, 2022, 134, .	1.6	20
102	Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. , 2022, 1, 100013.		273
103	Nickel single-atom catalysts intrinsically promoted by fast pyrolysis for selective electroreduction of CO2 into CO. Applied Catalysis B: Environmental, 2022, 304, 120997.	10.8	73
104	Synchrotron-radiation spectroscopic identification towards diverse local environments of single-atom catalysts. Journal of Materials Chemistry A, 2022, 10, 5771-5791.	5.2	19
105	Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts. Coordination Chemistry Reviews, 2022, 454, 214340.	9.5	175
106	Rationalâ€Designed Principles for Electrochemical and Photoelectrochemical Upgrading of CO ₂ to Valueâ€Added Chemicals. Advanced Science, 2022, 9, e2105204.	5.6	75
108	Support-based modulation strategies in single-atom catalysts for electrochemical CO ₂ reduction: graphene and conjugated macrocyclic complexes. Journal of Materials Chemistry A, 2022, 10, 5699-5716.	5.2	13
109	Mechanistic routes toward C ₃ products in copper-catalysed CO ₂ electroreduction. Catalysis Science and Technology, 2022, 12, 409-417.	2.1	24
110	Understanding Synthesis and Structural Variation of Nanomaterials Through In Situ/Operando XAS and SAXS. Small, 2022, 18, e2106017.	5.2	18

#	Article	IF	CITATIONS
111	Tailoring the Surface and Interface Structures of Copperâ€Based Catalysts for Electrochemical Reduction of CO ₂ to Ethylene and Ethanol. Small, 2022, 18, e2107450.	5.2	87
112	The Enhanced Local Co Concentration for Efficient Co2 Electrolysis Towards C2 Products on Tandem Active Sites. SSRN Electronic Journal, 0, , .	0.4	0
113	Exposing Cu(100) Surface via Ion-Implantation-Induced Oxidization and Etching for Promoting Hydrogen Evolution Reaction. Langmuir, 2022, 38, 2993-2999.	1.6	5
114	Strong Correlation between the Dynamic Chemical State and Product Profile of Carbon Dioxide Electroreduction. ACS Applied Materials & amp; Interfaces, 2022, 14, 22681-22696.	4.0	30
115	An orientated mass transfer in Ni-Cu tandem nanofibers for highly selective reduction of CO2 to ethanol. Fundamental Research, 2023, 3, 786-795.	1.6	3
117	Lowâ€dimensional material supported singleâ€atom catalysts for electrochemical CO ₂ reduction. SmartMat, 2022, 3, 84-110.	6.4	46
118	Complementary Operando Spectroscopy identification of in-situ generated metastable charge-asymmetry Cu2-CuN3 clusters for CO2 reduction to ethanol. Nature Communications, 2022, 13, 1322.	5.8	113
119	Revealing the Pb Whisker Growth Mechanism from Al-Alloy Surface and Morphological Dependency on Material Stress and Growth Environment. Materials, 2022, 15, 2574.	1.3	2
120	Well-Defined Copper-Based Nanocatalysts for Selective Electrochemical Reduction of CO ₂ to C ₂ Products. ACS Energy Letters, 2022, 7, 1284-1291.	8.8	63
121	Molecular Catalysts for the Reductive Homocoupling of CO ₂ towards C ₂₊ Compounds. Angewandte Chemie, 2022, 134, .	1.6	7
122	Emerging Ultrahighâ€Density Singleâ€Atom Catalysts for Versatile Heterogeneous Catalysis Applications: Redefinition, Recent Progress, and Challenges. Small Structures, 2022, 3, .	6.9	41
123	Interfaced Ag/Cu nanostructures derived from metal thiolate nanoplates: A highly selective catalyst for electrochemical reduction of CO ₂ to ethanol. SmartMat, 2022, 3, 173-182.	6.4	7
124	Molecular Catalysts for the Reductive Homocoupling of CO ₂ towards C ₂₊ Compounds. Angewandte Chemie - International Edition, 2022, 61, .	7.2	38
125	Highly Active Oxygen Coordinated Configuration of Fe Singleâ€Atom Catalyst toward Electrochemical Reduction of CO ₂ into Multiâ€Carbon Products. Advanced Functional Materials, 2022, 32, .	7.8	37
126	Boosting the Productivity of Electrochemical CO ₂ Reduction to Multiâ€Carbon Products by Enhancing CO ₂ Diffusion through a Porous Organic Cage. Angewandte Chemie - International Edition, 2022, 61, .	7.2	43
127	Electrochemical CO2 reduction toward multicarbon alcohols - The microscopic world of catalysts & process conditions. IScience, 2022, 25, 104010.	1.9	32
128	Boosting the Productivity of Electrochemical CO ₂ Reduction to Multi arbon Products by Enhancing CO ₂ Diffusion through a Porous Organic Cage. Angewandte Chemie, 0, , .	1.6	0
129	Ultrasmall Cu Nanocrystals Dispersed in Nitrogen-Doped Carbon as Highly Efficient Catalysts for CO ₂ Electroreduction. ACS Applied Materials & amp; Interfaces, 2022, 14, 17240-17248.	4.0	8

#	Article	IF	CITATIONS
130	Reconstructing Cu Nanoparticle Supported on Vertical Graphene Surfaces via Electrochemical Treatment to Tune the Selectivity of CO ₂ Reduction toward Valuable Products. ACS Catalysis, 2022, 12, 4792-4805.	5.5	24
131	Rational catalyst design and interface engineering for electrochemical CO2 reduction to high-valued alcohols. Journal of Energy Chemistry, 2022, 70, 310-331.	7.1	34
132	Transition metal-based single-atom catalysts (TM-SACs); rising materials for electrochemical CO2 reduction. Journal of Energy Chemistry, 2022, 70, 444-471.	7.1	44
133	CO ₂ Conversion to Alcohols over Cu/ZnO Catalysts: Prospective Synergies between Electrocatalytic and Thermocatalytic Routes. ACS Applied Materials & Interfaces, 2022, 14, 517-530.	4.0	25
134	Engineering Electrochemical Surface for Efficient Carbon Dioxide Upgrade. Advanced Energy Materials, 2022, 12, .	10.2	33
135	Lithium Vacancyâ€Tuned [CuO ₄] Sites for Selective CO ₂ Electroreduction to C ₂₊ Products. Small, 2022, 18, e2106433.	5.2	13
136	Exclusive CO2-to-formate conversion over single-atom alloyed Cu-based catalysts. Green Energy and Environment, 2022, 7, 855-857.	4.7	18
137	Supported Subâ€Nanometer Clusters for Electrocatalysis Applications. Advanced Functional Materials, 2022, 32, .	7.8	25
138	Atomically Dispersed NiN ₃ Sites on Highly Defective Microâ€Mesoporous Carbon for Superior CO ₂ Electroreduction. Small, 2022, 18, e2107997.	5.2	16
139	Keeping sight of copper in single-atom catalysts for electrochemical carbon dioxide reduction. Nature Communications, 2022, 13, 2280.	5.8	55
140	Recent advances in the rational design of single-atom catalysts for electrochemical CO2 reduction. Nano Research, 2022, 15, 9747-9763.	5.8	19
141	Modeling Operando Electrochemical CO ₂ Reduction. Chemical Reviews, 2022, 122, 11085-11130.	23.0	66
142	Surveying the electrocatalytic CO2-to-CO activity of heterogenized metallomacrocycles via accurate clipping at the molecular level. Nano Research, 2022, 15, 10070-10077.	5.8	10
143	Tuning the Electronic and Steric Interaction at the Atomic Interface for Enhanced Oxygen Evolution. Journal of the American Chemical Society, 2022, 144, 9271-9279.	6.6	76
144	Carbon-efficient carbon dioxide electrolysers. Nature Sustainability, 2022, 5, 563-573.	11.5	95
145	Carbon Catalysts for Electrochemical CO ₂ Reduction toward Multicarbon Products. Advanced Energy Materials, 2022, 12, .	10.2	50
146	Expanding the use of ethanol as a feedstock for cell-free synthetic biochemistry by implementing acetyl-CoA and ATP generating pathways. Scientific Reports, 2022, 12, 7700.	1.6	6
147	Configuration of hetero-framework via integrating MOF and triazine-containing COF for charge-transfer promotion in photocatalytic CO2 reduction. Chemical Engineering Journal, 2022, 446, 137011.	6.6	24

#	Article	IF	CITATIONS
148	The degradation and recovery behavior of mixed-cation perovskite solar cells in moisture and a gas mixture environment. Journal of Materials Chemistry A, 2022, 10, 13519-13526.	5.2	10
149	Stabilization of Cu ⁺ via Strong Electronic Interaction for Selective and Stable CO ₂ Electroreduction. Angewandte Chemie, 2022, 134, .	1.6	6
150	Enhancing disaster resilience by sustainable technologies. Urban Governance, 2022, 2, 197-199.	0.9	3
151	Stabilization of Cu ⁺ via Strong Electronic Interaction for Selective and Stable CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	55
152	Metal-organic layers induce in situ nano-structuring of Cu surface in electrocatalytic CO2 reduction. Nano Research, 2023, 16, 4554-4561.	5.8	4
153	In Situ Structural Reconstruction to Generate the Active Sites for CO ₂ Electroreduction on Bismuth Ultrathin Nanosheets. Advanced Energy Materials, 2022, 12, .	10.2	40
154	Pathways to food from CO2 via †̃green chemical farming'. Nature Sustainability, 2022, 5, 907-909.	11.5	7
155	Electrocatalytic CO ₂ reduction towards industrial applications. , 2023, 5, .		41
156	Mediating CO ₂ Electroreduction Activity and Selectivity over Atomically Precise Copper Clusters. Angewandte Chemie - International Edition, 2022, 61, .	7.2	44
157	Mediating CO ₂ Electroreduction Activity and Selectivity over Atomically Precise Copper Clusters. Angewandte Chemie, 2022, 134, .	1.6	8
158	Electrochemical CO ₂ reduction on Cu single atom catalyst and Cu nanoclusters: an <i>ab initio</i> approach. Physical Chemistry Chemical Physics, 2022, 24, 15767-15775.	1.3	4
159	Carbon dioxide electroreduction into formic acid and ethylene: a review. Environmental Chemistry Letters, 2022, 20, 3555-3612.	8.3	17
160	Elucidating Reaction Pathways of the CO ₂ Electroreduction via Tailorable Tortuosities and Oxidation States of Cu Nanostructures. Advanced Functional Materials, 2022, 32, .	7.8	9
161	In-situ-derived self-selective electrocatalysts for solar formate production from simultaneous CO2 reduction and methanol oxidation. Cell Reports Physical Science, 2022, 3, 100972.	2.8	12
162	Frontiers of CO2 Capture and Utilization (CCU) towards Carbon Neutrality. Advances in Atmospheric Sciences, 2022, 39, 1252-1270.	1.9	30
163	Phosphorusâ€Doped Graphene Aerogel as Selfâ€Supported Electrocatalyst for CO ₂ â€ŧoâ€Ethanol Conversion. Advanced Science, 2022, 9, .	5.6	21
164	Tunable selectivity on copper–bismuth bimetallic aerogels for electrochemical CO2 reduction. Applied Catalysis B: Environmental, 2022, 317, 121650.	10.8	18
165	The porosity engineering for single-atom metal-nitrogen-carbon catalysts for the electroreduction of CO2. Current Opinion in Green and Sustainable Chemistry, 2022, 37, 100651.	3.2	4

#	Article	IF	CITATIONS
166	A CO ₂ â€Masked Carbene Functionalized Covalent Organic Framework for Highly Efficient Carbon Dioxide Conversion. Angewandte Chemie - International Edition, 2022, 61, .	7.2	41
167	An Electro–Microbial Process to Uncouple Food Production from Photosynthesis for Application in Space Exploration. Life, 2022, 12, 1002.	1.1	1
168	Ethanol Electro-oxidation Reaction Selectivity on Platinum in Aqueous Media. ACS Sustainable Chemistry and Engineering, 2023, 11, 4960-4968.	3.2	8
169	A CO ₂ â€Masked Carbene Functionalized Covalent Organic Framework for Highly Efficient Carbon Dioxide Conversion. Angewandte Chemie, 2022, 134, .	1.6	9
170	Efficient electrocatalytic conversion of CO2 to ethanol enabled by imidazolium-functionalized ionomer confined molybdenum phosphide. Applied Catalysis B: Environmental, 2022, 317, 121681.	10.8	6
171	Recent progress of electrochemical reduction of CO2 by single atom catalysts. Materials Reports Energy, 2022, 2, 100140.	1.7	2
172	Recent Advances in Heterogeneous Electroreduction of CO2 on Copper-Based Catalysts. Catalysts, 2022, 12, 860.	1.6	11
173	Low oordination Single Au Atoms on Ultrathin ZnIn ₂ S ₄ Nanosheets for Selective Photocatalytic CO ₂ Reduction towards CH ₄ . Angewandte Chemie, 2022, 134, .	1.6	11
174	Surface Coâ€Modification of Halide Anions and Potassium Cations Promotes Highâ€Rate CO ₂ â€ŧoâ€Ethanol Electrosynthesis. Advanced Materials, 2022, 34, .	11.1	26
175	Selective CO ₂ Electroreduction to Ethanol over a Carbonâ€Coated CuO _{<i>x</i>) Sub>Catalyst. Angewandte Chemie - International Edition, 2022, 61, .}	7.2	51
176	In Situ Dynamic Construction of a Copper Tin Sulfide Catalyst for High-Performance Electrochemical CO ₂ Conversion to Formate. ACS Catalysis, 2022, 12, 9922-9932.	5.5	45
177	Microenvironment Modulation in Carbonâ€Supported Singleâ€Atom Catalysts for Efficient Electrocatalytic CO ₂ Reduction. Chemistry - an Asian Journal, 2022, 17, .	1.7	10
178	Selective CO ₂ Electroreduction to Ethanol over a Carbon oated CuO _{<i>x</i>/sub>Catalyst. Angewandte Chemie, 2022, 134, .}	1.6	10
179	Ordered Ag Nanoneedle Arrays with Enhanced Electrocatalytic CO ₂ Reduction via Structure-Induced Inhibition of Hydrogen Evolution. Nano Letters, 2022, 22, 6276-6284.	4.5	47
180	Developments of the heterogeneous and homogeneous CO2 hydrogenation to value-added C2+-based hydrocarbons and oxygenated products. Coordination Chemistry Reviews, 2022, 471, 214737.	9.5	20
181	In situ electrochemical characterization of CuxO-based gas-diffusion electrodes (GDEs) for CO2 electrocatalytic reduction in presence and absence of liquid electrolyte and relationship with C2+ products formation. Applied Catalysis B: Environmental, 2022, 318, 121845.	10.8	25
182	Catalyst Design for Electrolytic CO2 Reduction Toward Low-Carbon Fuels and Chemicals. Electrochemical Energy Reviews, 2022, 5, .	13.1	16
183	Asymmetric atomic sites make different: Recent progress in electrocatalytic CO2 reduction. Nano Energy, 2022, 103, 107815.	8.2	29

#	Article	IF	CITATIONS
184	Multi-atom cluster catalysts for efficient electrocatalysis. Chemical Society Reviews, 2022, 51, 8923-8956.	18.7	68
185	C ₂ product formation in the CO ₂ electroreduction on boron-doped graphene anchored copper clusters. Physical Chemistry Chemical Physics, 2022, 24, 21417-21426.	1.3	7
186	Rationally Designed Hierarchical Carbon Supported Cuo Nano-Sheets for Highly Efficient Electroreduction Co2 to Multi-Carbon Products. SSRN Electronic Journal, 0, , .	0.4	0
187	A Sn-stabilized Cu ^{<i>δ</i>+} electrocatalyst toward highly selective CO ₂ -to-CO in a wide potential range. Chemical Science, 2022, 13, 11918-11925.	3.7	10
188	Challenges and strategies towards copper-based catalysts for enhanced electrochemical CO2 reduction to multi-carbon products. Fuel, 2023, 332, 126114.	3.4	27
189	Electrocatalytic CO2 reduction to alcohols by modulating the molecular geometry and Cu coordination in bicentric copper complexes. Nature Communications, 2022, 13, .	5.8	52
190	Dynamic Stability of Copper Single-Atom Catalysts under Working Conditions. Journal of the American Chemical Society, 2022, 144, 17140-17148.	6.6	79
191	In situ/operando X-ray spectroscopy applied to electrocatalytic CO2 reduction: Status and perspectives. Current Opinion in Colloid and Interface Science, 2022, 61, 101635.	3.4	7
192	Catalaseâ€Mimetic Artificial Biocatalysts with Ru Catalytic Centers for ROS Elimination and Stem ell Protection. Advanced Materials, 2022, 34, .	11.1	31
193	Phase engineering of metal nanocatalysts for electrochemical CO2 reduction. EScience, 2022, 2, 467-485.	25.0	44
194	Lowâ€Coordination Single Au Atoms on Ultrathin ZnIn ₂ S ₄ Nanosheets for Selective Photocatalytic CO ₂ Reduction towards CH ₄ . Angewandte Chemie - International Edition, 2022, 61, .	7.2	66
195	Electrochemical C-C coupling between CO2 and formaldehyde into ethanol. Chem Catalysis, 2022, 2, 3207-3224.	2.9	10
196	Prediction and Analysis of Air Pollution Using Machine Learning. SN Computer Science, 2022, 3, .	2.3	1
197	Electrochemical conversion of CO2 to long-chain hydrocarbons. Joule, 2022, 6, 1978-1980.	11.7	1
198	Transition metal single atom embedded GaN monolayer surface for efficient and selective CO ₂ electroreduction. Journal of Materials Chemistry A, 2022, 10, 24280-24289.	5.2	5
199	Theoretical Framework Based on Molecular Dynamics and Data Mining Analyses for the Study of Potential Energy Surfaces of Finite-Size Particles. Journal of Chemical Information and Modeling, 2022, 62, 5503-5512.	2.5	4
200	Comparative Study on Electrochemical and Thermochemical Pathways for Carbonaceous Fuel Generation Using Sunlight and Air. ACS Sustainable Chemistry and Engineering, 2022, 10, 13945-13954.	3.2	2
201	Toward Unifying the Mechanistic Concepts in Electrochemical CO ₂ Reduction from an Integrated Material Design and Catalytic Perspective. Advanced Functional Materials, 2022, 32, .	7.8	15

#	Article	IF	CITATIONS
202	<i>In-situ</i> constructed Cu/CuNC interfaces for low-overpotential reduction of CO2 to ethanol. National Science Review, 2023, 10, .	4.6	15
203	Cu-doped MoSi2N4 monolayer as a highly efficient catalyst for CO reduction toward C2+ products. Applied Surface Science, 2023, 609, 155332.	3.1	6
204	Mechanism insights on single-atom catalysts for CO ₂ conversion. Journal of Materials Chemistry A, 2023, 11, 4876-4906.	5.2	7
205	Rationally designed hierarchical carbon supported CuO nano-sheets for highly efficient electroreduction of CO2 to multi-carbon products. Journal of CO2 Utilization, 2023, 67, 102320.	3.3	5
207	A Comprehensive Review on Graphitic Carbon Nitride for Carbon Dioxide Photoreduction. Small Methods, 2022, 6, .	4.6	14
208	A novel bright additive for copper electroplating: electrochemical and theoretical study. Ionics, 2023, 29, 363-375.	1.2	7
209	Technologies of CO2 Reduction to Fuels in the Background of "Carbon Neutrality― Current Status, Analytic Comparison and Future Prospect. , 0, 17, 38-50.		0
210	Enhanced electroreduction of CO ₂ to ethanol <i>via</i> enriched intermediates at high CO ₂ pressures. Green Chemistry, 2023, 25, 684-691.	4.6	7
211	How to build disaster-resilient cities and societies for making people happy. Building and Environment, 2023, 228, 109845.	3.0	6
212	Revealing the activity and selectivity of ppm level copper in gas diffusion electrodes towards CO and CO ₂ electroreduction. , 2023, 1, 117-124.		4
213	Copper-based catalysts for the electrochemical reduction of carbon dioxide: progress and future prospects. Materials Horizons, 2023, 10, 698-721.	6.4	7
214	Electrochemical CO2 Reduction. RSC Green Chemistry, 2022, , 362-387.	0.0	0
215	Heteroepitaxial Growth of GaP Photocathode by Hydride Vapor Phase Epitaxy for Water Splitting and CO2 Reduction. Catalysts, 2022, 12, 1482.	1.6	3
216	In Situ Reconstruction of Cu–N Coordinated MOFs to Generate Dispersive Cu/Cu ₂ 0 Nanoclusters for Selective Electroreduction of CO ₂ to C ₂ H ₄ . ACS Catalysis, 2022, 12, 15230-15240.	5.5	40
217	Engineering Single Atom Catalysts for Flow Production: From Catalyst Design to Reactor Understandings. Accounts of Materials Research, 2023, 4, 27-41.	5.9	7
218	Electrocatalysis Mechanism and Structure–Activity Relationship of Atomically Dispersed Metalâ€Nitrogen arbon Catalysts for Electrocatalytic Reactions. Small Methods, 2023, 7, .	4.6	7
219	Recent Advances in Electrochemical, Photochemical, and Photoelectrochemical Reduction of CO ₂ to C ₂₊ Products. Small, 2023, 19, .	5.2	30
220	Efficient Electrochemical Reduction of CO ₂ on gâ€C ₃ N ₄ Monolayerâ€supported Metal Trimer Catalysts: A DFT Study. Chemistry - an Asian Journal, 2023, 18, .	1.7	3

#	Article	IF	CITATIONS
221	Low Overpotential Electrochemical Reduction of CO2 to Ethanol Enabled by Cu/CuxO Nanoparticles Embedded in Nitrogen-Doped Carbon Cuboids. Nanomaterials, 2023, 13, 230.	1.9	2
222	Latticeâ€ S train Engineering for Heterogenous Electrocatalytic Oxygen Evolution Reaction. Advanced Materials, 2023, 35, .	11.1	34
223	Asymmetrical electrohydrogenation of CO ₂ to ethanol with copper–gold heterojunctions. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	29
224	Asymmetric Coordination Environment Engineering of Atomic Catalysts for CO2 Reduction. Nanomaterials, 2023, 13, 309.	1.9	16
225	CO2 conversion to CO by LaCo1â^'xFexO3 (xÂ=Â0, 0.25, 0.5, 0.75, 1) perovskite phases at low temperature. Journal of Alloys and Compounds, 2023, 938, 168671.	2.8	5
226	Theoretical Study on Electroreduction of CO2 to C3+ Catalyzed by Polymetallic Phthalocyanine Covalent Organic Frameworks (COFs) in Tandem. Catalysis Letters, 2023, 153, 3270-3283.	1.4	3
227	From Single Crystal to Single Atom Catalysts: Structural Factors Influencing the Performance of Metal Catalysts for CO ₂ Electroreduction. ACS Catalysis, 2023, 13, 948-973.	5.5	33
228	Stabilizing copper sites in coordination polymers toward efficient electrochemical C-C coupling. Nature Communications, 2023, 14, .	5.8	30
229	Engineering Under oordinated Active Sites with Tailored Chemical Microenvironments over Mosaic Bismuth Nanosheets for Selective CO ₂ Electroreduction to Formate. Small, 2023, 19, .	5.2	25
230	Single-atom catalysis enabled by high-energy metastable structures. Chemical Science, 2023, 14, 2631-2639.	3.7	5
231	Sustainable upcycling of post-consumer waste to metal-graphene catalysts for green chemicals and clean water. Cell Reports Physical Science, 2023, , 101256.	2.8	0
232	Upcycling air pollutants to fuels and chemicals via electrochemical reduction technology. Journal of Environmental Management, 2023, 334, 117477.	3.8	5
233	Synergetic effects of gold-doped copper nanowires with low Au content for enhanced electrocatalytic CO2 reduction to multicarbon products. Nano Research, 2023, 16, 7777-7783.	5.8	11
234	Cu ⁺ -Mediated CO Coordination for Promoting C–C Coupling for CO ₂ and CO Electroreduction. ACS Applied Materials & Interfaces, 2023, 15, 13228-13237.	4.0	4
235	Trace level of atomic copper in N-doped graphene quantum dots switching the selectivity from C1 to C2 products in CO electroreduction. Materials Today Chemistry, 2023, 29, 101398.	1.7	1
236	Insight into the Electrochemical CO ₂ -to-Ethanol Conversion Catalyzed by Cu ₂ S Nanocrystal-Decorated Cu Nanosheets. ACS Applied Materials & Interfaces, 2023, 15, 18857-18866.	4.0	7
237	CO2 electrolysis towardÂacetate: A review. Current Opinion in Electrochemistry, 2023, 39, 101253.	2.5	6
238	Cu4@C2N for effective electrochemical CO2 reduction and intermediates dependent adsorption behaviours: A computational study. Applied Surface Science, 2023, 626, 157126.	3.1	4

#	Article	IF	CITATIONS
239	Atomically Dispersed Cu Catalysts on Sulfide-Derived Defective Ag Nanowires for Electrochemical CO ₂ Reduction. ACS Nano, 2023, 17, 2387-2398.	7.3	17
240	Dualâ€Atom Catalysts for Electrochemical Energy Technologies. Energy Technology, 2023, 11, .	1.8	1
241	Multi-Center Cooperativity Enables Facile C–C Coupling in Electrochemical CO ₂ Reduction on a Ni ₂ P Catalyst. ACS Catalysis, 2023, 13, 2847-2856.	5.5	10
242	Assembly of copper-clusters into a framework: enhancing the structural stability and photocatalytic HER performance. Chemical Communications, 2023, 59, 3067-3070.	2.2	1
243	Enhanced Carbon Monoxide Electroreduction to >1â€A cm ^{â^'2} C ₂₊ Products Using Copper Catalysts Dispersed on MgAl Layered Double Hydroxide Nanosheet Houseâ€ofâ€Cards Scaffolds. Angewandte Chemie, 2023, 135, .	1.6	0
244	Highâ€Performing Atomic Electrocatalyst for Chlorine Evolution Reaction. Small, 2023, 19, .	5.2	8
245	Enhanced Carbon Monoxide Electroreduction to >1â€A cm ^{â^'2} C ₂₊ Products Using Copper Catalysts Dispersed on MgAl Layered Double Hydroxide Nanosheet Houseâ€ofâ€Cards Scaffolds. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
246	Can Metal–Nitrogen–Carbon Single-Atom Catalysts Boost the Electroreduction of Carbon Monoxide?. Jacs Au, 2023, 3, 943-952.	3.6	11
247	Electrochemical CO2 reduction to ethanol: Synergism of (n-Bu4N)3SVMo11O40 and an In catalyst. Electrochimica Acta, 2023, 445, 142067.	2.6	2
248	Modulating the Asymmetric Atomic Interface of Copper Single Atoms for Efficient CO ₂ Electroreduction. ACS Nano, 2023, 17, 4619-4628.	7.3	24
249	Clarifying the local microenvironment of metal–organic frameworks and their derivatives for electrochemical CO ₂ reduction: advances and perspectives. , 2023, 1, 179-229.		4
250	Adsorbed Enolate as the Precursor for the C–C Bond Splitting during Ethanol Electrooxidation on Pt. Journal of the American Chemical Society, 2023, 145, 6330-6338.	6.6	7
251	Selective CO ₂ Electroreduction with Enhanced Oxygen Evolution Efficiency in Affordable Borate-Mediated Molten Electrolyte. ACS Energy Letters, 2023, 8, 1762-1771.	8.8	8
252	Structural evolution of single-atom catalysts. Chem Catalysis, 2023, 3, 100560.	2.9	2
253	Modulating microenvironments to enhance CO2 electroreduction performance. EScience, 2023, 3, 100119.	25.0	11
254	Trends and Prospects of Bulk and Singleâ€Atom Catalysts for the Oxygen Evolution Reaction. Advanced Energy Materials, 2023, 13, .	10.2	25
255	Rational Design of Single-Atom Catalysts for Electrochemical Carbon Dioxide Reduction toward Multi-Carbon Products. , 0, 1, .		0
256	Space habitats for bioengineering and surgical repair: addressing the requirement for reconstructive and research tissues during deep-space missions. Npj Microgravity, 2023, 9, .	1.9	1

#	Article	IF	CITATIONS
257	Prospective Life Cycle Assessment Bridging Biochemical, Thermochemical, and Electrochemical CO ₂ Reduction toward Sustainable Ethanol Synthesis. ACS Sustainable Chemistry and Engineering, 2023, 11, 5782-5799.	3.2	10
258	Tailoring *H Intermediate Coverage on the CuAl ₂ O ₄ /CuO Catalyst for Enhanced Electrocatalytic CO ₂ Reduction to Ethanol. Angewandte Chemie, 2023, 135, .	1.6	2
259	Tailoring *H Intermediate Coverage on the CuAl ₂ O ₄ /CuO Catalyst for Enhanced Electrocatalytic CO ₂ Reduction to Ethanol. Angewandte Chemie - International Edition, 2023, 62, .	7.2	14
260	Metal sulfide-based nanomaterials for electrochemical CO ₂ reduction. Journal of Materials Chemistry A, 2023, 11, 9300-9332.	5.2	5
261	Why can poorly conductive Bi@UiO-MOF catalyze CO ₂ electroreduction?. Chemical Communications, 2023, 59, 5737-5740.	2.2	1
262	Regulation of electrical double layers promotes electrochemical reduction of carbon dioxide. Chemical Engineering Science, 2023, 276, 118759.	1.9	2
263	Regulated Surface Electronic States of CuNi Nanoparticles through Metal‣upport Interaction for Enhanced Electrocatalytic CO ₂ Reduction to Ethanol. Small, 2023, 19, .	5.2	7
279	Electrochemical reduction of carbon dioxide to multicarbon (C ₂₊) products: challenges and perspectives. Energy and Environmental Science, 2023, 16, 4714-4758.	15.6	28
287	Large π-conjugated indium-based metal-organic frameworks for high-performance electrochemical conversion of CO2. Nano Research, 2023, 16, 8743-8750.	5.8	1
300	Flow Cells for CO2 Reduction. Green Energy and Technology, 2023, , 199-228.	0.4	0
304	Advancements in computational approaches for rapid metal site discovery in carbon-based materials for electrocatalysis. Energy Advances, 2023, 2, 1781-1799.	1.4	1
322	Size effects of Supported Cu-based catalysts for electrocatalytic CO2 reduction reaction. Journal of Materials Chemistry A, 0, , .	5.2	1
332	Renewably powered electrochemical CO ₂ reduction toward a sustainable carbon economy. , 0, , .		1
349	Strategies for the proton-coupled multi-electron reduction of CO ₂ on single-atom catalysts. Catalysis Science and Technology, 0, , .	2.1	0
353	Understanding the progress and challenges in the fields of thermo-catalysis and electro-catalysis for the CO2 conversion to fuels. Emergent Materials, 2024, 7, 1-16.	3.2	0
354	Different distributions of multi-carbon products in CO2 and CO electroreduction under practical reaction conditions. Nature Catalysis, 2023, 6, 1115-1124.	16.1	2