Electrochemical reduction of nitrate to ammonia via dia a copper–molecular solid catalyst

Nature Energy 5, 605-613 DOI: 10.1038/s41560-020-0654-1

Citation Report

#	Article	IF	CITATIONS
1	Boosted Photoelectrochemical N ₂ Reduction over Mo ₂ C In Situ Coated with Graphitized Carbon. Langmuir, 2020, 36, 14802-14810.	3.5	20
2	Recycling fertilizer. Nature Energy, 2020, 5, 557-558.	39.5	18
3	Efficient nitrate-to-ammonia transformation through a direct eight-electron reduction. Science China Chemistry, 2020, 63, 1737-1739.	8.2	8
4	Emerging alternative for artificial ammonia synthesis through catalytic nitrate reduction. Journal of Materials Science and Technology, 2021, 77, 163-168.	10.7	66
5	Electrochemical synthesis of ammonia: Progress and challenges. Materials Today Physics, 2021, 16, 100310.	6.0	50
6	Understanding the Z-scheme heterojunction of BiVO ₄ /PANI for photoelectrochemical nitrogen reduction. Chemical Communications, 2021, 57, 10568-10571.	4.1	35
7	Boosting NH ₃ production from nitrate electroreduction <i>via</i> electronic structure engineering of Fe ₃ C nanoflakes. Green Chemistry, 2021, 23, 7594-7608.	9.0	50
8	Reaction intermediate-mediated electrocatalyst synthesis favors specified facet and defect exposure for efficient nitrate–ammonia conversion. Energy and Environmental Science, 2021, 14, 4989-4997.	30.8	145
9	Atomic defects in pothole-rich two-dimensional copper nanoplates triggering enhanced electrocatalytic selective nitrate-to-ammonia transformation. Journal of Materials Chemistry A, 2021, 9, 16411-16417.	10.3	82
10	High-efficiency nitrate electroreduction to ammonia on electrodeposited cobalt–phosphorus alloy film. Chemical Communications, 2021, 57, 9720-9723.	4.1	58
11	Nitrate reduction to ammonium: from CuO defect engineering to waste NO _x -to-NH ₃ economic feasibility. Energy and Environmental Science, 2021, 14, 3588-3598.	30.8	161
12	Recent discoveries in the reaction mechanism of heterogeneous electrocatalytic nitrate reduction. Catalysis Science and Technology, 2021, 11, 705-725.	4.1	114
13	Highly selective electroreduction of nitrate to ammonia on a Ru-doped tetragonal Co ₂ P monolayer with low-limiting overpotential. Catalysis Science and Technology, 2021, 11, 7160-7170.	4.1	40
14	Solar-driven electrochemical synthesis of ammonia using nitrate with 11% solar-to-fuel efficiency at ambient conditions. Energy and Environmental Science, 2021, 14, 6349-6359.	30.8	70
15	Back donation, intramolecular electron transfer and N–O bond scission targeting nitrogen oxyanion reduction: how can a metal complex assist?. Dalton Transactions, 2021, 50, 2149-2157.	3.3	1
16	Competing hydrogen evolution reaction: a challenge in electrocatalytic nitrogen fixation. Materials Chemistry Frontiers, 2021, 5, 5954-5969.	5.9	42
17	Material strategies in the electrochemical nitrate reduction reaction to ammonia production. Materials Chemistry Frontiers, 2021, 5, 6803-6823.	5.9	37
18	Copper confined in vesicle-like BCN cavities promotes electrochemical reduction of nitrate to ammonia in water. Journal of Materials Chemistry A, 2021, 9, 23675-23686.	10.3	42

		CITATION REPORT		
#	Article		IF	CITATIONS
19	Electrocatalytic Nitrate Reduction for Sustainable Ammonia Production. Joule, 2021, 5, 2	290-294.	24.0	497
20	Metallic Co Nanoarray Catalyzes Selective NH ₃ Production from Electroche Reduction at Current Densities Exceeding 2 A cm ^{â°2} . Advanced Science, 2	mical Nitrate 021, 8, 2004523.	11.2	153
21	An Experimentally Verified LCâ€MS Protocol toward an Economical, Reliable, and Quanti Analysis in Nitrogen Reduction Reactions. Small Methods, 2021, 5, e2000694.	tative Isotopic	8.6	16
22	Rational design on photo(electro)catalysts for artificial nitrogen looping. EcoMat, 2021,	3, e12096.	11.9	8
23	Electrosynthesis of urea from nitrite and CO2 over oxygen vacancy-rich ZnO porous nan Reports Physical Science, 2021, 2, 100378.	osheets. Cell	5.6	95
24	Two-dimensional bimetallic coordination polymers as bifunctional evolved electrocatalys enhanced oxygen evolution reaction and urea oxidation reaction. Journal of Energy Cher 63, 230-238.	ts for nistry, 2021,	12.9	29
25	From inert gas to fertilizer, fuel and fine chemicals: N2 reduction and fixation. Catalysis 1 387, 186-196.	Today, 2022,	4.4	4
26	Residual Chlorine Induced Cationic Active Species on a Porous Copper Electrocatalyst fo Stable Electrochemical CO ₂ Reduction to C ₂₊ . Angewandte C International Edition, 2021, 60, 11487-11493.	r Highly hemie -	13.8	145
27	Residual Chlorine Induced Cationic Active Species on a Porous Copper Electrocatalyst fo Stable Electrochemical CO 2 Reduction to C 2+. Angewandte Chemie, 2021, 133, 11588	r Highly 3-11594.	2.0	15
28	Green Synthesis of Nitrogenâ€ŧoâ€Ammonia Fixation: Past, Present, and Future. Energy Materials, 2022, 5, 452-457.	and Environmental	12.8	51
29	Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat Communications, 2021, 12, 2870.	ure	12.8	605
30	Electrocatalytic Nitrate Reduction on Oxide-Derived Silver with Tunable Selectivity to Nit Ammonia. ACS Catalysis, 2021, 11, 8431-8442.	rite and	11.2	125
31	Emerging artificial nitrogen cycle processes through novel electrochemical and photoche synthesis. Materials Today, 2021, 46, 212-233.	emical	14.2	104
32	Understanding the key role of vanadium in p-type BiVO4 for photoelectrochemical N2 fix Chemical Engineering Journal, 2021, 414, 128773.	kation.	12.7	50
33	Constructing Well-Defined and Robust Th-MOF-Supported Single-Site Copper for Produc Storage of Ammonia from Electroreduction of Nitrate. ACS Central Science, 2021, 7, 10	tion and 66-1072.	11.3	59
34	A robust metal-free electrocatalyst for nitrate reduction reaction to synthesize ammonia Today Physics, 2021, 19, 100431.	. Materials	6.0	40
35	Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Science China Chemistry, 2021, 64, 1493-1497.	Ru doping.	8.2	83
36	Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide. Nature Susta 2021, 4, 868-876.	ainability,	23.7	264

#	Article	IF	CITATIONS
37	Electrochemically Selective Ammonia Extraction from Nitrate by Coupling Electron- and Phase-Transfer Reactions at a Three-Phase Interface. Environmental Science & Technology, 2021, 55, 10684-10694.	10.0	82
38	Unveiling Potential Dependence in NO Electroreduction to Ammonia. Journal of Physical Chemistry Letters, 2021, 12, 6988-6995.	4.6	56
39	Comprehensive Understanding of the Thriving Ambient Electrochemical Nitrogen Reduction Reaction. Advanced Materials, 2021, 33, e2007650.	21.0	229
40	Atomically dispersed Fe atoms anchored on S and N–codoped carbon for efficient electrochemical denitrification. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	49
41	On the assessment of electrocatalysts for nitrate reduction. Current Opinion in Electrochemistry, 2021, 28, 100721.	4.8	24
42	Electrocatalytic Reduction of NO ₃ [–] to Ultrapure Ammonia on {200} Facet Dominant Cu Nanodendrites with High Conversion Faradaic Efficiency. Journal of Physical Chemistry Letters, 2021, 12, 8121-8128.	4.6	39
43	Electrocatalytic nitrate/nitrite reduction to ammonia synthesis using metal nanocatalysts and bio-inspired metalloenzymes. Nano Energy, 2021, 86, 106088.	16.0	136
44	Schottky Barrierâ€Induced Surface Electric Field Boosts Universal Reduction of NO _{<i>x</i>} ^{â^'} in Water to Ammonia. Angewandte Chemie - International Edition, 2021, 60, 20711-20716.	13.8	68
45	Self-Activated Ni Cathode for Electrocatalytic Nitrate Reduction to Ammonia: From Fundamentals to Scale-Up for Treatment of Industrial Wastewater. Environmental Science & Technology, 2021, 55, 13231-13243.	10.0	16
46	Schottky Barrierâ€Induced Surface Electric Field Boosts Universal Reduction of NO x â~' in Water to Ammonia. Angewandte Chemie, 2021, 133, 20879-20884.	2.0	12
47	Recent development of electrochemical nitrate reduction to ammonia: A mini review. Electrochemistry Communications, 2021, 129, 107094.	4.7	96
48	Precisely Controlled Synthesis of Hybrid Intermetallic–Metal Nanoparticles for Nitrate Electroreduction. ACS Applied Materials & Interfaces, 0, , .	8.0	13
49	Superior surface electron energy level endows WP2 nanowire arrays with N2 fixation functions. Journal of Energy Chemistry, 2021, 59, 55-62.	12.9	14
50	Advances in Electrochemical Ammonia Synthesis Beyond the Use of Nitrogen Gas as a Source. ChemPlusChem, 2021, 86, 1211-1224.	2.8	43
51	An Aqueous Mg ²⁺ â€Based Dualâ€lon Battery with High Power Density. Advanced Functional Materials, 2021, 31, 2107523.	14.9	30
52	Synergism of Interfaces and Defects: Cu/Oxygen Vacancy-Rich Cu-Mn ₃ O ₄ Heterostructured Ultrathin Nanosheet Arrays for Selective Nitrate Electroreduction to Ammonia. ACS Applied Materials & Interfaces, 2021, 13, 44733-44741.	8.0	64
53	Interface Engineering of CoS ₂ –CeO ₂ /Ti Nanocatalyst for Artificial N ₂ Fixation. ACS Sustainable Chemistry and Engineering, 2021, 9, 13399-13405.	6.7	12
54	Theoretical study of K3Sb/graphene heterostructure for electrochemical nitrogen reduction reaction. Frontiers of Physics, 2022, 17, 1.	5.0	4

#	Article	IF	CITATIONS
55	Recent Advances and Perspective on Electrochemical Ammonia Synthesis under Ambient Conditions. Small Methods, 2021, 5, e2100460.	8.6	33
56	Effect of surface functionalization of Fe3O4 nano-enabled electrodes on the electrochemical reduction of nitrate. Separation and Purification Technology, 2022, 282, 119771.	7.9	27
57	Bi2O3 nanosheets arrays in-situ decorated on carbon cloth for efficient electrochemical reduction of nitrate. Chemosphere, 2021, 278, 130386.	8.2	43
58	Precise synthesis of Fe–N2 with N vacancies coordination for boosting electrochemical artificial N2 fixation. Applied Catalysis B: Environmental, 2021, 293, 120216.	20.2	26
59	Efficient Nitrate-to-Ammonia Electroreduction at Cobalt Phosphide Nanoshuttles. ACS Applied Materials & Interfaces, 2021, 13, 45521-45527.	8.0	33
60	Builtâ€in Electric Field Triggered Interfacial Accumulation Effect for Efficient Nitrate Removal at Ultra‣ow Concentration and Electroreduction to Ammonia. Angewandte Chemie - International Edition, 2021, 60, 22933-22939.	13.8	145
61	Builtâ€in Electric Field Triggered Interfacial Accumulation Effect for Efficient Nitrate Removal at Ultra‣ow Concentration and Electroreduction to Ammonia. Angewandte Chemie, 2021, 133, 23115-23121.	2.0	8
62	Ammonia and Nitric Acid Demands for Fertilizer Use in 2050. ACS Energy Letters, 2021, 6, 3676-3685.	17.4	157
63	Alloying effect-induced electron polarization drives nitrate electroreduction to ammonia. Chem Catalysis, 2021, 1, 1088-1103.	6.1	80
64	Electrochemical reduction of nitrogen to ammonia: Progress, challenges and future outlook. Current Opinion in Electrochemistry, 2021, 29, 100808.	4.8	11
65	Triggering in-plane defect cluster on MoS2 for accelerated dinitrogen electroreduction to ammonia. Journal of Energy Chemistry, 2021, 62, 359-366.	12.9	40
66	Electrifying the nitrogen cycle: An electrochemical endeavor. Current Opinion in Electrochemistry, 2021, 30, 100790.	4.8	16
67	Concave-convex surface oxide layers over copper nanowires boost electrochemical nitrate-to-ammonia conversion. Chemical Engineering Journal, 2021, 426, 130759.	12.7	110
68	Selective reduction of nitrate to ammonium over charcoal electrode derived from natural wood. Chemosphere, 2021, 285, 131501.	8.2	16
69	Combining electrochemical nitrate reduction and anammox for treatment of nitrate-rich wastewater: A short review. Science of the Total Environment, 2021, 800, 149645.	8.0	31
70	Electrochemical synthesis of ammonia by nitrate reduction on indium incorporated in sulfur doped graphene. Chemical Engineering Journal, 2021, 426, 131317.	12.7	40
71	Direct ammonia synthesis from the air via gliding arc plasma integrated with single atom electrocatalysis. Applied Catalysis B: Environmental, 2021, 299, 120667.	20.2	55
72	Atomic-dispersed copper simultaneously achieve high-efficiency removal and high-value-added conversion to ammonia of nitrate in sewage. Journal of Hazardous Materials, 2022, 424, 127319.	12.4	43

# 73	ARTICLE Industrially viable electrochemical techniques for water treatment. , 2022, , 283-301.	IF	CITATIONS 0
74	Enhanced nitrate reduction reaction via efficient intermediate nitrite conversion on tunable CuxNiy/NC electrocatalysts. Journal of Hazardous Materials, 2022, 421, 126628.	12.4	39
75	ZIF-8 engineered bismuth nanosheet arrays for boosted electrochemical reduction of nitrate. Nanoscale, 2021, 13, 13786-13794.	5.6	9
76	A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy and Environmental Science, 2021, 14, 3522-3531.	30.8	243
77	Highly efficient and selective nitrate electroreduction to ammonia catalyzed by molecular copper catalyst@Ti ₃ C ₂ T _{<i>x</i>} MXene. Journal of Materials Chemistry A, 2021, 9, 21771-21778.	10.3	53
78	High-efficiency electrochemical nitrite reduction to ammonium using a Cu ₃ P nanowire array under ambient conditions. Green Chemistry, 2021, 23, 5487-5493.	9.0	73
79	Charge-transfer dynamics at a Ag/Ni-MOF/Cu ₂ O heterostructure in photoelectrochemical NH ₃ production. Chemical Communications, 2021, 57, 8031-8034.	4.1	33
80	Pd doping-weakened intermediate adsorption to promote electrocatalytic nitrate reduction on TiO ₂ nanoarrays for ammonia production and energy supply with zinc–nitrate batteries. Energy and Environmental Science, 2021, 14, 3938-3944.	30.8	204
81	Cooperativity of Cu and Pd active sites in CuPd aerogels enhances nitrate electroreduction to ammonia. Chemical Communications, 2021, 57, 7525-7528.	4.1	73
82	Development of Electrocatalysts for Efficient Nitrogen Reduction Reaction under Ambient Condition. Advanced Functional Materials, 2021, 31, 2008983.	14.9	124
83	Direct Demonstration of Unified BrÃ,nstedâ^'Evansâ^'Polanyi Relationships for Proton-Coupled Electron Transfer Reactions on Transition Metal Surfaces. Journal of the Electrochemical Society, 2020, 167, 166516.	2.9	7
84	Boosting Electrochemical Nitrate-Ammonia Conversion Via Organic Ligands-Tuned Proton Transfer. SSRN Electronic Journal, 0, , .	0.4	0
85	Electrochemical reduction of nitrate to ammonia in a fluidized electrocatalysis system with oxygen vacancy-rich CuO _{<i>x</i>} nanoparticles. Inorganic Chemistry Frontiers, 2021, 8, 5209-5213.	6.0	31
86	Cobalt phosphide nanorings towards efficient electrocatalytic nitrate reduction to ammonia. Chemical Communications, 2021, 57, 11621-11624.	4.1	39
87	Powering the Remediation of the Nitrogen Cycle: Progress and Perspectives of Electrochemical Nitrate Reduction. Industrial & Engineering Chemistry Research, 2021, 60, 14635-14650.	3.7	39
88	Synergy of Bi ₂ O ₃ and RuO ₂ Nanocatalysts for Lowâ€Overpotential and Wide pHâ€Window Electrochemical Ammonia Synthesis. Chemistry - A European Journal, 2021, 27, 17395-17401.	3.3	8
89	Promising Sustainable Models Toward Water, Air, and Solid Sustainable Management in the View of SDGs. Materials Circular Economy, 2021, 3, 1.	3.2	3
90	Two-dimensional BCN matrix inlaid with single-atom-Cu driven electrochemical nitrate reduction reaction to achieve sustainable industrial-grade production of ammonia. Applied Materials Today, 2021, 25, 101206.	4.3	31

#	Article	IF	CITATIONS
91	Highly reactive Cu-Pt bimetallic 3D-electrocatalyst for selective nitrate reduction to ammonia. Applied Catalysis B: Environmental, 2022, 302, 120844.	20.2	130
92	Tuning metal catalysts via nitrogen-doped nanocarbons for energy chemistry: From metal nanoparticles to single metal sites. EnergyChem, 2021, 3, 100066.	19.1	31
93	Managing the Nitrogen Cycle via Plasmonic (Photo)Electrocatalysis: Toward Circular Economy. Accounts of Chemical Research, 2021, 54, 4294-4304.	15.6	22
94	<i>In Situ</i> Electrocatalytic Infrared Spectroscopy for Dynamic Reactions. Journal of Physical Chemistry C, 2021, 125, 24289-24300.	3.1	23
95	Photoelectrochemical reduction of nitrate to ammonia over CuPc/CeO2 heterostructure: Understanding the synergistic effect between oxygen vacancies and Ce sites. Chemical Engineering Journal, 2022, 433, 133225.	12.7	21
96	Simultaneous anchoring of Ni nanoparticles and single-atom Ni on BCN matrix promotes efficient conversion of nitrate in water into high-value-added ammonia. Chemical Engineering Journal, 2022, 433, 133190.	12.7	46
97	Tuning the Oxidation State of Cu Electrodes for Selective Electrosynthesis of Ammonia from Nitrate. ACS Applied Materials & Interfaces, 2021, 13, 52469-52478.	8.0	43
98	Toward reliable and accessible ammonia quantification in the electrocatalytic reduction of nitrogen. Chem Catalysis, 2021, 1, 1505-1518.	6.1	20
99	Ammonia electrosynthesis on single-atom catalysts: Mechanistic understanding and recent progress. Chemical Physics Reviews, 2021, 2, .	5.7	17
100	Efficient and selective electrochemical reduction of nitrate to N2 by relay catalytic effects of Fe-Ni bimetallic sites on MOF-derived structure. Applied Catalysis B: Environmental, 2022, 301, 120829.	20.2	68
101	Asymmetrical π back-donation of hetero-dicationic Mo4+-Mo6+ pairs for enhanced electrochemical nitrogen reduction. Nano Research, 2022, 15, 3010-3016.	10.4	22
102	Electrochemical reduction of nitrate in a catalytic carbon membrane nano-reactor. Water Research, 2022, 208, 117862.	11.3	23
103	Engineering Nitrogen Vacancy in Polymeric Carbon Nitride for Nitrate Electroreduction to Ammonia. ACS Applied Materials & Interfaces, 2021, 13, 54967-54973.	8.0	42
104	Tuning mobility of intermediate and electron transfer to enhance electrochemical reduction of nitrate to ammonia on Cu2O/Cu interface. Chemical Engineering Journal, 2022, 433, 133680.	12.7	41
105	Computational Screening of High Activity and Selectivity TM/g-C ₃ N ₄ Single-Atom Catalysts for Electrocatalytic Reduction of Nitrates to Ammonia. Journal of Physical Chemistry Letters, 2021, 12, 11143-11150.	4.6	57
106	Singleâ€Atom Gold Isolated Onto Nanoporous MoSe ₂ for Boosting Electrochemical Nitrogen Reduction. Small, 2022, 18, e2104043.	10.0	54
107	Theoretical Insights into Superior Nitrate Reduction to Ammonia Performance of Copper Catalysts. ACS Catalysis, 2021, 11, 14417-14427.	11.2	150
108	Achieving high selectivity for nitrate electrochemical reduction to ammonia over MOF-supported Ru _{<i>x</i>} O _{<i>y</i>} clusters. Journal of Materials Chemistry A, 2022, 10, 3963-3969.	10.3	55

#	Article	IF	CITATIONS
109	Electropolymerization of Metal Clusters Establishing a Versatile Platform for Enhanced Catalysis Performance. Angewandte Chemie - International Edition, 2022, 61, e202114538.	13.8	27
110	Regulating surface oxygen species on copper (I) oxides via plasma treatment for effective reduction of nitrate to ammonia. Applied Catalysis B: Environmental, 2022, 305, 121021.	20.2	98
111	Pd Nanocrystals Embedded in BC2N for Efficient Electrochemical Conversion of Nitrate to Ammonia. SSRN Electronic Journal, 0, , .	0.4	0
112	CO2 bubble-assisted in-situ construction of mesoporous Co-doped Cu2(OH)2CO3 nanosheets as advanced electrodes towards fast and highly efficient electrochemical reduction of nitrate to N2 in wastewater. Journal of Hazardous Materials, 2022, 430, 128351.	12.4	14
113	In Situ Loading of Cu ₂ O Active Sites on Island-like Copper for Efficient Electrochemical Reduction of Nitrate to Ammonia. ACS Applied Materials & Interfaces, 2022, 14, 6680-6688.	8.0	62
114	Biomass Juncus derived carbon decorated with cobalt nanoparticles enables high-efficiency ammonia electrosynthesis by nitrite reduction. Journal of Materials Chemistry A, 2022, 10, 2842-2848.	10.3	47
115	3D Flower‣ike Zinc Cobaltite for Electrocatalytic Reduction of Nitrate to Ammonia under Ambient Conditions. ChemSusChem, 2022, 15, .	6.8	21
116	High-efficiency ammonia electrosynthesis via selective reduction of nitrate on ZnCo2O4 nanosheet array. Materials Today Physics, 2022, 23, 100619.	6.0	72
117	Elucidating the activity, mechanism and application of selective electrosynthesis of ammonia from nitrate on cobalt phosphide. Energy and Environmental Science, 2022, 15, 760-770.	30.8	133
118	<i>In situ</i> synthesis of N-doped TiO ₂ on Ti ₃ C ₂ MXene with enhanced photocatalytic activity in the selective reduction of nitrate to N ₂ . Inorganic Chemistry Frontiers, 2022, 9, 1195-1207.	6.0	11
119	DFT Insights into NO Electrochemical Reduction: A Case Study of Pt(211) and Cu(211) Surfaces. ACS Catalysis, 2022, 12, 1394-1402.	11.2	19
120	Single-atom catalysts for thermal- and electro-catalytic hydrogenation reactions. Journal of Materials Chemistry A, 2022, 10, 5743-5757.	10.3	22
121	Insight into Hydrogenation Selectivity of the Electrocatalytic Nitrateâ€ŧoâ€Ammonia Reduction Reaction via Enhancing the Proton Transport. ChemSusChem, 2022, 15, .	6.8	9
122	Boosting nitrate electroreduction to ammonia on NbO _{<i>x</i>} <i>via</i> constructing oxygen vacancies. Green Chemistry, 2022, 24, 1090-1095.	9.0	35
123	Electropolymerization of Metal Clusters Establishing a Versatile Platform for Enhanced Catalysis Performance. Angewandte Chemie, 2022, 134, .	2.0	5
124	High-ammonia selective metal–organic framework–derived Co-doped Fe/Fe ₂ O ₃ catalysts for electrochemical nitrate reduction. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	75
125	New insight on electroreduction of nitrate to ammonia driven by oxygen vacancies-induced strong interface interactions. Journal of Catalysis, 2022, 406, 39-47.	6.2	29
126	Iron-doped cobalt oxide nanoarray for efficient electrocatalytic nitrate-to-ammonia conversion. Journal of Colloid and Interface Science, 2022, 615, 636-642.	9.4	67

#	Article	IF	CITATIONS
127	Metal-organic framework derived carbon-supported bimetallic copper-nickel alloy electrocatalysts for highly selective nitrate reduction to ammonia. Journal of Colloid and Interface Science, 2022, 614, 405-414.	9.4	42
128	Pd nanocrystals embedded in BC2N for efficient electrochemical conversion of nitrate to ammonia. Applied Surface Science, 2022, 584, 152556.	6.1	18
129	Ultralow-content Pd in-situ incorporation mediated hierarchical defects in corner-etched Cu2O octahedra for enhanced electrocatalytic nitrate reduction to ammonia. Applied Catalysis B: Environmental, 2022, 306, 121094.	20.2	86
130	The Search for Efficient and Stable Metal-Organic Frameworks for Photocatalysis: Atmospheric Fixation of Nitrogen. Applied Surface Science, 2022, 583, 152376.	6.1	5
131	Emerging Electrochemical Techniques for Probing Site Behavior in Single-Atom Electrocatalysts. Accounts of Chemical Research, 2022, 55, 759-769.	15.6	58
132	Efficient Ammonia Electrosynthesis and Energy Conversion through a Znâ€Nitrate Battery by Iron Doping Engineered Nickel Phosphide Catalyst. Advanced Energy Materials, 2022, 12, .	19.5	108
133	Controlled Growth of Donor–Bridge–Acceptor Interface for Highâ€Performance Ammonia Production. Small, 2022, 18, e2107136.	10.0	11
134	High-efficiency ammonia electrosynthesis on self-supported Co2AlO4 nanoarray in neutral media by selective reduction of nitrate. Chemical Engineering Journal, 2022, 435, 135104.	12.7	71
135	3.4% Solarâ€toâ€Ammonia Efficiency from Nitrate Using Fe Single Atomic Catalyst Supported on MoS ₂ Nanosheets. Advanced Functional Materials, 2022, 32, .	14.9	71
136	Efficient ammonia synthesis <i>via</i> electroreduction of nitrite using single-atom Ru-doped Cu nanowire arrays. Chemical Communications, 2022, 58, 5257-5260.	4.1	17
137	A 3D FeOOH nanotube array: an efficient catalyst for ammonia electrosynthesis by nitrite reduction. Chemical Communications, 2022, 58, 5160-5163.	4.1	20
138	Defect and interface engineering in metal sulfide catalysts for the electrocatalytic nitrogen reduction reaction: a review. Journal of Materials Chemistry A, 2022, 10, 6927-6949.	10.3	39
139	Efficient Ammonia Synthesis Via Electroreduction of Nitrite Using Single-Atom Ru-Doped Cu Nanowire Arrays. SSRN Electronic Journal, 0, , .	0.4	0
140	Co nanoparticle-decorated pomelo-peel-derived carbon enabled high-efficiency electrocatalytic nitrate reduction to ammonia. Chemical Communications, 2022, 58, 4259-4262.	4.1	40
141	Electroreduction of NO ₃ ^{â^'} on tubular porous Ti electrodes. Catalysis Science and Technology, 2022, 12, 3281-3288.	4.1	8
142	Ambient ammonia production via electrocatalytic nitrate reduction catalyzed by flower-like CuCo2O4 electrocatalyst. Inorganic Chemistry Frontiers, 0, , .	6.0	8
143	Exclusive Nitrate to Ammonia Conversion via Boron-Doped Carbon Dots Induced Surface Lewis Acid Sites. SSRN Electronic Journal, 0, , .	0.4	0
144	Cu2oÂNanoparticles Modified Bio2-XÂNanosheets for Efficient Electrochemical Reduction of Nitrate-N and Nitrobenzene from Wastewater. SSRN Electronic Journal. 0	0.4	О

#	Article	IF	CITATIONS
145	Tuning Single Metal Atoms Anchored on Graphidyne for Highly Efficient and Selective Nitrate Electroreduction to Ammonia: A Computational Study. SSRN Electronic Journal, 0, , .	0.4	0
146	A FeCo ₂ O ₄ nanowire array enabled electrochemical nitrate conversion to ammonia. Chemical Communications, 2022, 58, 4480-4483.	4.1	34
147	Oxygen-vacancy-containing Nb ₂ O ₅ nanorods with modified semiconductor character for boosting selective nitrate-to-ammonia electroreduction. Sustainable Energy and Fuels, 2022, 6, 2062-2066.	4.9	6
148	An efficient screening strategy towards multifunctional catalysts for the simultaneous electroreduction of NO ₃ ^{â[^]} , NO ₂ ^{â[^]} and NO to NH ₃ . Journal of Materials Chemistry A, 2022, 10, 9707-9716.	10.3	52
149	Interfacial Engineering Enhances the Electroactivity of Frame‣ike Concave RhCu Bimetallic Nanocubes for Nitrate Reduction. Advanced Energy Materials, 2022, 12, .	19.5	96
150	Electrocatalytic Reduction of Nitrogen to Ammonia in Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2022, 10, 4345-4358.	6.7	21
151	Governing Interlayer Strain in Bismuth Nanocrystals for Efficient Ammonia Electrosynthesis from Nitrate Reduction. ACS Nano, 2022, 16, 4795-4804.	14.6	76
152	Catalytic Performance and Near-Surface X-ray Characterization of Titanium Hydride Electrodes for the Electrochemical Nitrate Reduction Reaction. Journal of the American Chemical Society, 2022, 144, 5739-5744.	13.7	31
153	Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia. Nature Communications, 2022, 13, 1129.	12.8	235
154	Pollution to solution: A universal electrocatalyst for reduction of all NOx-based species to NH3. Chem Catalysis, 2022, 2, 622-638.	6.1	27
155	Synthesis optimization of phase-singularized UZM-5 zeolite under hydrothermal conditions: The critical control points of its crystalline phase and crystallinity. Microporous and Mesoporous Materials, 2022, 334, 111776.	4.4	2
156	Interfacial Reduction Nucleation of Noble Metal Nanodots on Redox-Active Metal–Organic Frameworks for High-Efficiency Electrocatalytic Conversion of Nitrate to Ammonia. Nano Letters, 2022, 22, 2529-2537.	9.1	72
157	Surface Reconstruction on Uniform Cu Nanodisks Boosted Electrochemical Nitrate Reduction to Ammonia. , 2022, 4, 650-656.		42
158	Optimizing Oxidation State of Octahedral Copper for Boosting Electroreduction Nitrate to Ammonia. ACS Applied Energy Materials, 2022, 5, 3339-3345.	5.1	21
159	Subnanometric alkaline-earth oxide clusters for sustainable nitrate to ammonia photosynthesis. Nature Communications, 2022, 13, 1098.	12.8	60
160	Photoelectrochemical Nitrate Reduction to Ammonia on Ordered Silicon Nanowire Array Photocathodes. Angewandte Chemie, 2022, 134, .	2.0	2
161	Bimetallic Cageâ€Based Metal–Organic Frameworks for Electrochemical Hydrogen Evolution Reaction with Enhanced Activity. Chemistry - A European Journal, 2022, 28, .	3.3	11
162	Sustainable Routes for Photo-Electrochemical Synthesis of Ammonia Using Various Nitrogen Precursors. ACS ES&T Engineering, 2022, 2, 1080-1087.	7.6	9

#	Article	IF	Citations
163	High-Performance Electrochemical Nitrate Reduction to Ammonia under Ambient Conditions Using a FeOOH Nanorod Catalyst. ACS Applied Materials & Interfaces, 2022, 14, 17312-17318.	8.0	58
164	Nitrateâ€toâ€Ammonia Conversion at an InSnâ€Enriched Liquidâ€Metal Electrode. Angewandte Chemie - International Edition, 2022, 61, .	13.8	34
165	Interface engineering cerium-doped copper nanocrystal for efficient electrochemical nitrate-to-ammonia production. Electrochimica Acta, 2022, 411, 140095.	5.2	15
166	Size-dependent activity of supported Ru catalysts for ammonia synthesis at mild conditions. Journal of Catalysis, 2022, 408, 98-108.	6.2	18
167	Efficient Electrochemical Nitrate Reduction to Ammonia with Copperâ€Supported Rhodium Cluster and Singleâ€Atom Catalysts. Angewandte Chemie - International Edition, 2022, 61, .	13.8	170
168	Ultrafine Cu nanoparticles decorated porous TiO2 for high-efficient electrocatalytic reduction of NO to synthesize NH3. Ceramics International, 2022, 48, 21151-21161.	4.8	21
169	Crystalline Modulation Engineering of Ru Nanoclusters for Boosting Ammonia Electrosynthesis from Dinitrogen or Nitrate. ACS Applied Materials & Interfaces, 2022, 14, 17470-17478.	8.0	37
170	Photoelectrochemical Nitrate Reduction to Ammonia on Ordered Silicon Nanowire Array Photocathodes. Angewandte Chemie - International Edition, 2022, 61, .	13.8	25
171	Efficient Electrochemical Nitrate Reduction to Ammonia with Copperâ€6upported Rhodium Cluster and Singleâ€Atom Catalysts. Angewandte Chemie, 2022, 134, .	2.0	28
172	A Defect Engineered Electrocatalyst that Promotes High-Efficiency Urea Synthesis under Ambient Conditions. ACS Nano, 2022, 16, 8213-8222.	14.6	109
173	Atomically Dispersed Cu Sites on Dualâ€Mesoporous Nâ€Đoped Carbon for Efficient Ammonia Electrosynthesis from Nitrate. ChemSusChem, 2022, 15, .	6.8	21
174	Synergistic effect of oxygen defects and hetero-phase junctions of TiO2 for selective nitrate electroreduction to ammonia. Applied Catalysis A: General, 2022, 636, 118596.	4.3	17
175	Nitrateâ€ŧoâ€Ammonia Conversion at an InSnâ€Enriched Liquidâ€Metal Electrode. Angewandte Chemie, 0, , .	2.0	7
176	Coupling of LaFeO ₃ –Plasma Catalysis and Cu ⁺ /Cu ⁰ Electrocatalysis for Direct Ammonia Synthesis from Air. Industrial & Engineering Chemistry Research, 2022, 61, 4816-4823.	3.7	9
177	Cu2O nanoparticles modified BiO2-x nanosheets for efficient electrochemical reduction of nitrate-N and nitrobenzene from wastewater. Separation and Purification Technology, 2022, 289, 120728.	7.9	8
178	Cu particles confined in three-dimensional open porous carbon foam monolith as highly efficient electrode for electroreduction of nitrate with significant alleviation of nitrite. Separation and Purification Technology, 2022, 289, 120721.	7.9	7
179	Tuning single metal atoms anchored on graphdiyne for highly efficient and selective nitrate electroreduction to ammonia under aqueous environments: A computational study. Applied Surface Science, 2022, 592, 153213.	6.1	27
180	Electrocatalytic nitrate reduction to ammonia on defective Au1Cu (111) single-atom alloys. Applied Catalysis B: Environmental, 2022, 310, 121346.	20.2	113

#	Article	IF	CITATIONS
181	Electrochemical Synthesis of Ammonium from Nitrates via Surface Engineering in Cu ₂ O(100) Facets. ACS Applied Energy Materials, 2022, 5, 71-76.	5.1	24
182	Porous Two-dimensional Iron-Cyano Nanosheets for High-rate Electrochemical Nitrate Reduction. ACS Nano, 2022, 16, 1072-1081.	14.6	89
183	Reaction pathways on N-substituted carbon catalysts during the electrochemical reduction of nitrate to ammonia. Catalysis Science and Technology, 2022, 12, 3582-3593.	4.1	6
184	Enhanced catalytic activity of copper nanoparticles electrochemically Co-deposited with cadmium towards the electroreduction of nitrate. Journal of Electroanalytical Chemistry, 2022, 914, 116325.	3.8	6
185	Cobalt–Copper Nanoparticles on Three-Dimensional Substrate for Efficient Ammonia Synthesis via Electrocatalytic Nitrate Reduction. Journal of Physical Chemistry C, 2022, 126, 6982-6989.	3.1	18
186	Atom-dispersed copper and nano-palladium in the boron-carbon-nitrogen matric cooperate to realize the efficient purification of nitrate wastewater and the electrochemical synthesis of ammonia. Journal of Hazardous Materials, 2022, 434, 128909.	12.4	21
187	Building dual active sites Co3O4/Cu electrode to break scaling relations for enhancement of electrochemical reduction of nitrate to high-value ammonia. Journal of Hazardous Materials, 2022, 434, 128887.	12.4	25
188	Engineering local environment of ruthenium by defect-tuned SnO2 over carbon cloth for neutral-media N2 electroreduction. Carbon, 2022, 195, 199-206.	10.3	13
189	Armor-Structured Interconnected-Porous Membranes for Corrosion-Resistant and Highly Permeable Waste Ammonium Resource Recycling. Environmental Science & Technology, 2022, 56, 6658-6667.	10.0	6
190	Electrochemical reduction of nitrate on silver surface and an <i>in situ</i> Raman spectroscopy study. Inorganic Chemistry Frontiers, 2022, 9, 2734-2740.	6.0	18
191	Ingenious Design of One Mixed-Valence Dual-Net Copper Metal-Organic Framework for Deriving Cu2o/Cuo Heterojunction with Highly Electrocatalytic Performances from No3- to Nh3. SSRN Electronic Journal, 0, , .	0.4	0
192	A Novel So3•-ÂMediated Photoelectrocatalytic System for the Efficient Treatment of Sulfurous and Nitrogenous Oxides. SSRN Electronic Journal, 0, , .	0.4	Ο
193	Improving electrochemical nitrate reduction activity of layered perovskite oxide La2CuO4 via B-site doping. Catalysis Today, 2022, 402, 259-265.	4.4	17
194	Tunable Surface Chemistry in Heterogeneous Bilayer Singleâ€Atom Catalysts for Electrocatalytic NO <i>_x</i> Reduction to Ammonia. Advanced Functional Materials, 2022, 32, .	14.9	30
195	Nitrateâ€ŧoâ€Ammonia Conversion on Ru/Ni Hydroxide Hybrid through Zincâ€Nitrate Fuel Cell. Small, 2022, 18, e2200436.	10.0	15
196	Saving the Energy Loss in Lithiumâ€Mediated Nitrogen Fixation by Using a Highly Reactive Li ₃ N Intermediate for Câ^'N Coupling Reactions. Angewandte Chemie - International Edition, 2022, 61, .	13.8	13
197	Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nature Nanotechnology, 2022, 17, 759-767.	31.5	318
198	Ammonia electrocatalytic synthesis from nitrate. Electrochemical Science Advances, 2023, 3, .	2.8	10

#	ARTICLE	IF	Citations
199	Electrochemical nitrate reduction to ammonia on copper-based materials for nitrate-containing wastewater treatment. Science Bulletin, 2022, 67, 1194-1196.	9.0	14
200	Saving the Energy Loss in Lithiumâ€Mediated Nitrogen Fixation by Using a Highly Reactive Li ₃ N Intermediate for Câ^'N Coupling Reactions. Angewandte Chemie, 2022, 134, .	2.0	3
201	Synergistic modulation of local environment for electrochemical nitrate reduction via asymmetric vacancies and adjacent ion clusters. Nano Energy, 2022, 98, 107338.	16.0	19
202	Electrocatalytic green ammonia production beyond ambient aqueous nitrogen reduction. Chemical Engineering Science, 2022, 257, 117735.	3.8	41
203	Understanding the Siteâ€Selective Electrocatalytic Coâ€Reduction Mechanism for Green Urea Synthesis Using Copper Phthalocyanine Nanotubes. Advanced Functional Materials, 2022, 32, .	14.9	70
204	Microscopic-Level Insights into the Mechanism of Enhanced NH ₃ Synthesis in Plasma-Enabled Cascade N ₂ Oxidation–Electroreduction System. Journal of the American Chemical Society, 2022, 144, 10193-10200.	13.7	64
205	A vacancy engineered MnO _{2â^'<i>x</i>} electrocatalyst promotes nitrate electroreduction to ammonia. Dalton Transactions, 2022, 51, 9206-9212.	3.3	54
206	Engineering a Kesteriteâ€Based Photocathode for Photoelectrochemical Ammonia Synthesis from NO <i>_x</i> Reduction. Advanced Materials, 2022, 34, .	21.0	17
207	Photoelectrochemical nitrogen reduction: A step toward achieving sustainable ammonia synthesis. Chinese Journal of Catalysis, 2022, 43, 1761-1773.	14.0	7
208	Confining intermediates within a catalytic nanoreactor facilitates nitrate-to-ammonia electrosynthesis. Applied Catalysis B: Environmental, 2022, 315, 121548.	20.2	44
209	Frustrated Lewis Pairs Boosting Photoelectrochemical Nitrate Reduction Over Znin2s4/Bivo4 Heterostructure. SSRN Electronic Journal, 0, , .	0.4	0
210	Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. , 2022, 1, e9120010.		285
211	Highly Durable and Selective Fe- and Mo-Based Atomically Dispersed Electrocatalysts for Nitrate Reduction to Ammonia via Distinct and Synergized NO ₂ [–] Pathways. ACS Catalysis, 2022, 12, 6651-6662.	11.2	58
212	Boosting nitrate electroreduction to ammonia via in situ generated stacking faults in oxide-derived copper. Chemical Engineering Journal, 2022, 446, 137341.	12.7	39
213	Oxide-Derived Core–Shell Cu@Zn Nanowires for Urea Electrosynthesis from Carbon Dioxide and Nitrate in Water. ACS Nano, 2022, 16, 9095-9104.	14.6	86
214	Mechanistic exploring the catalytic activity of single-atom catalysts anchored in graphitic carbon nitride toward electroreduction of nitrate-to-ammonia. Applied Surface Science, 2022, 598, 153829.	6.1	18
215	High-performance electrochemical nitrate reduction to ammonia under ambient conditions using NiFe ₂ O ₄ nanosheet arrays. Inorganic Chemistry Frontiers, 2022, 9, 3392-3397.	6.0	25
216	An anionic regulation mechanism for the structural reconstruction of sulfide electrocatalysts under oxygen evolution conditions. Energy and Environmental Science, 2022, 15, 3257-3264.	30.8	74

#	Article	IF	CITATIONS
217	Heteroatoms Co-Doped Copper Nanocrystals with Negatively Shifted D-Band Center for Selective Nitrate-to-Ammonia Production. SSRN Electronic Journal, 0, , .	0.4	0
218	Theoretically identifying the electrocatalytic activity and mechanism of Zn doped 2D h-BN for nitrate reduction to NH ₃ . Chemical Communications, 2022, 58, 7156-7159.	4.1	7
219	Boosted nitrate electroreduction to ammonia on Fe-doped SnS ₂ nanosheet arrays rich in S-vacancies. Dalton Transactions, 2022, 51, 10343-10350.	3.3	25
220	Oxygen Vacancy-Mediated Selective C–N Coupling toward Electrocatalytic Urea Synthesis. Journal of the American Chemical Society, 2022, 144, 11530-11535.	13.7	142
221	Carbon nanotubes with fluorine-rich surface as metal-free electrocatalyst for effective synthesis of urea from nitrate and CO2. Applied Catalysis B: Environmental, 2022, 316, 121618.	20.2	62
222	Theoretical insights into the electroreduction of nitrate to ammonia on graphene-based single-atom catalysts. Nanoscale, 2022, 14, 10862-10872.	5.6	57
223	Regulating Pd nanosheets by W-doping for electrochemical nitrate reduction to ammonia. New Journal of Chemistry, 0, , .	2.8	4
224	Mesoporosity Engineering to Boost Ammonia Synthesis From Nitrate Electroreduction. SSRN Electronic Journal, 0, , .	0.4	0
225	Mechanisms of electrochemical nitrogen gas reduction to ammonia under ambient conditions: a focused review. Journal of Solid State Electrochemistry, 2022, 26, 1897-1917.	2.5	11
226	Mapping Spatial and Temporal Electrochemical Activity of Water and CO ₂ Electrolysis on Gas-Diffusion Electrodes Using Infrared Thermography. ACS Energy Letters, 2022, 7, 2410-2419.	17.4	14
227	Facile Synthesis of Carbon Nanobelts Decorated with Cu and Pd for Nitrate Electroreduction to Ammonia. ACS Applied Materials & amp; Interfaces, 2022, 14, 30969-30978.	8.0	30
228	Potential-Driven Restructuring of Cu Single Atoms to Nanoparticles for Boosting the Electrochemical Reduction of Nitrate to Ammonia. Journal of the American Chemical Society, 2022, 144, 12062-12071.	13.7	192
229	Batch-Scale Synthesis of Nanoparticle-Agminated Three-Dimensional Porous Cu@Cu ₂ O Microspheres for Highly Selective Electrocatalysis of Nitrate to Ammonia. Environmental Science & Technology, 2022, 56, 10299-10307.	10.0	37
230	High-Efficiency Electrosynthesis of Ammonia with Selective Reduction of Nitrate in Neutral Media Enabled by Self-Supported Mn ₂ CoO ₄ Nanoarray. ACS Applied Materials & Interfaces, 2022, 14, 33242-33247.	8.0	27
231	Coordination Symmetry Breaking of Singleâ€Atom Catalysts for Robust and Efficient Nitrate Electroreduction to Ammonia. Advanced Materials, 2022, 34, .	21.0	83
232	<i>In Situ</i> Clustering of Single-Atom Copper Precatalysts in a Metal-Organic Framework for Efficient Electrocatalytic Nitrate-to-Ammonia Reduction. ACS Catalysis, 2022, 12, 8698-8706.	11.2	56
233	Boosted ammonium production by single cobalt atom catalysts with high Faradic efficiencies. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	43
234	Filling Mesopores of Conductive Metal–Organic Frameworks with Cu Clusters for Selective Nitrate Reduction to Ammonia. ACS Applied Materials & Interfaces, 2022, 14, 32176-32182.	8.0	16

#	Article	IF	CITATIONS
235	Fe single-atom catalysts with pre-organized coordination structure for efficient electrochemical nitrate reduction to ammonia. Applied Catalysis B: Environmental, 2022, 317, 121750.	20.2	55
236	Efficient Electroreduction of Nitrate into Ammonia at Ultralow Concentrations Via an Enrichment Effect. Advanced Materials, 2022, 34, .	21.0	72
237	Ingenious design of one mixed-valence dual-net copper metal-organic framework for deriving Cu2O/CuO heterojunction with highly electrocatalytic performances from NO3â^ to NH3. Journal of Power Sources, 2022, 543, 231832.	7.8	14
238	Electrocatalytic nitrate-to-ammonia conversion with ~100% Faradaic efficiency via single-atom alloying. Applied Catalysis B: Environmental, 2022, 316, 121683.	20.2	60
239	Anchored Fe atoms for N O bond activation to boost electrocatalytic nitrate reduction at low concentrations. Applied Catalysis B: Environmental, 2022, 317, 121721.	20.2	27
240	Electrocatalytic Upcycling of Nitrate Wastewater into an Ammonia Fertilizer via an Electrified Membrane. Environmental Science & Technology, 2022, 56, 11602-11613.	10.0	37
241	Facile Tailoring of the Electronic Structure and the d-Band Center of Copper-Doped Cobaltate for Efficient Nitrate Electrochemical Hydrogenation. ACS Applied Materials & Interfaces, 2022, 14, 35477-35484.	8.0	23
242	Frustrated Lewis pairs boosting photoelectrochemical nitrate reduction over ZnIn2S4/BiVO4 heterostructure. Chemical Engineering Journal, 2022, 450, 138260.	12.7	38
243	Interfacial engineering of Cu–Fe ₂ O ₃ nanotube arrays with built-in electric field and oxygen vacancies for boosting the electrocatalytic reduction of nitrates. Materials Advances, 2022, 3, 7107-7115.	5.4	5
244	Theoretical Insights into Nitrate Reduction to Ammonia over Pt/TiO ₂ : Reaction Mechanism, Activity Regulation, and Catalyst Design. ACS Catalysis, 2022, 12, 9887-9896.	11.2	12
245	Cu/CuO _{<i>x</i>} In-Plane Heterostructured Nanosheet Arrays with Rich Oxygen Vacancies Enhance Nitrate Electroreduction to Ammonia. ACS Applied Materials & Interfaces, 2022, 14, 34761-34769.	8.0	36
246	Efficient Ammonia Production Beginning from Enhanced Air Activation. Advanced Energy Materials, 2022, 12, .	19.5	13
247	Highly dispersed face-centered cubic copper–cobalt alloys constructed by ultrafast carbothermal shock for efficient electrocatalytic nitrate-to-ammonia conversion. Materials Today Energy, 2022, 29, 101112.	4.7	3
248	Co Nanoparticles Decorated Corncob-Derived Biomass Carbon as an Efficient Electrocatalyst for Nitrate Reduction to Ammonia. Inorganic Chemistry, 2022, 61, 14195-14200.	4.0	15
249	CeO2 nanoparticles with oxygen vacancies decorated N-doped carbon nanorods: A highly efficient catalyst for nitrate electroreduction to ammonia. Nano Research, 2022, 15, 8914-8921.	10.4	41
250	Bismuth stabilized by ZIF derivatives for electrochemical ammonia production: Proton donation effect of phosphorus dopants. Nano Research, 2023, 16, 4574-4581.	10.4	10
251	High-Efficiency Ammonia Electrosynthesis on Anatase TiO _{2–<i>x</i>} Nanobelt Arrays with Oxygen Vacancies by Selective Reduction of Nitrite. Inorganic Chemistry, 2022, 61, 12895-12902.	4.0	11
252	Heterostructured Bi ₂ S ₃ /MoS ₂ Nanoarrays for Efficient Electrocatalytic Nitrate Reduction to Ammonia Under Ambient Conditions. ACS Applied Materials & Interfaces, 2022, 14, 38835-38843.	8.0	17

#	Article	IF	CITATIONS
253	Boosting electrochemical nitrate-ammonia conversion via organic ligands-tuned proton transfer. Nano Energy, 2022, 103, 107705.	16.0	16
254	Electrochemically reconstructed copper-polypyrrole nanofiber network for remediating nitrate-containing water at neutral pH. Journal of Hazardous Materials, 2022, 440, 129828.	12.4	7
255	Electrochemical reduction of nitrate in the presence of silver-coated polyvinyl alcohol beads as a spatially suspended catalyst. Journal of Water Process Engineering, 2022, 49, 103082.	5.6	1
256	Emerging electrocatalytic activities in transition metal selenides: synthesis, electronic modulation, and structure-performance correlations. Chemical Engineering Journal, 2023, 451, 138514.	12.7	28
257	Sustainable removal of nitrite waste to value-added ammonia on Cu@Cu2O core–shell nanostructures by pulsed laser technique. Environmental Research, 2022, 215, 114154.	7.5	15
258	Tailored electronic structure by sulfur filling oxygen vacancies boosts electrocatalytic nitrogen oxyanions reduction to ammonia. Chemical Engineering Journal, 2023, 451, 138890.	12.7	7
259	Boosting electrochemical nitrate-to-ammonia conversion by self-supported MnCo2O4 nanowire array. Journal of Colloid and Interface Science, 2023, 629, 805-812.	9.4	35
260	Self-supported porous copper oxide nanosheet arrays for efficient and selective electrochemical conversion of nitrate ions to nitrogen gas. Journal of Materials Science and Technology, 2023, 137, 104-111.	10.7	11
261	Electrochemical ammonia synthesis <i>via</i> nitrate reduction on perovskite La _{<i>x</i>} FeO _{3â^'<i>Î'</i>} with enhanced efficiency by oxygen vacancy engineering. Sustainable Energy and Fuels, 2022, 6, 4716-4725.	4.9	7
262	Reaction mechanism and selectivity regulation of photocatalytic nitrate reduction for wastewater purification: progress and challenges. Journal of Materials Chemistry A, 2022, 10, 17357-17376.	10.3	19
263	Controllable reconstruction of copper nanowires into nanotubes for efficient electrocatalytic nitrate conversion into ammonia. Nanoscale, 2022, 14, 12332-12338.	5.6	15
264	Wide-Ph-Range Adaptable Ammonia Electrosynthesis from Nitrate on Cu-Pd Interfaces. SSRN Electronic Journal, 0, , .	0.4	0
265	Facet and d-band center engineering of CuNi nanocrystals for efficient nitrate electroreduction to ammonia. Dalton Transactions, 2022, 51, 15111-15120.	3.3	9
266	A self-supported copper/copper oxide heterostructure derived from a copper-MOF for improved electrochemical nitrate reduction. Catalysis Science and Technology, 2022, 12, 6572-6580.	4.1	9
267	Greatly enhanced electrochemical nitrate-to-ammonia conversion over an Fe-doped TiO ₂ nanoribbon array. Green Chemistry, 2022, 24, 7913-7917.	9.0	16
268	Emerging single-atom iron catalysts for advanced catalytic systems. Nanoscale Horizons, 2022, 7, 1340-1387.	8.0	12
269	Zn single atom on N-doped carbon: Highly active and selective catalyst for electrochemical reduction of nitrate to ammonia. Chemical Engineering Journal, 2023, 452, 139533.	12.7	18
270	Electroreduction of nitrate to ammonia on atomically-dispersed Cu-N4 active sites with high efficiency and stability. Fuel, 2023, 332, 126106.	6.4	8

#	Article	IF	CITATIONS
271	Zero-valent iron boosts nitrate-to-ammonia bioconversion via extracellular electron donation and reduction pathway complementation. Resources, Conservation and Recycling, 2023, 188, 106687.	10.8	3
272	Steering the Topological Defects in Amorphous Laser-Induced Graphene for Direct Nitrate-to-Ammonia Electroreduction. ACS Catalysis, 2022, 12, 11639-11650.	11.2	33
273	Regulation of the electrocatalytic nitrogen cycle based on sequential proton–electron transfer. Nature Catalysis, 2022, 5, 798-806.	34.4	24
274	Ironâ€Based Nanocatalysts for Electrochemical Nitrate Reduction. Small Methods, 2022, 6, .	8.6	48
275	Achieving Synchronization of Electrochemical Production of Ammonia from Nitrate and Ammonia Capture by Constructing a "Twoâ€inâ€One―Flow Cell Electrolyzer. Advanced Energy Materials, 2022, 12, .	19.5	40
276	Mechanism of C-N bonds formation in electrocatalytic urea production revealed by ab initio molecular dynamics simulation. Nature Communications, 2022, 13, .	12.8	50
277	Surfactant mediated electrodeposition of copper nanostructures for environmental electrochemistry: influence of morphology on electrochemical nitrate reduction reaction. Journal of Solid State Electrochemistry, 2022, 26, 2733-2742.	2.5	1
278	Recent advances and challenges of electrochemical ammonia synthesis. Chem Catalysis, 2022, 2, 2590-2613.	6.1	39
279	Electronic Metal–Support Interaction Triggering Interfacial Charge Polarization over CuPd/Nâ€Đoped Nanohybrids Drives Selectively Electrocatalytic Conversion of Nitrate to Ammonia. Small, 2022, 18, .	10.0	28
280	Recent Advances in Upgrading of Low ost Oxidants to Valueâ€Added Products by Electrocatalytic Reduction Reaction. Advanced Functional Materials, 2022, 32, .	14.9	20
281	Revealing the origin of activity and selectivity for Ti/g-C3N4 to ammonia production via nitrate reduction electrocatalysis: A first-principles study. Applied Catalysis A: General, 2022, 645, 118846.	4.3	4
282	Gaseous CO ₂ Coupling with N-Containing Intermediates for Key C–N Bond Formation during Urea Production from Coelectrolysis over Cu. ACS Catalysis, 2022, 12, 11494-11504.	11.2	24
283	Strategies of selective electroreduction of aqueous nitrate to N2 in chloride-free system: A critical review. Green Energy and Environment, 2024, 9, 198-216.	8.7	2
284	Solvothermal synthesis of α–CuPc nanostructures for electrochemical nitrogen fixation under ambient conditions. Catalysis Today, 2023, 423, 113905.	4.4	17
285	Electrocatalytic hydrogenation of quinolines with water over a fluorine-modified cobalt catalyst. Nature Communications, 2022, 13, .	12.8	18
286	Electrocatalytic Hydrogenation Boosts Reduction of Nitrate to Ammonia over Single-Atom Cu with Cu(I)-N ₃ C ₁ Sites. Environmental Science & Technology, 2022, 56, 14797-14807.	10.0	64
287	Efficient Nitrate Conversion to Ammonia on f-Block Single-Atom/Metal Oxide Heterostructure <i>via</i> Local Electron-Deficiency Modulation. ACS Nano, 2022, 16, 15297-15309.	14.6	31
288	Research Progress on Cu-Based Catalysts for Electrochemical Nitrate Reduction Reaction to Ammonia. Industrial & Engineering Chemistry Research, 2022, 61, 14731-14746.	3.7	35

#	Article	IF	CITATIONS
289	Activating nano-bulk interplays for sustainable ammonia electrosynthesis. Materials Today, 2022, 60, 31-40.	14.2	8
290	Recent Advances in Designing Efficient Electrocatalysts for Electrochemical Nitrate Reduction to Ammonia. Small Structures, 2023, 4, .	12.0	32
291	High-Efficiency Electrochemical Nitrate Reduction to Ammonia on a Co ₃ O ₄ Nanoarray Catalyst with Cobalt Vacancies. ACS Applied Materials & Interfaces, 2022, 14, 46595-46602.	8.0	62
292	Construction of CoP/TiO2 nanoarray for enhanced electrochemical nitrate reduction to ammonia. Materials Today Physics, 2022, 28, 100854.	6.0	53
293	High-throughput screening to predict highly active dual-atom catalysts for electrocatalytic reduction of nitrate to ammonia. Nano Energy, 2022, 103, 107866.	16.0	33
294	Membrane-modified electrocatalysts for nitrate reduction to ammonia with high faradaic efficiency. Journal of Materials Chemistry A, 2022, 10, 22428-22436.	10.3	8
295	CoS ₂ @TiO ₂ nanoarray: a heterostructured electrocatalyst for high-efficiency nitrate reduction to ammonia. Chemical Communications, 2022, 58, 12995-12998.	4.1	13
296	Direct eight-electron NO ₃ ^{â^'} -to-NH ₃ conversion: using a Co-doped TiO ₂ nanoribbon array as a high-efficiency electrocatalyst. Inorganic Chemistry Frontiers, 2022, 9, 6412-6417.	6.0	11
297	A new catalyst based on disposed red mud for the efficient electrochemical reduction of nitrate-to-ammonia. Green Chemistry, 2023, 25, 589-595.	9.0	9
298	Emerging p-Block-Element-Based Electrocatalysts for Sustainable Nitrogen Conversion. ACS Nano, 2022, 16, 15512-15527.	14.6	42
299	Potential Dependence of Ammonia Selectivity of Electrochemical Nitrate Reduction on Copper Oxide. ACS Sustainable Chemistry and Engineering, 2022, 10, 14343-14350.	6.7	14
300	Predictive Theoretical Model for the Selective Electroreduction of Nitrate to Ammonia. Journal of Physical Chemistry Letters, 2022, 13, 9919-9927.	4.6	13
301	V (Nb) Single Atoms Anchored by the Edge of a Graphene Armchair Nanoribbon for Efficient Electrocatalytic Nitrogen Reduction: A Theoretical Study. Inorganic Chemistry, 2022, 61, 17864-17872.	4.0	9
302	Turning Waste into Wealth: Sustainable Production of High-Value-Added Chemicals from Catalytic Coupling of Carbon Dioxide and Nitrogenous Small Molecules. ACS Nano, 2022, 16, 17911-17930.	14.6	54
303	Electrochemical nitrate reduction to produce ammonia integrated into wastewater treatment: Investigations and challenges. Chinese Chemical Letters, 2023, 34, 107908.	9.0	24
304	Mesoporous PdN Alloy Nanocubes for Efficient Electrochemical Nitrate Reduction to Ammonia. Advanced Materials, 2023, 35, .	21.0	38
305	Theoretical understanding of electrocatalysis beyond thermodynamic analysis. Chinese Journal of Catalysis, 2022, 43, 2746-2756.	14.0	6
306	Heteroatoms co-doped copper nanocrystals with negatively shifted d-band center for selective nitrate-to-ammonia production. Applied Surface Science, 2023, 608, 155057.	6.1	5

#	Article	IF	CITATIONS
307	Interfacial engineering of CoMn2O4/NC induced electronic delocalization boosts electrocatalytic nitrogen oxyanions reduction to ammonia. Applied Catalysis B: Environmental, 2023, 322, 122090.	20.2	25
308	Mo ₂ C for electrocatalytic nitrate reduction to ammonia. Dalton Transactions, 2022, 51, 17547-17552.	3.3	9
309	FeS ₂ @TiO ₂ nanobelt array enabled high-efficiency electrocatalytic nitrate reduction to ammonia. Journal of Materials Chemistry A, 2022, 10, 24462-24467.	10.3	32
310	Co/N-doped carbon nanosphere derived from adenine-based metal organic framework enabled high-efficiency electrocatalytic nitrate reduction to ammonia. Chemical Communications, 0, , .	4.1	12
311	Ambient ammonia production via electrocatalytic nitrite reduction over MoO2 nanoparticles self-supported on molybdenum plate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 657, 130549.	4.7	10
312	Construction and identification of highly active single-atom Fe1-NC catalytic site for electrocatalytic nitrate reduction. Applied Catalysis B: Environmental, 2023, 323, 122181.	20.2	28
313	Catalytic reduction of water pollutants: knowledge gaps, lessons learned, and new opportunities. Frontiers of Environmental Science and Engineering, 2023, 17, .	6.0	4
314	Electrochemical Reduction of Nitrate with Simultaneous Ammonia Recovery Using a Flow Cathode Reactor. Environmental Science & Technology, 2022, 56, 17298-17309.	10.0	19
315	Organic molecule-modified copper catalyst enables efficient electrochemical reduction of CO2-to-methane. Journal of Electroanalytical Chemistry, 2023, 929, 117068.	3.8	2
316	Why copper catalyzes electrochemical reduction of nitrate to ammonia. Faraday Discussions, 0, 243, 502-519.	3.2	9
317	Near-unity electrochemical conversion of nitrate to ammonia on crystalline nickel porphyrin-based covalent organic frameworks. Energy and Environmental Science, 2023, 16, 201-209.	30.8	32
318	Catalytic active centers beyond transition metals: atomically dispersed alkaline-earth metals for the electroreduction of nitrate to ammonia. Journal of Materials Chemistry A, 2023, 11, 1817-1828.	10.3	51
319	Upcycling wastewater nitrate into ammonia fertilizer via concurrent electrocatalysis and membrane extraction. Chemical Engineering Journal, 2023, 455, 140959.	12.7	3
320	Molecularly understanding and regulating carrier injection behavior of ETL/perovskite towards high performance PeLEDs. Chemical Engineering Journal, 2023, 456, 141077.	12.7	5
321	Cooperative interaction between Cu and sulfur vacancies in SnS ₂ nanoflowers for highly efficient nitrate electroreduction to ammonia. Journal of Materials Chemistry A, 2023, 11, 2014-2022.	10.3	7
322	Bimetallic CuCo nanocrystals to tailor absorption energy of intermediators for efficient electrochemical nitrate conversion to ammonia in neutral electrolyte. Journal of Power Sources, 2023, 556, 232523.	7.8	7
323	Accelerating the reaction kinetics from nitrate to ammonia by anion substitution in NiCo-based catalysts. Journal of Environmental Chemical Engineering, 2023, 11, 109117.	6.7	3
324	Boron-induced electron localization in Cu nanowires promotes efficient nitrate reduction to ammonia in neutral media. Applied Surface Science, 2023, 612, 155872.	6.1	15

#	Article	IF	CITATIONS
325	Highly distributed amorphous copper catalyst for efficient ammonia electrosynthesis from nitrate. Journal of Hazardous Materials, 2023, 445, 130651.	12.4	9
326	Engineering sulfur vacancies optimization in Ni3Co6S8 nanospheres toward extraordinarily efficient nitrate electroreduction to ammonia. Applied Catalysis B: Environmental, 2023, 324, 122193.	20.2	13
327	Highly selective nitrate reduction to ammonia on CoO/Cu foam via constructing interfacial electric field to tune adsorption of reactants. Applied Catalysis B: Environmental, 2023, 324, 122201.	20.2	21
328	Polystyrene spheres-templated mesoporous carbonous frameworks implanted with cobalt nanoparticles for highly efficient electrochemical nitrate reduction to ammonia. Applied Catalysis B: Environmental, 2023, 323, 122192.	20.2	17
329	Electrocatalytic reduction of nitrate to ammonia on low-cost manganese-incorporated Co3O4 nanotubes. Applied Catalysis B: Environmental, 2023, 324, 122293.	20.2	31
330	Selective Electrochemical Urea Synthesis from Nitrate and CO ₂ Using <i>In Situ</i> Ru Anchoring onto a Three-Dimensional Copper Electrode. ACS Sustainable Chemistry and Engineering, 2022, 10, 15869-15875.	6.7	18
331	Modulating surface oxygen species via facet engineering for efficient conversion of nitrate to ammonia. Journal of Energy Chemistry, 2023, 78, 211-221.	12.9	23
332	Perovskites with Enriched Oxygen Vacancies as a Family of Electrocatalysts for Efficient Nitrate Reduction to Ammonia. Small, 2023, 19, .	10.0	22
333	Swinging Hydrogen Evolution to Nitrate Reduction Activity in Molybdenum Carbide by Ruthenium Doping. ACS Catalysis, 2022, 12, 15045-15055.	11.2	30
334	Recent progress in electrochemical synthesis of carbon-free hydrogen carrier ammonia and ammonia fuel cells: A review. Materials Reports Energy, 2022, 2, 100163.	3.2	0
335	In Situ Confinement of Ultrasmall Metal Nanoparticles in Short Mesochannels for Durable Electrocatalytic Nitrate Reduction with High Efficiency and Selectivity. Advanced Materials, 2023, 35, .	21.0	34
336	Advances in Selective Electrocatalytic Hydrogenation of Alkynes to Alkenes. Chemistry - A European Journal, 2023, 29, .	3.3	5
337	Active hydrogen boosts electrochemical nitrate reduction to ammonia. Nature Communications, 2022, 13, .	12.8	127
338	Theoretical insights into dissociative-associative mechanism for enhanced electrochemical nitrate reduction to ammonia. Journal of Hazardous Materials, 2023, 446, 130679.	12.4	12
339	Efficient electrolytic conversion of nitrogen oxyanion and oxides to gaseous ammonia in molten alkali. Chemical Engineering Journal, 2023, 456, 141060.	12.7	2
340	Proton production in neutral electrolyte along oxygen evolution. International Journal of Hydrogen Energy, 2022, , .	7.1	0
341	Tailored pâ€Orbital Delocalization by Diatomic Ptâ€Ce Induced Interlayer Spacing Engineering for Highlyâ€Efficient Ammonia Electrosynthesis. Advanced Energy Materials, 2023, 13, .	19.5	15
342	Atomically Precise Integration of Multiple Functional Motifs in Catalytic Metal–Organic Frameworks for Highly Efficient Nitrate Electroreduction. Jacs Au, 2022, 2, 2765-2777.	7.9	8

#	Article	IF	CITATIONS
343	Singleâ€entity Electrochemistry Unveils Dynamic Transformation during Tandem Catalysis of Cu ₂ O and Co ₃ O ₄ for Converting NO ₃ ^{â^'} to NH ₃ . Angewandte Chemie - International Edition, 2023, 62, .	13.8	25
344	A cellulose-derived supramolecule for fast ion transport. Science Advances, 2022, 8, .	10.3	25
345	Highly Dispersed Inâ€Situ Grown Bi ₂ O ₃ Nanosheets on Ti ₃ C ₂ T _{<i>x</i>} MXene for Selective Electroreduction of Nitrate to Ammonia. ChemElectroChem, 2023, 10, .	3.4	6
346	Boosting the interlayer-confined nitrate reduction reaction by in situ electrochemical potassium ion intercalation. Science China Materials, 2023, 66, 1352-1361.	6.3	4
347	Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature. Nature Communications, 2022, 13, .	12.8	119
348	Achievements, Challenges, and Perspectives on Nitrogen Electrochemistry for Carbonâ€Neutral Energy Technologies. Angewandte Chemie, 2023, 135, .	2.0	7
349	Achievements, Challenges, and Perspectives on Nitrogen Electrochemistry for Carbonâ€Neutral Energy Technologies. Angewandte Chemie - International Edition, 2023, 62, .	13.8	25
350	Nitrate pollution and its solutions with special emphasis on electrochemical reduction removal. Environmental Science and Pollution Research, 2023, 30, 9290-9310.	5.3	3
351	Singleâ€entity Electrochemistry Unveils Dynamic Transformation during Tandem Catalysis of Cu2O and Co3O4 for Converting NO3â^' to NH3. Angewandte Chemie, 0, , .	2.0	0
352	Sustainable Nitrogen Fixation to Produce Ammonia by Electroreduction of Plasma-Generated Nitrite. ACS Sustainable Chemistry and Engineering, 2023, 11, 1168-1177.	6.7	7
353	Conjugated Coordination Polymer as a New Platform for Efficient and Selective Electroreduction of Nitrate into Ammonia. Advanced Materials, 2023, 35, .	21.0	20
354	Hierarchical Nanospheres with Polycrystalline Ir&Cu and Amorphous Cu ₂ O toward Energyâ€Efficient Nitrate Electrolysis to Ammonia. Small, 2023, 19, .	10.0	15
355	Solventâ€inâ€Gas System for Promoted Photocatalytic Ammonia Synthesis on Porous Framework Materials. Advanced Materials, 2023, 35, .	21.0	18
356	Mechanistic Understanding of the Electrocatalytic Nitrate Reduction Activity of Double-Atom Catalysts. Journal of Physical Chemistry C, 2023, 127, 994-1005.	3.1	7
357	N-doped carbon–iron heterointerfaces for boosted electrocatalytic active and selective ammonia production. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	11
358	Decoupling Electron―and Phaseâ€Transfer Processes to Enhance Electrochemical Nitrateâ€toâ€Ammonia Conversion by Blending Hydrophobic PTFE Nanoparticles within the Electrocatalyst Layer. Advanced Energy Materials, 2023, 13, .	19.5	7
359	Low-Coordination Rhodium Catalysts for an Efficient Electrochemical Nitrate Reduction to Ammonia. ACS Catalysis, 2023, 13, 1513-1521.	11.2	45
360	Photoelectrochemical nitrate reduction to ammonia over BiVO4/2D macromolecular with extremely low energy consumption. International Journal of Hydrogen Energy, 2023, 48, 10882-10890.	7.1	2

ARTICLE IF CITATIONS Facile and Scalable Synthesis of Self-Supported Zn-Doped CuO Nanosheet Arrays for Efficient Nitrate 361 8.0 8 Reduction to Ammonium. ACS Applied Materials & amp; Interfaces, 2023, 15, 5172-5179. Advances in iron-based electrocatalysts for nitrate reduction. Science of the Total Environment, 8.0 2023, 866, 161444. Highly active iron phosphide catalysts for selective electrochemical nitrate reduction to ammonia. 363 6.7 9 Journal of Environmental Chemical Engineering, 2023, 11, 109275. Sequential active-site switches in integrated Cu/Fe-TiO2 for efficient electroreduction from nitrate 364 into ammonia. Applied Catalysis B: Environmental, 2023, 325, 122360. High-Index Surface Structure Engineering of Au–Pd Concave Triple-Octahedrons for Boosting Electrocatalytic Nitrate Reduction to Ammonia. ACS Sustainable Chemistry and Engineering, 2023, 11, 365 6.7 8 1631-1637. Energy-efficient electrochemical ammonia production from dilute nitrate solution. Energy and 30.8 Environmental Science, 2023, 16, 663-672 Constructing Co@TiO₂ Nanoarray Heterostructure with Schottky Contact for Selective 367 10.0 55 Electrocatalytic Nitrate Reduction to Ammonia. Small, 2023, 19, . A high-energy aqueous Zn‖NO₂ electrochemical cell: a new strategy for NO₂ fixation and electric power generation. Energy and Environmental Science, 2023, 16, 1125-1134. 30.8 Cobaloximes: selective nitrite reduction catalysts for tandem ammonia synthesis. Energy and 369 30.8 16 Environmental Science, 2023, 16, 1590-1596. Interfacially Engineered Nanoporous Cu/MnO<i>_x</i> Hybrids for Highly Efficient 370 10.0 Electrochemical Ammonia Synthesis via Nitrate Reduction. Small, 2023, 19, . Revealing the activity origin of ultrathin nickel metal–organic framework nanosheet catalysts for selective electrochemical nitrate reduction to ammonia: Experimental and density functional theory 371 9 9.4 investigations. Journal of Colloid and Interface Science, 2023, 638, 26-38. Hybrid nanoarrays of Cu-MOFs@H-substituted graphdiyne with various levels of Lewis acidity for 4.1 nitrate electroreduction. Chemical Communications, 2023, 59, 4348-4351. Defect engineering of two-dimensional materials for advanced energy conversion and storage. 373 38.1 66 Chemical Society Reviews, 2023, 52, 1723-1772. Copper with an atomic-scale spacing for efficient electrocatalytic co-reduction of carbon dioxide and nitrate to urea. Energy and Environmental Science, 2023, 16, 2003-2013. 374 30.8 Coupling Cu doping and oxygen vacancies in Co₃O₄for efficient 375 4.1 11 electrochemical nitrate conversion to ammonia. Chemical Communications, 2023, 59, 5086-5089. Promoting ambient ammonia electrosynthesis on modulated Cu < sup > (i > 1/2) + (sup > catalysts byB-doping. Journal of Materials Chemistry A, 2023, 11, 5520-5526. Wide-pH-range adaptable ammonia electrosynthesis from nitrate on Cu-Pd interfaces. Science China 377 8.2 2 Chemistry, 0, , . Pulsed Nitrate-to-Ammonia Electroreduction Facilitated by Tandem Catalysis of Nitrite Intermediates. 379 Journal of the American Chemical Society, 2023, 145, 6471-6479.

#	Article	IF	CITATIONS
380	Self-powered electrocatalytic nitrate to ammonia driven by lightweight triboelectric nanogenerators for wind energy harvesting. Nano Energy, 2023, 112, 108434.	16.0	11
381	Ultrathin manganese oxides enhance the electrocatalytic properties of 3D printed carbon catalysts for electrochemical nitrate reduction to ammonia. Applied Catalysis B: Environmental, 2023, 330, 122632.	20.2	6
382	A novel SO3•- mediated photoelectrocatalytic system based on MoS2/Fe2O3 and CuNW@CF for the efficient treatment of sulfurous and nitrogenous oxides. Applied Catalysis B: Environmental, 2023, 330, 122579.	20.2	2
383	Enhanced electrocatalytic nitrate reduction through phosphorus-vacancy-mediated kinetics in heterogeneous bimetallic phosphide hollow nanotube array. Applied Catalysis B: Environmental, 2023, 330, 122627.	20.2	15
384	Refining electronic properties of Bi2MoO6 by In-doping for boosting overall nitrogen fixation via relay catalysis. Applied Catalysis B: Environmental, 2023, 330, 122643.	20.2	47
385	N, O trans-coordinating silver single-atom catalyst for robust and efficient ammonia electrosynthesis from nitrate. Applied Catalysis B: Environmental, 2023, 331, 122687.	20.2	12
386	The origin of selective nitrate-to-ammonia electroreduction on metal-free nitrogen-doped carbon aerogel catalysts. Applied Catalysis B: Environmental, 2023, 331, 122677.	20.2	16
387	Interfacial hydrogen bonding-involved electrocatalytic ammonia synthesis on OH-terminated MXene. Applied Catalysis B: Environmental, 2023, 328, 122473.	20.2	23
388	Enhanced nitrate reduction over functionalized Pd/Cu electrode with tunable conversion to nitrogen and sodium hydroxide recovery. Science of the Total Environment, 2023, 869, 161849.	8.0	6
389	Insights into Electrocatalytic Nitrate Reduction to Ammonia via Cu-Based Bimetallic Catalysts. ACS Sustainable Chemistry and Engineering, 2023, 11, 2468-2475.	6.7	28
390	Enabled Efficient Ammonia Synthesis and Energy Supply in a Zinc–Nitrate Battery System by Separating Nitrate Reduction Process into Two Stages. Angewandte Chemie, 2023, 135, .	2.0	0
391	Enabled Efficient Ammonia Synthesis and Energy Supply in a Zinc–Nitrate Battery System by Separating Nitrate Reduction Process into Two Stages. Angewandte Chemie - International Edition, 2023, 62, .	13.8	48
392	Dynamic Reconstitution Between Copper Single Atoms and Clusters for Electrocatalytic Urea Synthesis. Advanced Materials, 2023, 35, .	21.0	66
393	Selective NO _{<i>x</i>} [–] Electroreduction to Ammonia on Isolated Ru Sites. ACS Nano, 2023, 17, 3483-3491.	14.6	20
394	Co ₂ Mo ₆ S ₈ Catalyzes Nearly Exclusive Electrochemical Nitrate Conversion to Ammonia with Enzyme-like Activity. Nano Letters, 2023, 23, 1459-1466.	9.1	12
395	Characterization of Nanowire-Constructed Porous CuZn and CuNiZn Nitrate-Active Electrodes Prepared via Galvanic Displacement on Electrodeposited Zn Templates in Ionic Liquids. Journal of Electronic Materials, 2023, 52, 2995-3007.	2.2	2
396	Electrocatalytic Reduction of Nitrate to Ammonia via a Au/Cu Single Atom Alloy Catalyst. Environmental Science & Technology, 2023, 57, 3134-3144.	10.0	30
397	Coupling nitrate capture with ammonia production through bifunctional redox-electrodes. Nature Communications, 2023, 14, .	12.8	37

#	Article	IF	CITATIONS
398	Nâ€Coordinated Cu–Ni Dualâ€5ingleâ€Atom Catalyst for Highly Selective Electrocatalytic Reduction of Nitrate to Ammonia. Small, 2023, 19, .	10.0	28
399	Direct Synthesis of Ammonia from Nitrate on Amorphous Graphene with Near 100% Efficiency. Advanced Materials, 2023, 35, .	21.0	33
400	Enhanced electrocatalytic nitrate reduction to ammonia on cobalt oxide nanosheets via multiscale defect modulation. Chemical Engineering Journal, 2023, 461, 141960.	12.7	25
402	Cu-Doped Iron Oxide for the Efficient Electrocatalytic Nitrate Reduction Reaction. Nano Letters, 2023, 23, 1897-1903.	9.1	25
403	Cu ₂ O–Cu@Titanium Surface with Synergistic Performance for Nitrate-to-Ammonia Electrochemical Reduction. ACS Sustainable Chemistry and Engineering, 2023, 11, 3633-3643.	6.7	9
404	Defective Metal Oxides: Lessons from CO ₂ RR and Applications in NO <i>_x</i> RR. Advanced Materials, 2023, 35, .	21.0	16
405	Development of copper foam-based composite catalysts for electrolysis of water and beyond. Sustainable Energy and Fuels, 2023, 7, 1604-1626.	4.9	2
406	The Preparation of UiOâ€66â€NH ₂ /CNT Electrocatalyst and its High Catalytic Performance for Electrochemical Synthetic Ammonia in Neutral Electrolyte. ChemistrySelect, 2023, 8, .	1.5	1
407	Theoretical Evaluation of Highly Efficient Nitrate Reduction to Ammonia on InBi. Journal of Physical Chemistry Letters, 2023, 14, 2410-2415.	4.6	4
408	Singleâ€atom catalyst application in distributed renewable energy conversion and storage. SusMat, 2023, 3, 160-179.	14.9	15
409	Alloying of Cu with Ru Enabling the Relay Catalysis for Reduction of Nitrate to Ammonia. Advanced Materials, 2023, 35, .	21.0	83
410	Free-standing membrane incorporating single-atom catalysts forÂultrafast electroreduction of low-concentration nitrate. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	21
411	Interfacial Defect Engineering Triggered by Single Atom Doping for Highly Efficient Electrocatalytic Nitrate Reduction to Ammonia. , 2023, 5, 1018-1026.		17
412	Photoelectrocatalytic Conversion of Nitrates to Ammonia with Plasmon Hot Electrons. Journal of Physical Chemistry C, 2023, 127, 5425-5431.	3.1	5
413	Electrochemical Reduction of Nitrates on CoO Nanoclustersâ€Functionalized Graphene with Highest Mass Activity and Nearly 100% Selectivity to Ammonia. Advanced Energy Materials, 2023, 13, .	19.5	22
414	Analysis of the Scale of Global Human Needs and Opportunities for Sustainable Catalytic Technologies. Topics in Catalysis, 2023, 66, 338-374.	2.8	6
415	Combined Effects of Concentration, pH, and Polycrystalline Copper Surfaces on Electrocatalytic Nitrate-to-Ammonia Activity and Selectivity. ACS Catalysis, 2023, 13, 4178-4192.	11.2	7
416	Balancing subâ€reaction activity to boost electrocatalytic urea synthesis using a metalâ€free electrocatalyst. , 2023, 5, .		13

#	Article	IF	CITATIONS
417	Interfacial Engineering of Bimetallic Ni/Co-MOFs with H-Substituted Graphdiyne for Ammonia Electrosynthesis from Nitrate. ACS Nano, 2023, 17, 6687-6697.	14.6	18
418	Electro-triggered Joule heating method to synthesize single-phase CuNi nano-alloy catalyst for efficient electrocatalytic nitrate reduction toward ammonia. Nano Research, 2023, 16, 6632-6641.	10.4	30
419	Perspective of nitrate reduction and nitrogen neutral cycle. , 2023, 42, 100067.		8
420	Transition-Metal-Free, Pure p-Block Alloy Electrocatalysts for the Highly Efficient Nitrate Reduction to Ammonia. Chemistry of Materials, 2023, 35, 2884-2891.	6.7	3
421	Plate-Like Colloidal Metal Nanoparticles. Chemical Reviews, 2023, 123, 3493-3542.	47.7	24
422	Preparation of porous Cuâ€rich <scp>CuNi</scp> electrodes via electrochemically dealloying in ionic liquid. Journal of the Chinese Chemical Society, 2023, 70, 909-919.	1.4	0
423	Continuous ammonia electrosynthesis using physically interlocked bipolar membrane at 1000 mA cmâ^'2 Nature Communications, 2023, 14, .	2. 12.8	27
424	Nano-Polycrystalline Cu Layer Interlaced with Ti ³⁺ -Self-Doped TiO ₂ Nanotube Arrays as an Electrocatalyst for Reduction of Nitrate to Ammonia. ACS Applied Materials & Interfaces, 2023, 15, 16680-16691.	8.0	5
425	Morphology Changes of Cu ₂ O Catalysts During Nitrate Electroreduction to Ammonia**. ChemCatChem, 2023, 15, .	3.7	4
426	Efficient Electroreduction of Nitrate to Ammonia with CuPd Nanoalloy Catalysts. ChemSusChem, 2023, 16, .	6.8	2
427	Facile synthesis of CuCo-CoO composite electrocatalyst for nitrate reduction to ammonia with high activity, selectivity and stability. Applied Surface Science, 2023, 624, 157118.	6.1	5
428	Molecular electrocatalysts for rapid and selective reduction of nitrogenous waste to ammonia. Energy and Environmental Science, 2023, 16, 2239-2246.	30.8	19
429	Controlled growth of a graphdiyne-Prussian blue analog heterostructure for efficient ammonia production. NPG Asia Materials, 2023, 15, .	7.9	7
430	Microenvironment Engineering to Promote Selective Ammonia Electrosynthesis from Nitrate over a PdCu Hollow Catalyst. Small, 2023, 19, .	10.0	9
431	Efficient Electrocatalytic Nitrate Reduction to Ammonia Based on DNA-Templated Copper Nanoclusters. ACS Applied Materials & Interfaces, 2023, 15, 18928-18939.	8.0	10
432	Elaborately tuning the electronic structure of single-atom nickel sites using nickel nanoparticles to markedly enhance the electrochemical reduction of nitrate into ammonia. Journal of Energy Chemistry, 2023, 83, 32-42.	12.9	11
433	Strengthening the Metal Center of Co–N ₄ Active Sites in a 1D–2D Heterostructure for Nitrate and Nitrogen Reduction Reaction to Ammonia. ACS Sustainable Chemistry and Engineering, 2023, 11, 6191-6200.	6.7	29
434	Reversible transition of an amorphous Cu-Al oxyfluoride into a highly active electrocatalyst for NO3â^' reduction to NH3. Chem Catalysis, 2023, 3, 100595.	6.1	1

#	Article	IF	CITATIONS
435	Advantages and limitations of different electrochemical NH3 production methods under ambient conditions: A review. Current Opinion in Electrochemistry, 2023, 39, 101292.	4.8	2
436	Design of material regulatory mechanism for electrocatalytic converting NO/NO ₃ ^{â^'} to NH ₃ progress. Natural Sciences, 2023, 3, .	2.1	9
437	Modulation of oxygen vacancy and zero-valent zinc in ZnCr2O4 nanofibers by enriching zinc for efficient nitrate reduction. Applied Catalysis B: Environmental, 2023, 333, 122772.	20.2	28
438	Electrical Pulseâ€Driven Periodic Selfâ€Repair of Cuâ€Ni Tandem Catalyst for Efficient Ammonia Synthesis from Nitrate. Angewandte Chemie, 2023, 135, .	2.0	3
439	Boosting Electrocatalytic Reduction of Nitrate to Ammonia over Co3O4 Nanosheets with Oxygen Vacancies. Metals, 2023, 13, 799.	2.3	5
440	Exploring the origin of the high electro-catalytic activity for nitrate-to-ammonia conversion on electrodeposited Ni/Ru hydroxide hybrids. Inorganic Chemistry Frontiers, 2023, 10, 3058-3064.	6.0	1
441	Electrical Pulseâ€Driven Periodic Selfâ€Repair of Cuâ€Ni Tandem Catalyst for Efficient Ammonia Synthesis from Nitrate. Angewandte Chemie - International Edition, 2023, 62, .	13.8	29
442	Ultralow overpotential nitrate reduction to ammonia via a three-step relay mechanism. Nature Catalysis, 2023, 6, 402-414.	34.4	106
443	Selective Electrocatalytic Nitrate Reduction to Ammonia Using Nafion-Covered Cu Electrodeposits. Journal of Physical Chemistry C, 2023, 127, 8054-8061.	3.1	2
444	Halogen-induced planar defects in Cu catalysts for ammonia electrosynthesis at an ampere-level current density. Materials Chemistry Frontiers, 2023, 7, 3093-3101.	5.9	3
445	Identification of Dynamic Active Sites Among Cu Species Derived from MOFs@CuPc for Electrocatalytic Nitrate Reduction Reaction to Ammonia. Nano-Micro Letters, 2023, 15, .	27.0	26
446	Ferulic acid mitigates 2-methoxyethanol-induced testicular oxidative stress via combined downregulation of FoxO1, PTEN, and modulation of Nrf2-Hmox1-NQO1 signaling pathway in rats. Pharmacological Research Modern Chinese Medicine, 2023, 7, 100257.	1.2	3
447	Elucidation of the electrocatalytic activity origin of Fe3C species and application in the NOx full conversion to valuable ammonia. Chemical Engineering Journal, 2023, 467, 143371.	12.7	4
448	Efficient electrocatalytic properties of transition metal (Mn, Co, Cu) doped LaFeO3 for ammonia synthesis via nitrate reduction. Materials Today Communications, 2023, 35, 106048.	1.9	2
449	Highly Efficient Electrochemical Nitrate Reduction to Ammonia in Strong Acid Conditions with Fe ₂ Mâ€Trinuclearâ€Cluster Metal–Organic Frameworks. Angewandte Chemie, 2023, 135, .	2.0	3
450	Enabling circular economy by N-recovery: Electrocatalytic reduction of nitrate with cobalt hydroxide nanocomposites on copper foam treating low conductivity groundwater effluents. Science of the Total Environment, 2023, 887, 163938.	8.0	4
451	Optimization the surface sites of CuPc/Ce-MOF for boosting photoelectrochemical ammonia production. Functional Materials Letters, 0, , .	1.2	0
452	A Nitrogen Battery Electrode involving Eightâ€Electron Transfer per Nitrogen for Energy Storage. Angewandte Chemie - International Edition, 2023, 62, .	13.8	5

#	ARTICLE Emerging Applications, Developments, Prospects, and Challenges of Electrochemical	IF	CITATIONS
453 454	Nitrateâ€toâ€Ammonia Conversion. Advanced Functional Materials, 2023, 33, . Proton Exchange Membrane Electrode Assembly for Ammonia Electrosynthesis from Nitrate. ACS Applied Energy Materials, 2023, 6, 5067-5073.	14.9 5.1	45 2
455	Cu/Co bimetallic conductive MOFs: Electronic modulation for enhanced nitrate reduction to ammonia. Chemical Engineering Journal, 2023, 466, 143134.	12.7	24
456	Enhancing Electrochemical Nitrate Reduction to Ammonia over Cu Nanosheets via Facet Tandem Catalysis. Angewandte Chemie, 2023, 135, .	2.0	1
457	Enhancing Electrochemical Nitrate Reduction to Ammonia over Cu Nanosheets via Facet Tandem Catalysis. Angewandte Chemie - International Edition, 2023, 62, .	13.8	38
458	Sulfur vacancy MoS2 for electrocatalytic reduction of nitrate to ammonia with enhanced selectivity. Journal of Alloys and Compounds, 2023, 955, 170199.	5.5	6
459	Recent progress and strategies on the design of catalysts for electrochemical ammonia synthesis from nitrate reduction. Inorganic Chemistry Frontiers, 2023, 10, 3489-3514.	6.0	66
460	Efficient ammonia photosynthesis from nitrate by graphene/Si Schottky junction integrated with Ni–Fe LDH catalyst. Journal of Materials Chemistry A, 2023, 11, 11179-11186.	10.3	1
461	MOF-derived Fe ₂ O ₃ /MoSe ₂ composites for promoted electrocatalytic nitrogen fixation. Catalysis Science and Technology, 2023, 13, 3629-3637.	4.1	1
462	Accelerating Industrial‣evel NO ₃ ^{â^`} Electroreduction to Ammonia on Cu Grain Boundary Sites via Heteroatom Doping Strategy. Small, 2023, 19, .	10.0	7
463	P-doped FeCo2O4 in-situ decorated on carbon cloth as robust electrocatalysts for reducing nitrate and nitrite to ammonia. Journal of Environmental Chemical Engineering, 2023, 11, 110122.	6.7	4
464	Nonâ~'noble singleâ~'atom alloy for electrocatalytic nitrate reduction using hierarchical highâ~'throughput screening. Nano Energy, 2023, 113, 108543.	16.0	5
465	Engineering 3D Printed Structures Towards ÂElectrochemically Driven Green Ammonia Synthesis: AÂPerspective. Advanced Materials Technologies, 2023, 8, .	5.8	5
466	Atomically dispersed materials: Ideal catalysts in atomic era. Nano Research, 2024, 17, 18-38.	10.4	61
467	Prospects and challenges of green ammonia synthesis. , 2023, 2, 612-623.		19
468	Copper-Based Electrocatalysts for Nitrate Reduction to Ammonia. Materials, 2023, 16, 4000.	2.9	6
469	Enhanced Nitrateâ€ŧoâ€Ammonia Efficiency over Linear Assemblies of Copper obalt Nanophases Stabilized by Redox Polymers. Advanced Materials, 2023, 35, .	21.0	8
470	Electrified water treatment: fundamentals and roles of electrode materials. Nature Reviews Materials, 2023, 8, 472-490.	48.7	33

#	Article	IF	CITATIONS
471	Boosting Nitrate to Ammonia Electroconversion through Hydrogen Gas Evolution over Cu-foam@mesh Catalysts. ACS Catalysis, 2023, 13, 8169-8182.	11.2	3
472	Energy-Efficient Ammonia Synthesis from Nitrate via CoNi Alloys Incorporated in Carbon Frameworks. ACS Sustainable Chemistry and Engineering, 2023, 11, 9057-9064.	6.7	8
473	Ultralow overpotential nitrate reduction to ammonia via a three-step relay mechanism. Chinese Science Bulletin, 2023, , .	0.7	1
474	Porous Organic Polymersâ€Based Singleâ€Atom Catalysts for Sustainable Energyâ€Related Electrocatalysis. Advanced Energy Materials, 2023, 13, .	19.5	17
475	Electrochemical Nitrate Reduction: Ammonia Synthesis and the Beyond. Advanced Materials, 0, , .	21.0	36
476	Transition Metal Singleâ€Atom Catalysts for the Electrocatalytic Nitrate Reduction: Mechanism, Synthesis, Characterization, Application, and Prospects. Small, 2023, 19, .	10.0	13
477	Rags to Riches: Meliorating the Electrocatalytic Reduction of Nitrate to Ammonia over Cu-Based Nanoalloys. Inorganic Chemistry, 2023, 62, 9934-9944.	4.0	2
478	Decoupling â^—H supply for industrial nitrate electroreduction coupled with glycerol oxidation. Chem Catalysis, 2023, 3, 100656.	6.1	0
479	Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia. Nature Communications, 2023, 14, .	12.8	56
480	Intermetallic Single-Atom Alloy In–Pd Bimetallene for Neutral Electrosynthesis of Ammonia from Nitrate. Journal of the American Chemical Society, 2023, 145, 13957-13967.	13.7	35
481	A multifunctional copper single-atom electrocatalyst aerogel for smart sensing and producing ammonia from nitrate. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	14
482	Simultaneously Enhancing Adsorbed Hydrogen and Dinitrogen to Enable Efficient Electrochemical NH ₃ Synthesis on Sm(OH) ₃ . Small Structures, 2023, 4, .	12.0	7
483	Advances in ammonia electrosynthesis from ambient nitrate/nitrite reduction. CheM, 2023, 9, 1768-1827.	11.7	88
484	Recent Advances in Electrocatalysts for Efficient Nitrate Reduction to Ammonia. Advanced Functional Materials, 2023, 33, .	14.9	23
485	Waste to wealth: direct utilization of spent materials for electrocatalysis and energy storage. Green Chemistry, 2023, 25, 3816-3846.	9.0	5
486	Computational insights on potential dependence of electrocatalytic synthesis of ammonia from nitrate. Chinese Journal of Catalysis, 2023, 48, 205-213.	14.0	8
487	Enhanced Nitrate Reduction Activity from Cu-Alloy Electrodes in an Alkaline Electrolyte. ACS Catalysis, 2023, 13, 6754-6762.	11.2	19
488	Hypotoxic synthesis of Co ₂ P nanodendrites for boosting ammonia electrosynthesis from nitrate. New Journal of Chemistry, 2023, 47, 9545-9549.	2.8	2

#	Article	IF	CITATIONS
489	Highly Efficient Electrochemical Nitrate Reduction to Ammonia in Strong Acid Conditions with Fe ₂ Mâ€Trinuclearâ€Cluster Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2023, 62, .	13.8	17
490	Efficient ammonia electrosynthesis from nitrate via a three-step relay mechanism. Science China Chemistry, 2024, 67, 319-320.	8.2	Ο
491	Piezoelectricity regulated ohmic contact in M/BaTiO3 (MÂ=ÂRu, Pd, Pt) for charge collision and hydrogen free radical production in ammonia electrosynthesis. Materials Today, 2023, 66, 17-25.	14.2	5
492	Electrocatalytic nitrate reduction to ammonia coupled with organic oxidation. Chem Catalysis, 2023, 3, 100638.	6.1	12
493	A Nitrogen Battery Electrode involving Eightâ€Electron Transfer per Nitrogen for Energy Storage. Angewandte Chemie, 2023, 135, .	2.0	1
494	Electron and Proton Transfer Mechanisms From Marcus to Supramolecular Constructions. Advances in Chemical and Materials Engineering Book Series, 2023, , 1-26.	0.3	0
495	NiWO ₄ nanoparticles with oxygen vacancies: high-efficiency electrosynthesis of ammonia with selective reduction of nitrite. Inorganic Chemistry Frontiers, 2023, 10, 3909-3915.	6.0	9
496	In Situ Construction of Metal–Organic Frameworks as Smart Channels for the Effective Electrocatalytic Reduction of Nitrate at Ultralow Concentrations to Ammonia. ACS Catalysis, 2023, 13, 9125-9135.	11.2	14
497	Microfluidic Tailoring of a Ru Nanodots/Carbon Heterocatalyst for Electrocatalytic Nitrogen Fixation. ACS Applied Nano Materials, 2023, 6, 12282-12291.	5.0	3
498	Sustainable Ammonia Electrosynthesis from Nitrate Wastewater Coupled to Electrocatalytic Upcycling of Polyethylene Terephthalate Plastic Waste. ACS Nano, 2023, 17, 12422-12432.	14.6	25
499	Electronic Structure Optimization and Proton-Transfer Enhancement on Titanium Oxide-Supported Copper Nanoparticles for Enhanced Nitrogen Recycling from Nitrate-Contaminated Water. Environmental Science & Technology, 2023, 57, 10117-10126.	10.0	10
500	Highly Defective Boron Carbon Nitride Nanosheets: A Robust Electro-Catalyst for Efficient Nitrogen Fixation. Industrial & Engineering Chemistry Research, 2023, 62, 10391-10398.	3.7	1
501	Research progress on metal-organic framework compounds (MOFs) in electrocatalysis. Journal of Environmental Sciences, 2024, 141, 261-276.	6.1	2
502	Electrochemical NO ₃ [–] Reduction Catalyzed by Atomically Precise Ag ₃₀ Pd ₄ Bimetallic Nanocluster: Synergistic Catalysis or Tandem Catalysis?. ACS Nano, 2023, 17, 12747-12758.	14.6	16
503	Highly Selective Electrochemical Nitrate to Ammonia Conversion by Dispersed Ru in a Multielement Alloy Catalyst. Nano Letters, 2023, 23, 7733-7742.	9.1	7
504	Optimizing Intermediate Adsorption via Heteroatom Ensemble Effect over RuFe Bimetallic Alloy for Enhanced Nitrate Electroreduction to Ammonia. Advanced Energy Materials, 2023, 13, .	19.5	16
506	Supramolecular Enhancement of Electrochemical Nitrate Reduction Catalyzed by Cobalt Porphyrin Organic Cages for Ammonia Electrosynthesis in Water**. Angewandte Chemie, 2023, 135, .	2.0	2
507	Supramolecular Enhancement of Electrochemical Nitrate Reduction Catalyzed by Cobalt Porphyrin Organic Cages for Ammonia Electrosynthesis in Water**. Angewandte Chemie - International Edition, 2023, 62, .	13.8	5

#	Article	IF	CITATIONS
508	Inorganic Electrified Membrane: From Basic Science to Performance Translation. ACS ES&T Engineering, 2023, 3, 2123-2146.	7.6	3
509	Computational Insights on Electrocatalytic Synthesis of Methylamine from Nitrate and Carbon Dioxide. ACS Catalysis, 0, , 9925-9935.	11.2	1
510	Spatial Management of CO Diffusion on Tandem Electrode Promotes NH ₂ Intermediate Formation for Efficient Urea Electrosynthesis. ACS Energy Letters, 2023, 8, 3373-3380.	17.4	6
511	Amorphous cobalt phosphate incorporated in carbon matrix as an efficient pre-catalyst for promoted electrosynthesis of ammonia. Journal of Materials Chemistry A, 2023, 11, 16854-16859.	10.3	1
512	Atomically precise alkynyl-protected Ag20Cu12 nanocluster: Structure analysis and electrocatalytic performance toward nitrate reduction for NH3 synthesis. Nano Research, 2023, 16, 10867-10872.	10.4	5
513	é"é'´æ™®é²å£«è"类似4¢‰©ä,性æ†ä»¶ä,‹ç¡é…,æ¹ç"µåŒ−å¦åŠæ°¢å^¶æ°¨çš,,æ´»æ€§æ¥æ°ç"ç©¶. Science	Сыва Ма	te r ials, 2023,
514	A chemically interlocked bipolar membrane achieving stable water dissociation for high output ammonia electrosynthesis. Energy and Environmental Science, 2023, 16, 3815-3824.	30.8	2
515	Breaking Local Charge Symmetry of Iron Single Atoms for Efficient Electrocatalytic Nitrate Reduction to Ammonia. Angewandte Chemie, 2023, 135, .	2.0	0
516	Breaking Local Charge Symmetry of Iron Single Atoms for Efficient Electrocatalytic Nitrate Reduction to Ammonia. Angewandte Chemie - International Edition, 2023, 62, .	13.8	24
517	Defective Photocathode: Fundamentals, Construction, and Catalytic Energy Conversion. Advanced Functional Materials, 2023, 33, .	14.9	3
518	Progress and prospects of electrochemical reduction of nitrate to restore the nitrogen cycle. Journal of Materials Chemistry A, 2023, 11, 17392-17417.	10.3	6
519	Electrochemical reduction of wastewater by non-noble metal cathodes: From terminal purification to upcycling recovery. Journal of Hazardous Materials, 2023, 459, 132106.	12.4	2
520	Recent advances in electrocatalytic ammonia synthesis. Chinese Journal of Catalysis, 2023, 50, 6-44.	14.0	49
521	Elucidating electrochemical nitrate and nitrite reduction over atomically-dispersed transition metal sites. Nature Communications, 2023, 14, .	12.8	20
522	Guidelines for reliable urea detection in electrocatalysis. Cell Reports Physical Science, 2023, 4, 101521.	5.6	2
523	Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35, 108864.	9.0	4
524	Atomic coordination environment engineering of bimetallic alloy nanostructures for efficient ammonia electrosynthesis from nitrate. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	8
526	Defect-rich Cu@CuTCNQ composites for enhanced electrocatalytic nitrate reduction to ammonia. Chinese Journal of Catalysis, 2023, 50, 324-333.	14.0	10

#	Article	IF	CITATIONS
527	Sustainable ammonia synthesis from air by the integration of plasma and electrocatalysis techniques. Inorganic Chemistry Frontiers, 2023, 10, 5762-5771.	6.0	1
528	FeNi ₃ nanoparticles for electrocatalytic synthesis of urea from carbon dioxide and nitrate. Materials Chemistry Frontiers, 2023, 7, 4952-4960.	5.9	7
530	Pyridine-N-rich Cu single-atom catalyst boosts nitrate electroreduction to ammonia. Applied Catalysis B: Environmental, 2024, 340, 123228.	20.2	8
531	Repurposing Mining and Metallurgical Waste as Electroactive Materials for Advanced Energy Applications: Advances and Perspectives. Catalysts, 2023, 13, 1241.	3.5	6
532	Single Atom Environmental Catalysis: Influence of Supports and Coordination Environments. Advanced Functional Materials, 2023, 33, .	14.9	8
533	Deciphering nickel-catalyzed electrochemical ammonia synthesis from nitric oxide. CheM, 2023, 9, 3555-3572.	11.7	4
534	Highly dispersed copper-iron nanoalloy enhanced electrocatalytic reduction coupled with plasma oxidation for ammonia synthesis from ubiquitous air and water. Nano Energy, 2023, 117, 108840.	16.0	5
535	Enhancing the selective electrochemical conversion of nitrate <i>via</i> π back-donation on Lewis acid sites induced by noble-metal doped CoP. Journal of Materials Chemistry A, 2023, 11, 21161-21169.	10.3	0
536	High Faraday efficiency of Cu ₁ Co ₁ –BCN based on a dodecahydro- <i>closo</i> -dodecaborate hybrid for electrocatalytic reduction of nitrate to ammonia. Journal of Materials Chemistry A, 2023, 11, 20234-20241.	10.3	3
537	Electrocatalytic upcycling of nitrogenous wastes into green ammonia: advances and perspectives on materials innovation. , 2023, 2, .		8
538	Intermediate Confinement for Selective Ammonia Electrosynthesis from Nitrate on Robust Mesoporous Metal Catalysts. Advanced Energy Materials, 2023, 13, .	19.5	8
539	Investigating the role of oxygen vacancies in metal oxide for enhanced electrochemical reduction of NO ₃ ^{â^'} to NH ₃ : mechanistic insights. Inorganic Chemistry Frontiers, 0, , .	6.0	0
540	Electrochemical nitrogen fixation on single metal atom catalysts. Chemical Communications, 2023, 59, 10689-10710.	4.1	2
541	Enhanced ammonia selectivity on electrochemical nitrate reduction: Cu–Ni metal–organic frameworks with tandem active sites for cascade catalysis. Green Chemistry, 2023, 25, 8645-8651.	9.0	3
542	Engineering of Bimetallic Cu–Pt Nanostructures for the Electrochemical Ammonia Synthesis via Nitrate Reduction. , 2023, 1, 2386-2396.		0
543	Boronization of Nickel Foam for Sustainable Electrochemical Reduction of Nitrate to Ammonia. ACS Energy Letters, 2023, 8, 3843-3851.	17.4	7
544	A Graphdiyne Nanoreactor for Conversion of NO ₃ ^{â^'} to NH ₃ from Wastewater. Advanced Functional Materials, 2023, 33, .	14.9	0
545	Electrochemical oxidation of phenol in a PtRu/NbC membrane-based catalytic nanoreactor. Journal of Environmental Chemical Engineering, 2023, 11, 111128.	6.7	2

#	Article	IF	CITATIONS
546	Boosting protonation kinetics for ammonia electrosynthesis on Ru sites embedded in nanoporous ReSe2. Chemical Engineering Journal, 2023, 475, 146137.	12.7	3
547	Recent progress on cathode material regulation for electrochemical nitrate reduction to ammonia. Separation and Purification Technology, 2024, 329, 125129.	7.9	2
548	Recent developments in designing Cu-based electrocatalysts and advanced strategies for electrochemical nitrate reduction to ammonia. Journal of Environmental Chemical Engineering, 2023, 11, 110927.	6.7	5
549	Cu/2D-CuO _{<i>x</i>} Nanocomposites with Abundant Oxygen Vacancy Defects for Enhancing Ammonia Selectivity of Electrocatalytic Nitrate Reduction. ACS Applied Nano Materials, 2023, 6, 18238-18246.	5.0	0
550	Copper Singleâ€Atom Catalysts—A Rising Star for Energy Conversion and Environmental Purification: Synthesis, Modification, and Advanced Applications. Small, 2024, 20, .	10.0	0
551	Boosting Electrocatalytic Ammonia Synthesis from Nitrate with a Dual Active Site Three-Dimensional Copper Electrode. ACS Sustainable Chemistry and Engineering, 2023, 11, 14969-14975.	6.7	1
552	Elucidating the Intrinsic Activity and Selectivity of Cu for Nitrate Electroreduction. ACS Energy Letters, 2023, 8, 3658-3665.	17.4	13
553	Electrochemical Postmodification-Induced Surface Atom Rearrangement over Cu Nanodendrites for Enhanced Electrosynthesis of Ammonia from Nitrate. Inorganic Chemistry, 2023, 62, 16228-16235.	4.0	0
554	Modulating the proton transfer kinetics via Ru single atoms for highly efficient ammonia synthesis. Chem Catalysis, 2023, 3, 100751.	6.1	1
555	Activity trend and possible descriptor of LaBO3 (B = Cr, Mn, Fe, Co) perovskite catalysts for electroreduction of nitrate. Chemical Engineering Journal, 2023, 472, 145148.	12.7	0
556	Molecular Self-Assembly in Conductive Covalent Networks for Selective Nitrate Electroreduction to Ammonia. Journal of the American Chemical Society, 2023, 145, 21491-21501.	13.7	3
557	Controlling the Metal–Ligand Coordination Environment of Manganese Phthalocyanine in 1D–2D Heterostructure for Enhancing Nitrate Reduction to Ammonia. ACS Catalysis, 2023, 13, 13516-13527.	11.2	9
558	Selectively Reducing Nitrate into NH ₃ in Neutral Media by PdCu Single-Atom Alloy Electrocatalysis. ACS Catalysis, 2023, 13, 10560-10569.	11.2	12
559	Enhanced localized electron density from PdCu nanoparticle loading on a defective TiO ₂ support for selective nitrate electroreduction to ammonia. Journal of Materials Chemistry A, 2023, 11, 22466-22477.	10.3	2
560	Molecular Engineering of a Metalâ€Organic Polymer for Enhanced Electrochemical Nitrateâ€ŧoâ€Ammonia Conversion and Zinc Nitrate Batteries. Angewandte Chemie - International Edition, 2023, 62, .	13.8	0
561	Electrochemical Nitrate Reduction to Ammonia – Recent Progress. ChemElectroChem, 2023, 10, .	3.4	0
562	Photocatalytic ammonia synthesis from nitrate reduction on nickel single-atom decorated on defective tungsten oxide. Applied Catalysis B: Environmental, 2024, 341, 123266.	20.2	2
563	Enhancing hydrogenation with Co/Cu foam electrode to achieve wide-range electroreduction of nitrate to ammonia. Electrochimica Acta, 2023, 472, 143348.	5.2	2

#	Article	IF	CITATIONS
565	Atomically isolated copper on titanium dioxide for ammonia photosynthesis via nitrate reduction with unprecedently high apparent quantum yield. Applied Catalysis B: Environmental, 2023, 339, 123185.	20.2	3
566	Boosting Electrocatalytic Nitrateâ€toâ€Ammonia via Tuning of Nâ€Intermediate Adsorption on a Znâ^'Cu Catalyst. Angewandte Chemie, 2023, 135, .	2.0	1
567	Boosting Electrocatalytic Nitrateâ€toâ€Ammonia via Tuning of Nâ€Intermediate Adsorption on a Znâ^'Cu Catalyst. Angewandte Chemie - International Edition, 2023, 62, .	13.8	13
568	Prospects of solar-powered nitrogenous fertilizers. Renewable and Sustainable Energy Reviews, 2023, 187, 113691.	16.4	2
569	High-throughput mechanistic study of highly selective hydrogen-bonded organic frameworks for electrochemical nitrate reduction to ammonia. Journal of Energy Chemistry, 2023, 87, 408-415.	12.9	4
570	Resource utilization of carbon dioxide and nitrate to produce value-added organonitrogen compounds through an electrochemical approach. Applied Catalysis B: Environmental, 2024, 341, 123292.	20.2	2
571	A Novel Integrated Flow-Electrode Capacitive Deionization and Flow Cathode System for Nitrate Removal and Ammonia Generation from Simulated Groundwater. Environmental Science & Technology, 2023, 57, 14726-14736.	10.0	1
572	Unlocking the potential of sub-nanometer-scale copper via confinement engineering: A remarkable approach for electrochemical nitrate-to-ammonia conversion in wastewater treatment. Chemical Engineering Journal, 2023, 475, 146176.	12.7	2
573	Cascade N ₂ Reduction Process with DBD Plasma Oxidation and Electrocatalytic Reduction for Continuous Ammonia Synthesis. Environmental Science & Technology, 2023, 57, 14558-14568.	10.0	0
574	Cr-Doped FeC ₂ O ₄ Microrods Formed Directly on AISI 420 Stainless Steel to Enhance Electrochemical NO _{3a€"} Reduction to N ₂ at Circumneutral pH. ACS Applied Materials & Interfaces, 2023, 15, 45799-45811.	8.0	1
575	Intermediates Regulation via Electronâ€Deficient Cu Sites for Selective Nitrateâ€ŧoâ€Ammonia Electroreduction. Advanced Materials, 2023, 35, .	21.0	2
576	A Biâ€Co Corridor Construction Effectively Improving the Selectivity of Electrocatalytic Nitrate Reduction toward Ammonia by Nearly 100%. Advanced Materials, 2023, 35, .	21.0	13
577	Preparation of Ru-doped Cu-based catalysts for enhanced electrochemical ammonia synthesis from efficient electrocatalytic nitrate reduction. Catalysis Science and Technology, 0, , .	4.1	0
578	Structural engineering of catalysts for ammonia electrosynthesis from nitrate: recent advances and challenges. , 2024, 2, 202-219.		2
579	Recent Advances in Electrocatalytic Hydrogenation Reactions on Copperâ€Based Catalysts. Advanced Materials, 0, , .	21.0	1
580	Fe-MOF Catalytic Nanoarchitectonic toward Electrochemical Ammonia Production. ACS Applied Materials &	8.0	0
581	Bimetallic atom synergistic covalent organic framework for efficient electrochemical nitrate reduction. Journal of Colloid and Interface Science, 2024, 654, 348-355.	9.4	2
582	Mesostructures Engineering to Promote Selective Nitrateâ€ŧoâ€Ammonia Electroreduction. Advanced Energy Materials, 2023, 13, .	19.5	4

#	Article	IF	CITATIONS
583	Ag o ₃ O ₄ oOOHâ€Nanowires Tandem Catalyst for Efficient Electrocatalytic Conversion of Nitrate to Ammonia at Low Overpotential via Triple Reactions. Advanced Science, 2023, 10, .	11.2	4
584	Electrocatalytic Systems for NO _x Valorization in Organonitrogen Synthesis. Angewandte Chemie - International Edition, 2024, 63, .	13.8	6
585	Molecular Engineering of a Metalâ€Organic Polymer for Enhanced Electrochemical Nitrateâ€ŧoâ€Ammonia Conversion and Zinc Nitrate Batteries. Angewandte Chemie, 2023, 135, .	2.0	0
586	Electrocatalytic Systems for NO _x Valorization in Organonitrogen Synthesis. Angewandte Chemie, 2024, 136, .	2.0	0
587	Atomically Ordered PdCu Electrocatalysts for Selective and Stable Electrochemical Nitrate Reduction. ACS Energy Letters, 0, , 4746-4752.	17.4	0
588	纳米åða"Ru掺æ,Cuååœè°fèŠ,å应ä,é—´ä¼2"å,附ä,Žæ°′å^† å解离ä;f进电化å¦çié…,ç›è;~åŽŸå•æ^œ°". S	Sci en ce Ch	in@Materials
589	Binary Metal-Oxide Active Sites Derived from Cu-Doped MIL-88 with Enhanced Electroactivity for Nitrate Reduction. Environmental Science & Technology, 0, , .	10.0	0
590	Electrocatalytic nitrate reduction: Selectivity at the crossroads between ammonia and nitrogen. Chem Catalysis, 2023, 3, 100786.	6.1	3
591	Similar electronic state effect enables excellent activity for nitrate-to-ammonia electroreduction on both high- and low-density double-atom catalysts. Journal of Chemical Physics, 2023, 159, .	3.0	0
592	Sustainable ammonia production via nanosecond-pulsed plasma oxidation and electrocatalytic reduction. Applied Catalysis B: Environmental, 2024, 342, 123426.	20.2	1
593	Emerging Liquid Metal Catalysts. Journal of Physical Chemistry Letters, 2023, 14, 10054-10066.	4.6	1
594	Enhanced cobalt MOF electrocatalyst for oxygen evolution reaction via morphology regulation. Inorganic Chemistry Communication, 2023, 158, 111661.	3.9	0
595	Electrochemical synthesis of ammonia from nitric oxide using a copper–tin alloy catalyst. Nature Energy, 2023, 8, 1273-1283.	39.5	14
596	Pt-modified Fe3O4 Supported on Ni Foam Nanocomposite for Electrocatalytic Nitrate Reduction to Ammonia. Electrocatalysis, 0, , .	3.0	1
597	Hollow mesoporous carbon supported Co-modified Cu/Cu2O electrocatalyst for nitrate reduction reaction. Journal of Colloid and Interface Science, 2024, 655, 208-216.	9.4	3
598	Pulsed electroreduction of low-concentration nitrate to ammonia. Nature Communications, 2023, 14,	12.8	15
599	Tandem Nitrate Electroreduction to Ammonia with Industrial-Level Current Density on Hierarchical Cu Nanowires Shelled with NiCo-Layered Double Hydroxide. ACS Catalysis, 2023, 13, 14670-14679.	11.2	5
600	Recent advances and challenges of nitrogen/nitrate electro catalytic reduction to ammonia synthesis. Frontiers in Energy, 0, , .	2.3	1

CITATION REPORT ARTICLE IF CITATIONS Theoretical Study on the Synthesis of Urea by Electrochemical Nitrate and Carbon Dioxide over COF 2.6 1 Series Catalysts. Catalysis Surveys From Asia, 2024, 28, 117-133. Yolk-shell composite oxides with binuclear Co(II) sites toward low-overpotential nitrate reduction to 12.7 ammonia. Chemical Engineering Journal, 2023, 477, 146896. Valueâ€Added Aqueous Metalâ€Redox Bicatalyst Batteries. Advanced Energy Materials, 0, , . 19.5 0 Nitrogenâ€bridged Feâ€Cu Atomic Pair Sites for Efficient Electrochemical Ammonia Production and Electricity Generation with Znâ€NO₂ Batteries. Angewandte Chemie - International Edition, Oxygen-Coordinated Single Mn Sites for Efficient Electrocatalytic Nitrate Reduction to Ammonia. 27.0 2 Nano-Micro Letters, 2024, 16, . Steering Charge Directional Separation in MXenes/Titanium Dioxide for Efficient Photocatalytic 3.5 Nitrogen Fixation. Catalysts, 2023, 13, 1487. Nitrate Reduction Reaction on Zr-Doped TiO2 (101) Surfaces Investigated by First-Principles 2.2 0 Calculations. Crystals, 2023, 13, 1640. Prussian blue analog derived Cu doped Co3O4 catalyst for promoting electrocatalytic nitrate reduction to ammonia. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 681, 4.7 132746. Recent advances in nickel-based catalysts for electrochemical nitrate reduction to ammonia. Journal 5.8 2 of Industrial and Engineering Chemistry, 2024, 132, 66-79. Bimetallic Pdâ€Sn Catalytic Electrodes from Deep Eutectic Solvents for Selective Nitrate Reduction 5.3 Toward Nitrogen. Advanced Sustainable Systems, 0, , . Palladium-based nanocatalysts for NH₃ synthesis through nitrate electroreduction: 0 4.1 nanocomposites, alloys, and atomically precise nanoclusters. Catalysis Science and Technology, 0, , . Engineering interfacial architectures toward nitrate electrocatalysis and nitrogen neutral cycle. 5.9 Materials Chemistry Frontiers, 2024, 8, 1015-1035. Near 100% selectivity for ammonia synthesis at a high current density by promoting nitrate protonation on the copper dispersed todorokite-type manganese oxide. Green Chemistry, 2023, 25, 9.0 0 10549-10555. Synergistic Integration of Amorphous Cobalt Phosphide with a Conductive Channel for Highly 10.0 Efficient Electrocatalytic Nitrate Reduction to Ammonia. Small, 0, , .

615	Improved Electrochemical Nitrate Reduction to Ammonia. Small, 2024, 20, .	10.0	0
616	Balanced NO _{<i>x</i>} [–] and Proton Adsorption for Efficient Electrocatalytic NO _{<i>x</i>} [–] to NH ₃ Conversion. ACS Nano, 2023, 17, 23637-23648.	14.6	0
617	Nitrogenâ€bridged Feâ€Cu Atomic Pair Sites for Efficient Electrochemical Ammonia Production and Electricity Generation with Znâ€NO ₂ Batteries. Angewandte Chemie, 0, , .	2.0	0
618	Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2023, 109327.	9.0	1

Heterostructured Coâ€Dopedâ€Cu₂O/Cu Synergistically Promotes Water Dissociation for

601

603

604

605

607

608

609

611

613

#	Article	IF	CITATIONS
619	Advancing nitrate reduction to ammonia: insights into mechanism, activity control, and catalyst design over Pt nanoparticle-based ZrO ₂ . RSC Advances, 2023, 13, 34497-34509.	3.6	2
620	Iron phthalocyanine hollow architecture enabled ammonia production via nitrate reduction to achieve 100 % Faradaic efficiency. Applied Catalysis B: Environmental, 2024, 343, 123580.	20.2	6
621	Fe(TCNQ) ₂ nanorod arrays: an efficient electrocatalyst for electrochemical ammonia synthesis <i>via</i> the nitrate reduction reaction. Journal of Materials Chemistry A, 2024, 12, 3352-3361.	10.3	5
622	Intentional corrosion-induced reconstruction of defective NiFe layered double hydroxide boosts electrocatalytic nitrate reduction to ammonia. , 2023, 1, 1068-1078.		2
623	Synergy between Cu and Co in a Layered Double Hydroxide Enables Close to 100% Nitrate-to-Ammonia Selectivity. Journal of the American Chemical Society, 2023, 145, 26678-26687.	13.7	4
624	Constructing molecule-metal relay catalysis over heterophase metallene for high-performance rechargeable zinc-nitrate/ethanol batteries. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	2
625	Unraveling the Activity Trends and Design Principles of Single-Atom Catalysts for Nitrate Electrocatalytic Reduction. ACS Nano, 0, , .	14.6	0
626	Tailoring metal–support interaction over faceted TiO ₂ and copper nanoparticles for electrocatalytic nitrate reduction to ammonia. Green Chemistry, 2024, 26, 1443-1453.	9.0	1
627	Understanding the Activity Trends in Electrocatalytic Nitrate Reduction to Ammonia on Cu Catalysts. Nano Letters, 0, , .	9.1	0
628	Enhanced Nitrate-to-Ammonia Conversion through Ag-Cu-P Catalyst for Sustainable Ammonia Generation under Ambient Conditions. Green Chemistry, 0, , .	9.0	0
629	The Advances, Challenges, and Perspectives on Electrocatalytic Reduction of Nitrogenous Substances to Ammonia: A Review. Materials, 2023, 16, 7647.	2.9	0
630	Electrochemical reduction of nitrate to ammonia using non-precious metal-based catalysts. Coordination Chemistry Reviews, 2024, 502, 215609.	18.8	2
631	Interface coupling of Ni2P@Cu3P catalyst to facilitate highly-efficient electrochemical reduction of nitrate to ammonia. Applied Surface Science, 2024, 648, 159082.	6.1	3
632	Unconventional Synthesis of Hierarchically Twinned Copper as Efficient Electrocatalyst for Nitrate–Ammonia Conversion. Advanced Materials, 0, , .	21.0	0
633	3D integrated non-noble metal oxides nano arrays for enhanced nitrate electroreduction to ammonia. Journal of Power Sources, 2024, 592, 233945.	7.8	0
635	Cu@Co with Dilatation Strain for Highâ€Performance Electrocatalytic Reduction of Lowâ€Concentration Nitric Oxide. Advanced Materials, 0, , .	21.0	2
637	Identifying the active site of Cu/Cu2O for electrocatalytic nitrate reduction reaction to ammonia. Chem Catalysis, 2023, , 100850.	6.1	0
638	Selfâ€Supported Catalytic Electrode of CoW/Coâ€Foam Achieves Efficient Ammonia Synthesis at Ampereâ€Level Current Density. Advanced Energy Materials, 2024, 14, .	19.5	0

#	Article	IF	CITATIONS
639	Critical Roles of Chalcogenide Anion on Strengthening Stability of Ni ₂ Mo ₆ Te ₈ for Almost Exclusive Electrocatalysts Nitrate to Ammonia Conversion. Advanced Functional Materials, 2024, 34, .	14.9	0
640	Unveiling Pseudoâ€Inert Basal Plane for Electrocatalysis in 2D Semiconductors: Critical Role of Reversalâ€Activation Mechanism. Advanced Energy Materials, 0, , .	19.5	0
641	Present State and Future Outlook of Ammonia Production through Photocatalytic Nitrate Reduction. Solar Rrl, 2024, 8, .	5.8	0
642	Copper-based electro-catalytic nitrate reduction to ammonia from water: Mechanism, preparation, and research directions. Environmental Science and Ecotechnology, 2024, 20, 100383.	13.5	0
643	Dynamic in situ Formation of Cu ₂ O Subâ€Nanoclusters through Photoinduced pseudoâ€Fehling's Reaction for Selective and Efficient Nitrateâ€toâ€Ammonia Photosynthesis. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
644	Dynamic in situ Formation of Cu ₂ O Subâ€Nanoclusters through Photoinduced pseudoâ€Fehling's Reaction for Selective and Efficient Nitrateâ€toâ€Ammonia Photosynthesis. Angewandte Chemie, 2024, 136, .	2.0	0
645	Ammonia Electrosynthesis from Nitrate Using a Ruthenium–Copper Cocatalyst System: A Full Concentration Range Study. Journal of the American Chemical Society, 2024, 146, 668-676.	13.7	2
646	Urea Electrosynthesis Accelerated by Theoretical Simulations. Advanced Functional Materials, 2024, 34, .	14.9	1
647	Intrinsic Activity of Metalized Porphyrinâ€based Covalent Organic Frameworks for Electrocatalytic Nitrate Reduction. Advanced Energy Materials, 2024, 14, .	19.5	1
648	Designing Efficient Nitrate Reduction Electrocatalysts by Identifying and Optimizing Active Sites of Co-Based Spinels. Journal of the American Chemical Society, 2024, 146, 2967-2976.	13.7	4
650	Sequential co-reduction of nitrate and carbon dioxide enables selective urea electrosynthesis. Nature Communications, 2024, 15, .	12.8	3
651	Spin-related Cu-Co pair to increase electrochemical ammonia generation on high-entropy oxides. Nature Communications, 2024, 15, .	12.8	1
652	Highly active electroreduction of nitrates to ammonia over a zeolitic imidazolium framework-derived Fe single-atom catalyst with sulfur-modified asymmetric active centers. Journal of Hazardous Materials, 2024, 465, 133484.	12.4	0
653	Comprehensive understanding of the thriving electrocatalytic nitrate/nitrite reduction to ammonia under ambient conditions. Journal of Energy Chemistry, 2024, 92, 459-483.	12.9	0
654	Efficiently unbiased solar-to-ammonia conversion by photoelectrochemical Cu/C/Si-TiO2 tandems. Applied Catalysis B: Environmental, 2024, 345, 123735.	20.2	1
655	Recent research progress on building C–N bonds <i>via</i> electrochemical NO _{<i>x</i>} reduction. Nanoscale, 2024, 16, 2805-2819.	5.6	0
656	Spin polarized Fe1â^'Ti pairs for highly efficient electroreduction nitrate to ammonia. Nature Communications, 2024, 15, .	12.8	0
657	Synergistic catalytic conversion of nitrate into ammonia on copper phthalocyanine and FeNC two-component catalyst. Chinese Journal of Catalysis, 2024, 56, 104-113.	14.0	0

#	ARTICLE Bioinspired Tandem Electrode for Selective Electrocatalytic Synthesis of Ammonia from Aqueous	IF 10.0	CITATIONS
659	Nitrate. Environmental Science & amp; Technology, 2024, 58, 2144-2152. Conductive polymer protection strategy to promote electrochemical nitrate reduction to ammonia in highly acidic condition over Cu-based catalyst. Chemical Engineering Journal, 2024, 481, 148596.	12.7	0
660	Recent progress in amorphous nanomaterials for electrochemical synthesis of N-containing compounds. Chem Catalysis, 2024, , 100871.	6.1	0
661	Carbon Nanocage Confining CuCo Bimetallic Interface with Low Nitrate Adsorption Energy for Highly Efficient Electrochemical Ammonia Synthesis. Energy & Fuels, 2024, 38, 2501-2510.	5.1	0
662	Unveiling Cuttingâ€Edge Developments in Electrocatalytic Nitrateâ€toâ€Ammonia Conversion. Advanced Materials, 2024, 36, .	21.0	3
663	Screening of transition metal oxides for electrocatalytic nitrate reduction to ammonia at large currents. Nano Research, 2024, 17, 3902-3910.	10.4	0
664	Boosting Electrocatalytic Ammonia Synthesis via Synergistic Effect of Iron-Based Single Atoms and Clusters. Nano Letters, 2024, 24, 1197-1204.	9.1	0
665	Boosting Nitrate to Ammonia via the Optimization of Key Intermediate Processes by Low oordinated Cu–Cu Sites. Advanced Functional Materials, 0, , .	14.9	1
666	Critical review in electrocatalytic nitrate reduction to ammonia towards a sustainable nitrogen utilization. Chemical Engineering Journal, 2024, 483, 148952.	12.7	0
667	Advancements in Single Atom Catalysts for Electrocatalytic Nitrate Reduction Reaction. ChemCatChem, 0, , .	3.7	0
668	H* Species Regulation by Mnâ€Co(OH) ₂ for Efficient Nitrate Electroâ€reduction in Neutral Solution. Angewandte Chemie, 2024, 136, .	2.0	0
669	H* Species Regulation by Mnâ€Co(OH) ₂ for Efficient Nitrate Electroâ€reduction in Neutral Solution. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
670	Operando imaging in electrocatalysis: insights into microstructural materials design. Chemistry - an Asian Journal, 2024, 19, .	3.3	0
671	Crystal Phase Engineering of Ultrathin Alloy Nanostructures for Highly Efficient Electroreduction of Nitrate to Ammonia. Advanced Materials, 2024, 36, .	21.0	0
672	Ru doped NiMoO4 nanoarray as a high-efficiency electrocatalyst for nitrite reduction to ammonia. Journal of Colloid and Interface Science, 2024, 661, 401-408.	9.4	0
673	Matched Kinetics Process Over Fe ₂ O ₃ â€Co/NiO Heterostructure Enables Highly Efficient Nitrate Electroreduction to Ammonia. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
674	Matched Kinetics Process Over Fe ₂ O ₃ o/NiO Heterostructure Enables Highly Efficient Nitrate Electroreduction to Ammonia. Angewandte Chemie, 2024, 136, .	2.0	0
675	Ru-Ni alloy nanosheets as tandem catalysts for electrochemical reduction of nitrate to ammonia. Nano Research, 0, , .	10.4	0

#	Article	IF	CITATIONS
676	Electrocatalytic upgrading of nitrogenous wastes into value-added chemicals: A review. Materials Today, 2024, 73, 208-259.	14.2	0
677	Mechanochemical route to fabricate an efficient nitrate reduction electrocatalyst. Nano Research, 0, , .	10.4	0
678	Polarity Modulation Enhances Electrocatalytic Reduction of Nitrate by Iron Nanocatalysts. ACS ES&T Engineering, 2024, 4, 928-937.	7.6	0
679	Modulating the Electronic Structure of Cobalt in Molecular Catalysts via Coordination Environment Regulation for Highly Efficient Heterogeneous Nitrate Reduction. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
680	Modulating the Electronic Structure of Cobalt in Molecular Catalysts via Coordination Environment Regulation for Highly Efficient Heterogeneous Nitrate Reduction. Angewandte Chemie, 2024, 136, .	2.0	0
681	Electron engineering of nickel phosphide for Niδ+ in electrochemical nitrate reduction to ammonia. Nano Research, 0, , .	10.4	0
682	Boosting electrocatalytic nitrate reduction to ammonia via Cu2O/Cu(OH)2 heterostructures promoting electron transfer. Nano Research, 0, , .	10.4	0
683	Plasma-flow cell electrocatalysis for ambient co-synthesis of urea and ammonia. Carbon Capture Science & Technology, 2024, 11, 100197.	10.4	0
684	Underpotential Deposition of 3D Transition Metals: Versatile Electrosynthesis of Singleâ€Atom Catalysts on Oxidized Carbon Supports. Advanced Materials, 2024, 36, .	21.0	0
685	<i>In</i> â€ <i>Situ</i> Characterization Technologies for Electrocatalytic Reduction nitrate to Ammonia on Copperâ€Based Catalysts. ChemCatChem, 0, , .	3.7	0
686	Sustainable conversion of alkaline nitrate to ammonia at activities greater than 2 A cmâ^'2. Nature Communications, 2024, 15, .	12.8	0
687	Modulation of charge distribution enabling CuNi nano-alloys for efficient ammonia oxidation reaction to nitrite production. Chemical Engineering Journal, 2024, 484, 149570.	12.7	0
688	Defect and interface engineering for promoting electrocatalytic N-integrated CO2 co-reduction. Chinese Journal of Catalysis, 2024, 57, 1-17.	14.0	0
689	A Co3O4/graphdiyne heterointerface for efficient ammonia production from nitrates. New Carbon Materials, 2024, 39, 142-151.	6.1	0
690	Mxene-Cu Electrified Membranes with Confined Lamellar Channels for the Flow-through Electrochemical Reduction of Nitrate to Ammonia. ACS Sustainable Chemistry and Engineering, 2024, 12, 3378-3389.	6.7	0
691	Thiol Ligand-Modified Au for Highly Efficient Electroreduction of Nitrate to Ammonia. , 2024, 2, 112-119.		0
692	Synergism of electrostatic attraction and tandem catalytic effect enabled efficient electrosynthesis of ammonia from a wide-range of nitrate concentrations. Chemical Engineering Journal, 2024, 485, 149769.	12.7	0
693	Twoâ€dimensional Cu Plates with Steady Fluid Fields for Highâ€rate Nitrate Electroreduction to Ammonia and Efficient Znâ€Nitrate Batteries. Angewandte Chemie, 2024, 136, .	2.0	0

#	Article	IF	CITATIONS
694	Recent Progress of Electrochemical Nitrate Reduction to Ammonia on Copperâ€Based Catalysts: From Nanoparticles to Single Atoms. Advanced Energy and Sustainability Research, 0, , .	5.8	0
695	Twoâ€dimensional Cu Plates with Steady Fluid Fields for Highâ€rate Nitrate Electroreduction to Ammonia and Efficient Znâ€Nitrate Batteries. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
697	A 3D porous P-doped Cu–Ni alloy for atomic H* enhanced electrocatalytic reduction of nitrate to ammonia. Journal of Materials Chemistry A, 2024, 12, 7654-7662.	10.3	0
698	Ultrasmall Iron Nanoparticle-Decorated Carbon Black for High-Efficiency Nitrate-to-Ammonia Electrosynthesis and Zinc-Nitrate Batteries. ACS Sustainable Chemistry and Engineering, 2024, 12, 3780-3789.	6.7	0
699	High-throughput screening for efficient dual-atom catalysts in electrocatalytic nitrate reduction to ammonia <i>via</i> dissociation–association mechanism. Journal of Materials Chemistry A, 2024, 12, 6733-6746.	10.3	0
700	A new strategy for boron cluster-based metal boride (Co2B) synthesis and its applicability to electrocatalytic nitrate reduction. Chemical Engineering Journal, 2024, 485, 149639.	12.7	0
701	Electricalâ€Driven Directedâ€Evolution of Copper Nanowires Catalysts for Efficient Nitrate Reduction to Ammonia. Small, 0, , .	10.0	0
702	Strategies to achieve effective nitrogen activation. , 0, , .		0
703	Self-supporting electrode incorporating active Co sites for ultrafast ammonia production from nitrate reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 687, 133557.	4.7	0
704	Direct recovery of electro-synthesized ammonia from low-concentration nitric oxide using pulse electrodeposited Cu/C catalyst in a catholyte-free system. Chemical Engineering Journal, 2024, 485, 150048.	12.7	0
705	ElectrocatalyticÂnitrate reduction: The synthesis, recovery and upgradation of ammonia. Journal of Environmental Chemical Engineering, 2024, 12, 112348.	6.7	0
706	Electrochemical Reduction of Flue Gas Denitrification Wastewater to Ammonia Using a Dual-Defective Cu ₂ O@Cu Heterojunction Electrode. Environmental Science & Technology, 2024, 58, 5557-5566.	10.0	0
707	Coupling single-atomic iron sites with iron nanoparticles for tandem-enhanced ammonia electrosynthesis from nitrate. Chem Catalysis, 2024, 4, 100936.	6.1	0
708	Frustrated Lewis Pairs on Zr Single Atoms Supported Nâ€Doped TiO _{2â€x} Catalysts for Electrochemical Nitrate Reduction To Ammonia. Advanced Functional Materials, 0, , .	14.9	0
709	Atomic Co─P Catalytic Pair Drives Efficient Electrochemical Nitrate Reduction to Ammonia. Advanced Energy Materials, 0, , .	19.5	0
710	Biomimetic Design of a Dynamic M–O–V <i>Pyramid</i> Electron Bridge for Enhanced Nitrogen Electroreduction. Journal of the American Chemical Society, 2024, 146, 7752-7762.	13.7	0
711	Efficient ammonia production over eg-occupancy-optimized perovskite electrocatalysts. Nano Research, 0, , .	10.4	0
712	Fundamental Insights on the Electrochemical Nitrogen Oxidation over Metal Oxides. ACS Catalysis, 2024, 14, 4423-4431.	11.2	0

#	Article	IF	CITATIONS
713	Surface molecular modification on heterophase metallene for rechargeable Zn-nitrate/ethanol batteries. Chinese Science Bulletin, 2024, , .	0.7	0
714	Modulating electronic structures of MOF through orbital rehybridization by Cu doping promotes photocatalytic reduction of nitrate to produce ammonia. Nano Energy, 2024, 124, 109499.	16.0	0
715	Cu/Ni(OH)2 nanocomposites for efficient and stable electrocatalysis nitrate reduction reaction to ammonia. Materials Letters, 2024, 364, 136324.	2.6	0
716	Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia. Chinese Chemical Letters, 2024, , 109789.	9.0	0
717	Fe–CuP nanocubes for nitrate-to-ammonia conversion. New Journal of Chemistry, 2024, 48, 6933-6942.	2.8	0
718	Thermally Enhanced Relay Electrocatalysis of Nitrate-to-Ammonia Reduction over Single-Atom-Alloy Oxides. Journal of the American Chemical Society, 2024, 146, 7779-7790.	13.7	0
719	Selective Reduction of Aqueous Nitrate to Ammonium with an Electropolymerized Chromium Molecular Catalyst. Journal of the American Chemical Society, 2024, 146, 7439-7455.	13.7	0
720	The synergistic tandem effect of Cu2+1O and Co3O4 enhances the activity and selectivity of nitrate reduction to ammonia in neutral solution. Applied Catalysis A: General, 2024, 677, 119695.	4.3	0
721	Electrocatalytic nitrate reduction to ammonia: A perspective on Fe/Cu-containing catalysts. Chinese Journal of Catalysis, 2024, 58, 25-36.	14.0	0
722	Efficient electrocatalytic reduction of nitrate to ammonia at low concentration by copper-cobalt oxide nanowires with shell–core structure. Nano Research, 0, , .	10.4	Ο