Active Materials for Aqueous Zinc Ion Batteries: Synthe Morphology, and Electrochemistry

Chemical Reviews 120, 7795-7866

DOI: 10.1021/acs.chemrev.9b00628

Citation Report

#	Article	IF	Citations
1	Energy Storage Chemistry in Aqueous Zinc Metal Batteries. ACS Energy Letters, 2020, 5, 3569-3590.	8.8	163
2	Understanding the Design Principles of Advanced Aqueous Zincâ€Ion Battery Cathodes: From Transport Kinetics to Structural Engineering, and Future Perspectives. Advanced Energy Materials, 2020, 10, 2002354.	10.2	193
3	Long-Life Zinc/Vanadium Pentoxide Battery Enabled by a Concentrated Aqueous ZnSO ₄ Electrolyte with Proton and Zinc Ion Co-Intercalation. ACS Applied Energy Materials, 2020, 3, 11183-11192.	2.5	82
4	Electrochemically Induced Metal–Organicâ€Frameworkâ€Derived Amorphous V ₂ O ₅ for Superior Rate Aqueous Zincâ€Ion Batteries. Angewandte Chemie, 2020, 132, 22186-22190.	1.6	32
5	Electrochemically Induced Metal–Organicâ€Frameworkâ€Derived Amorphous V ₂ O ₅ for Superior Rate Aqueous Zincâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 22002-22006.	7.2	301
6	Quasi-Solid-State Zinc Ion Rechargeable Batteries for Subzero Temperature Applications. ACS Applied Energy Materials, 2020, 3, 9058-9065.	2.5	33
7	Dendrite-free Zn anodes enabled by functional nitrogen-doped carbon protective layers for aqueous zinc-ion batteries. Dalton Transactions, 2020, 49, 17629-17634.	1.6	53
8	Facile synthesis of ultra-large V2O5 xerogel flakes and its application as a cathode material for aqueous Zn-ion batteries. Materials Today Communications, 2021, 26, 101849.	0.9	8
9	Controllable fabrication of two-dimensional layered transition metal oxides through electrochemical exfoliation of non-van der Waals metals for rechargeable zinc-ion batteries. Chemical Engineering Journal, 2021, 408, 127247.	6.6	19
10	Pencil Drawing Stable Interface for Reversible and Durable Aqueous Zincâ€lon Batteries. Advanced Functional Materials, 2021, 31, 2006495.	7.8	153
11	Strategies for the Stabilization of Zn Metal Anodes for Znâ€ion Batteries. Advanced Energy Materials, 2021, 11, .	10.2	431
12	Vanadate-based electrodes for rechargeable batteries. Materials Chemistry Frontiers, 2021, 5, 1585-1609.	3.2	12
13	Innovative zinc-based batteries. Journal of Power Sources, 2021, 484, 229309.	4.0	70
14	Gradient valence-distributed vanadium oxygen hydrate hybrid induces high performance aqueous zinc-ion batteries. Materials Chemistry Frontiers, 2021, 5, 7518-7528.	3.2	4
15	Challenges and strategies of zinc anode for aqueous zinc-ion batteries. Materials Chemistry Frontiers, 2021, 5, 2201-2217.	3.2	50
16	Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: from electrolytes to electrode materials. Energy and Environmental Science, 2021, 14, 3796-3839.	15.6	257
17	Tuning the structural skeleton of a phenanthroline-based covalent organic framework for better electrochemical performance as a cathode material for Zn-ion batteries: a theoretical exploration. Physical Chemistry Chemical Physics, 2021, 23, 12644-12653.	1.3	19
18	A new tunnel-type V ₄ O ₉ cathode for high power density aqueous zinc ion batteries. Inorganic Chemistry Frontiers, 2021, 8, 4497-4506.	3.0	24

ITATION REDO

#	Article	IF	CITATIONS
19	Enhanced electrochemical performance of MnO ₂ nanoparticles: graphene aerogels as conductive substrates and capacitance contributors. Dalton Transactions, 2021, 50, 8776-8784.	1.6	6
20	Suppressing cathode dissolution <i>via</i> guest engineering for durable aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2021, 9, 7631-7639.	5.2	47
21	Realizing an Allâ€Round Hydrogel Electrolyte toward Environmentally Adaptive Dendriteâ€Free Aqueous Zn–MnO ₂ Batteries. Advanced Materials, 2021, 33, e2007559.	11.1	250
22	A unique morphology and interface dual-engineering strategy enables the holey C@VO ₂ cathode with enhanced storage kinetics for aqueous Zn-ion batteries. Journal of Materials Chemistry A, 2021, 9, 8792-8804.	5.2	37
23	Significantly boosted oxygen electrocatalysis with cooperation between cobalt and iron porphyrins. Dalton Transactions, 2021, 50, 5120-5123.	1.6	10
24	Metal phosphides: topical advances in the design of supercapacitors. Journal of Materials Chemistry A, 2021, 9, 20241-20276.	5.2	66
25	Vanadium oxide bronzes as cathode active materials for non-lithium-based batteries. CrystEngComm, 2021, 23, 5267-5283.	1.3	6
26	A new type of zinc ion hybrid supercapacitor based on 2D materials. Nanoscale, 2021, 13, 11004-11016.	2.8	33
27	A Co-intercalation enhanced V-based cathode material for fast charge aqueous zinc ion batteries. Chemical Communications, 2021, 57, 10339-10342.	2.2	10
28	Vanadium-based cathodes for aqueous zinc-ion batteries: from crystal structures, diffusion channels to storage mechanisms. Journal of Materials Chemistry A, 2021, 9, 5258-5275.	5.2	103
29	Defect engineering <i>via</i> the F-doping of β-MnO ₂ cathode to design hierarchical spheres of interlaced nanosheets for superior high-rate aqueous zinc ion batteries. Journal of Materials Chemistry A, 2021, 9, 17211-17222.	5.2	58
30	From solid electrolyte to zinc cathode: vanadium substitution in ZnPS3. JPhys Materials, 2021, 4, 024005.	1.8	1
31	Electrolyte Strategies toward Better Zinc-Ion Batteries. ACS Energy Letters, 2021, 6, 1015-1033.	8.8	376
32	Highâ€Voltage Rechargeable Aqueous Zincâ€Based Batteries: Latest Progress and Future Perspectives. Small Science, 2021, 1, 2000066.	5.8	56
33	Deep Eutectic Solventâ€Induced Polyacrylonitrileâ€Derived Hierarchical Porous Carbon for Zincâ€Ion Hybrid Supercapacitors. Batteries and Supercaps, 2021, 4, 680-686.	2.4	10
34	Influence of Polyvinyl Pyrrolidone (PVP) on Vanadium-based Compound Composite Performances for Aqueous Zinc-Ion Batteries. International Journal of Electrochemical Science, 0, , 210349.	0.5	0
35	Carbon Quantum Dots Promote Coupled Valence Engineering of V ₂ O ₅ Nanobelts for Highâ€Performance Aqueous Zincâ€Ion Batteries. ChemSusChem, 2021, 14, 2076-2083.	3.6	29
36	Electrochemical Generation of Hydrated Zinc Vanadium Oxide with Boosted Intercalation Pseudocapacitive Storage for a High-Rate Flexible Zinc-Ion Battery. ACS Applied Materials & Interfaces, 2021, 13, 16576-16584.	4.0	49

#	Article	IF	CITATIONS
37	Highâ€Voltage Zincâ€Ion Batteries: Design Strategies and Challenges. Advanced Functional Materials, 2021, 31, 2010213.	7.8	123
38	Deep Eutectic Solvents for Boosting Electrochemical Energy Storage and Conversion: A Review and Perspective. Advanced Functional Materials, 2021, 31, 2011102.	7.8	172
39	Reaction kinetics in rechargeable zinc-ion batteries. Journal of Power Sources, 2021, 492, 229655.	4.0	48
40	Enhanced Reversible Zinc Ion Intercalation in Deficient Ammonium Vanadate for High-Performance Aqueous Zinc-Ion Battery. Nano-Micro Letters, 2021, 13, 116.	14.4	111
41	Highly Reversible Aqueous Znâ€MnO ₂ Battery by Supplementing Mn ²⁺ â€Mediated MnO ₂ Deposition and Dissolution. Advanced Functional Materials, 2021, 31, 2101579.	7.8	119
42	An In Situ Artificial Cathode Electrolyte Interphase Strategy for Suppressing Cathode Dissolution in Aqueous Zinc Ion Batteries. Small Methods, 2021, 5, e2100094.	4.6	43
43	Opportunities and challenges for aqueous metal-proton batteries. Matter, 2021, 4, 1252-1273.	5.0	63
44	Surfaceâ€Preferred Crystal Plane for a Stable and Reversible Zinc Anode. Advanced Materials, 2021, 33, e2100187.	11.1	432
45	Undesired Reactions in Aqueous Rechargeable Zinc Ion Batteries. ACS Energy Letters, 2021, 6, 1773-1785.	8.8	173
46	A Highâ€Rate and Ultrastable Aqueous Zincâ€Ion Battery with a Novel MgV ₂ O ₆ ·1.7H ₂ O Nanobelt Cathode. Small, 2021, 17, e2100318.	5.2	58
47	Salty Ice Electrolyte with Superior Ionic Conductivity Towards Lowâ€Temperature Aqueous Zinc Ion Hybrid Capacitors. Advanced Functional Materials, 2021, 31, 2101277.	7.8	81
48	Detrimental Effects of Surface Imperfections and Unpolished Edges on the Cycling Stability of a Zinc Foil Anode. ACS Energy Letters, 2021, 6, 1990-1995.	8.8	89
49	In-situ tuning the NH4+ extraction in (NH4)2V4O9 nanosheets towards high performance aqueous zinc ion batteries. Journal of Power Sources, 2021, 492, 229629.	4.0	29
50	Tailored Hierarchical Porous Carbon through Template Modification for Antifreezing Quasiâ€Solidâ€State Zinc Ion Hybrid Supercapacitors. Advanced Energy and Sustainability Research, 2021, 2, 2000112.	2.8	9
51	High-mass loading V3O7·H2O nanoarray for Zn-ion battery: New synthesis and two-stage ion intercalation chemistry. Nano Energy, 2021, 83, 105835.	8.2	100
52	Stable Aqueous Anodeâ€Free Zinc Batteries Enabled by Interfacial Engineering. Advanced Functional Materials, 2021, 31, 2101886.	7.8	162
53	Nanostructured V2O5.nH2O/cup-stacked carbon nanotube composite with remarkable Li+ specific capacity. Solid State Ionics, 2021, 363, 115590.	1.3	5
54	A Polymer/Graphene Composite Cathode with Active Carbonyls and Secondary Amine Moieties for Highâ€Performance Aqueous Znâ€Organic Batteries Involving Dualâ€Ion Mechanism. Small, 2021, 17, e2100902.	5.2	37

	CITATION R	REPORT	
Article		IF	CITATIONS
Aqueous Rechargeable Multivalent Metalâ€ion Batteries: Advances and Challenges. Ad Materials, 2021, 11, 2100608.	lvanced Energy	10.2	122
Interlayer Modification of Pseudocapacitive Vanadium Oxide and Zn(H ₂ O) _n ²⁺ Migration Regulation for Ultrahig Durable Aqueous Zincâ€ion Batteries. Advanced Science, 2021, 8, e2004924.	h Rate and	5.6	118
Crystal water enlarging the interlayer spacing of ultrathin V2O5·4VO2·2.72H2O na high-performance aqueous zinc-ion battery. Chemical Engineering Journal, 2021, 411,	nobelts for 128533.	6.6	63
In Situ Carbon Insertion in Laminated Molybdenum Dioxide by Interlayer Engineering T Ultrastable "Rockingâ€Chair―Zincâ€Ion Batteries. Advanced Functional Materials	oward 5, 2021, 31, 2102827.	7.8	64
Rich Alkali Ions Preintercalated Vanadium Oxides for Durable and Fast Zinc-Ion Storage Letters, 2021, 6, 2111-2120.	e. ACS Energy	8.8	94
Manganeseâ€Based Materials for Rechargeable Batteries beyond Lithiumâ€lon. Advan 2021, 11, 2100867.	ced Energy Materials,	10.2	95
Mechanistic Insights of Mg ²⁺ â€Electrolyte Additive for Highâ€Energy an Hybrid Capacitors. Advanced Energy Materials, 2021, 11, 2101158.	d Longâ€Life Zincâ€lon	10.2	108
Tailoring nanostructured transition metal phosphides for high-performance hybrid sup	ercapacitors.		

61	Hybrid Capacitors. Advanced Energy Materials, 2021, 11, 2101158.	10.2	108
62	Tailoring nanostructured transition metal phosphides for high-performance hybrid supercapacitors. Nano Today, 2021, 38, 101201.	6.2	86
63	Sulfite modified and ammonium ion intercalated vanadium hydrate with enhanced redox kinetics for aqueous zinc ion batteries. Journal of Power Sources, 2021, 496, 229832.	4.0	31
64	High electrochemical performance of in-situ carbon-coated vanadyl ethylene glycolate as cathode for aqueous zinc-ion batteries. Solid State Ionics, 2021, 364, 115632.	1.3	12
65	In Situ Lattice Tunnel Distortion of Vanadium Trioxide for Enhancing Zinc Ion Storage. Advanced Energy Materials, 2021, 11, 2100973.	10.2	74
66	Nb-based compounds for rapid lithium-ion storage and diffusion. Journal of Power Sources, 2021, 496, 229840.	4.0	9
67	A rechargeable aqueous zinc/sodium manganese oxides battery with robust performance enabled by Na2SO4 electrolyte additive. Energy Storage Materials, 2021, 38, 299-308.	9.5	79
68	Reversible Molecular and Ionic Storage Mechanisms in High-Performance Zn _{0.1} V ₂ O ₅ · <i>n</i> H ₂ O Xerogel Cathode for Aqueous Zn-Ion Batteries. ACS Nano, 2021, 15, 10678-10688.	7.3	68
69	Impact of Binder Functional Groups on Controlling Chemical Reactions to Improve Stability of Rechargeable Zinc-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 7138-7147.	2.5	24
70	Tailoring Pore Structures of 3D Printed Cellular Highâ€Loading Cathodes for Advanced Rechargeable Zincâ€lon Batteries. Small, 2021, 17, e2100746.	5.2	38
71	Interlayer Engineering of Preintercalated Layered Oxides as Cathode for Emerging Multivalent Metal-ion Batteries: Zinc and Beyond. Energy Storage Materials, 2021, 38, 397-437.	9.5	90

The Emerging of Aqueous Zincâ€Based Dual Electrolytic Batteries. Small, 2021, 17, <u>e2008043</u>.

#

55

57

59

#	Article	IF	CITATIONS
73	A high-voltage activated high-erformance cathode for aqueous Zn-ion batteries. Energy Storage Materials, 2021, 38, 473-481.	9.5	53
74	Employing the Dynamics of the Electrochemical Interface in Aqueous Zincâ€Ion Battery Cathodes. Advanced Functional Materials, 2021, 31, 2102135.	7.8	34
75	Cathode strategies to improve the performance of zincâ€ion batteries. Electrochemical Science Advances, 2022, 2, e2100090.	1.2	14
76	A Universal Compensation Strategy to Anchor Polar Organic Molecules in Bilayered Hydrated Vanadates for Promoting Aqueous Zinc″on Storage. Advanced Materials, 2021, 33, e2102701.	11.1	76
77	Microwave-Assisted Rapid Synthesis of NH4V4O10 Layered Oxide: A High Energy Cathode for Aqueous Rechargeable Zinc Ion Batteries. Nanomaterials, 2021, 11, 1905.	1.9	8
78	Cations Coordinationâ€Regulated Reversibility Enhancement for Aqueous Zn″on Battery. Advanced Functional Materials, 2021, 31, 2105736.	7.8	59
79	Guest-species-incorporation in manganese/vanadium-based oxides: Towards high performance aqueous zinc-ion batteries. Nano Energy, 2021, 85, 105969.	8.2	71
80	Hydrothermal synthesis of β-MnO2 nanorods for highly efficient zinc-ion storage. Ionics, 2021, 27, 3943-3950.	1.2	6
81	Rechargeable zinc-air batteries with neutral electrolytes: Recent advances, challenges, and prospects. EnergyChem, 2021, 3, 100055.	10.1	59
82	High performance of HNaV6O16·4H2O nanobelts for aqueous zinc-ion batteries with in-situ phase transformation by Zn(CF3SO3)2 electrolyte. Rare Metals, 2022, 41, 448-456.	3.6	55
83	Computational investigation of 2D 3d/4d hexagonal transition metal borides for metal-ion batteries. Electrochimica Acta, 2021, 384, 138404.	2.6	16
84	Unveiling the Intricate Intercalation Mechanism in Manganese Sesquioxide as Positive Electrode in Aqueous Znâ€Metal Battery. Advanced Energy Materials, 2021, 11, 2100962.	10.2	39
85	Self-Healing Solid Polymer Electrolyte with High Ion Conductivity and Super Stretchability for All-Solid Zinc-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 36320-36329.	4.0	42
86	Doping-Induced Static Activation of MnO ₂ Cathodes for Aqueous Zn-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 12223-12232.	3.2	20
87	Designing Advanced Aqueous Zincâ€lon Batteries: Principles, Strategies, and Perspectives. Energy and Environmental Materials, 2022, 5, 823-851.	7.3	69
88	Nsutite-type VO2 microcrystals as highly durable cathode materials for aqueous zinc-Ion batteries. Chemical Engineering Journal, 2021, 417, 128408.	6.6	52
89	Extended iodine chemistry: Toward high-energy-density aqueous zinc-ion batteries. Matter, 2021, 4, 2637-2639.	5.0	14
90	ultrathin and Ultralight Zn Micromeshâ€Induced Spatialâ€Selection Deposition for Flexible Highâ€Specificâ€Energy Znâ€Ion Batteries. Advanced Functional Materials, 2021, 31, 2106550.	7.8	104

#	Article	IF	CITATIONS
91	Regulating the Interlayer Spacing of Vanadium Oxide by In Situ Polyaniline Intercalation Enables an Improved Aqueous Zinc-Ion Storage Performance. ACS Applied Materials & Interfaces, 2021, 13, 39347-39354.	4.0	35
92	Carbon-Doped Vanadium Nitride Used as a Cathode of High-Performance Aqueous Zinc Ion Batteries. Industrial & Engineering Chemistry Research, 2021, 60, 12155-12165.	1.8	13
93	Stable Zinc Metal Anodes with Textured Crystal Faces and Functional Zinc Compound Coatings. Advanced Functional Materials, 2021, 31, 2106114.	7.8	109
94	Structure control in VNxOy by hydrogen bond association extraction for enhanced zinc ion storage. Electrochimica Acta, 2021, 389, 138722.	2.6	6
95	Studying the Conversion Mechanism to Broaden Cathode Options in Aqueous Zincâ€lon Batteries. Angewandte Chemie, 2021, 133, 25318-25325.	1.6	34
96	Tuning electronic structure of ultrathin V6O13 nanobelts via nickel doping for aqueous zinc-ion battery cathodes. Chemical Engineering Journal, 2022, 428, 132538.	6.6	41
97	Studying the Conversion Mechanism to Broaden Cathode Options in Aqueous Zincâ€lon Batteries. Angewandte Chemie - International Edition, 2021, 60, 25114-25121.	7.2	84
98	Stress-release design for high-capacity and long-time lifespan aqueous zinc-ion batteries. Materials Today Energy, 2021, 21, 100799.	2.5	12
99	Sodium vanadate/PEDOT nanocables rich with oxygen vacancies for high energy conversion efficiency zinc ion batteries. Energy Storage Materials, 2021, 40, 209-218.	9.5	86
100	Ironâ€Based NASICONâ€Type Na ₄ Fe ₃ (PO ₄) ₂ (P ₂ O ₇) Cathode for Zincâ€Ion Battery: Zn ²⁺ /Na ⁺ Coâ€Intercalation Enabling High Capacity, ChemSusChem, 2021, 14, 5424-5433.	3.6	15
101	Charged-optimized ZnO/ ZnV2O4 composite hollow microspheres robust zinc-ion storage capacity. Journal of Solid State Chemistry, 2021, 301, 122371.	1.4	12
102	Electrolyte Study with in Operando pH Tracking Providing Insight into the Reaction Mechanism of Aqueous Acidic Zn//MnO ₂ Batteries. ChemElectroChem, 2021, 8, 3553-3566.	1.7	26
103	A high-performance aqueous rechargeable zinc battery based on organic cathode integrating quinone and pyrazine. Energy Storage Materials, 2021, 40, 31-40.	9.5	130
104	Engineering Polymer Glue towards 90% Zinc Utilization for 1000 Hours to Make Highâ€Performance Znâ€lon Batteries. Advanced Functional Materials, 2021, 31, 2107652.	7.8	115
105	High-performance reversible aqueous zinc-ion battery based on iron-doped alpha-manganese dioxide coated by polypyrrole. Journal of Colloid and Interface Science, 2021, 598, 419-429.	5.0	46
106	Electrode materials for aqueous multivalent metal-ion batteries: Current status and future prospect. Journal of Energy Chemistry, 2022, 67, 563-584.	7.1	36
107	Recent progress of carbon nanomaterials for high-performance cathodes and anodes in aqueous zinc ion batteries. Energy Storage Materials, 2021, 41, 715-737.	9.5	93
108	Manganese oxides in-situ grown on carbon sphere and derived different crystal structures as high-performance pseudocapacitor electrode material. Journal of Alloys and Compounds, 2021, 878, 160384.	2.8	8

#	Article	IF	CITATIONS
109	Super hydrophilic carbon fiber film for freestanding and flexible cathodes of zinc-ion hybrid supercapacitors. Chemical Engineering Journal, 2021, 421, 129786.	6.6	68
110	Defect modulation of ZnMn2O4 nanotube arrays as high-rate and durable cathode for flexible quasi-solid-state zinc ion battery. Chemical Engineering Journal, 2021, 422, 129890.	6.6	33
111	Constructing electron pathways by graphene oxide for V2O5 nanoparticles in ultrahigh-performance and fast charging aqueous zinc ion batteries. Journal of Alloys and Compounds, 2021, 878, 160324.	2.8	32
112	Recent advances in vanadium-based materials for aqueous metal ion batteries: Design of morphology and crystal structure, evolution of mechanisms and electrochemical performance. Energy Storage Materials, 2021, 41, 152-182.	9.5	29
113	Dendrite-free zinc anode enabled by zinc-chelating chemistry. Energy Storage Materials, 2021, 41, 515-521.	9.5	120
114	Spontaneous knitting behavior of 6.7-nm thin (NH4)0.38V2O5 nano- ribbons for binder-free zinc-ion batteries. Energy Storage Materials, 2021, 42, 286-294.	9.5	46
115	Recent progress of cathode materials for aqueous zinc-ion capacitors: Carbon-based materials and beyond. Carbon, 2021, 185, 126-151.	5.4	71
116	Acetate-based â€~oversaturated gel electrolyte' enabling highly stable aqueous Zn-MnO2 battery. Energy Storage Materials, 2021, 42, 240-251.	9.5	25
117	Self-doped 2D-V2O5 nanoflakes – A high electrochemical performance cathode in rechargeable zinc ion batteries. Ceramics International, 2021, 47, 29832-29839.	2.3	11
118	Challenges and design strategies for high performance aqueous zinc ion batteries. Energy Storage Materials, 2021, 42, 533-569.	9.5	74
119	Zn2+ storage performance and structural change of orthorhombic V2O5 nanowires as the cathode material for rechargeable aqueous zinc-ion batteries. Electrochimica Acta, 2021, 397, 139255.	2.6	34
120	Synergetic effect of water-in-bisalt electrolyte and hydrogen-bond rich additive improving the performance of aqueous batteries. Journal of Power Sources, 2021, 511, 230413.	4.0	19
121	Aqueous rechargeable zinc batteries: Challenges and opportunities. Current Opinion in Electrochemistry, 2021, 30, 100801.	2.5	14
122	Engineering interfacial layers to enable Zn metal anodes for aqueous zinc-ion batteries. Energy Storage Materials, 2021, 43, 317-336.	9.5	154
123	Synthesis of three-dimensional Î ² -MnO2/PPy composite for high-performance cathode in zinc-ion batteries. Journal of Alloys and Compounds, 2021, 888, 161619.	2.8	35
124	Improving stability and reversibility via fluorine doping in aqueous zinc–manganese batteries. Materials Today Energy, 2021, 22, 100851.	2.5	18
125	Functionalized carbon nanofiber interlayer towards dendrite-free, Zn-ion batteries. Chemical Engineering Journal, 2021, 425, 131862.	6.6	53
126	Defect engineering in metal sulfides for energy conversion and storage. Coordination Chemistry Reviews, 2021, 448, 214147.	9.5	107

#	Article	IF	CITATIONS
127	α-calcium sulfate hemihydrate with a 3D hierarchical straw-sheaf morphology for use as a remove Pb2+ adsorbent. Chemosphere, 2022, 287, 132025.	4.2	10
128	Cathode materials for aqueous zinc-ion batteries: A mini review. Journal of Colloid and Interface Science, 2022, 605, 828-850.	5.0	92
129	Nanostructured conductive polymer shield for highly reversible dendrite-free zinc metal anode. Chemical Engineering Journal, 2022, 427, 131954.	6.6	17
130	Zinc/selenium conversion battery: a system highly compatible with both organic and aqueous electrolytes. Energy and Environmental Science, 2021, 14, 2441-2450.	15.6	93
131	Electrochemical activation strategies of a novel high entropy amorphous V-based cathode material for high-performance aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2021, 9, 18488-18497.	5.2	23
132	Water-steam activation toward oxygen-deficient vanadium oxides for enhancing zinc ion storage. Journal of Materials Chemistry A, 2021, 9, 24517-24527.	5.2	19
133	Tailoring double-layer aromatic polymers with multi-active sites towards high performance aqueous Zn–organic batteries. Materials Horizons, 2021, 8, 3124-3132.	6.4	17
134	Structure engineering of van der Waals layered transition metal-containing compounds for aqueous energy storage. Materials Chemistry Frontiers, 2021, 5, 2996-3020.	3.2	4
135	Interfaceâ€Engineered Dendriteâ€Free Anode and Ultraconductive Cathode for Durable and Highâ€Rate Fiber Zn Dualâ€Ion Microbattery. Advanced Functional Materials, 2021, 31, 2008894.	7.8	35
136	A VS ₂ @N-doped carbon hybrid with strong interfacial interaction for high-performance rechargeable aqueous Zn-ion batteries. Journal of Materials Chemistry C, 0, , .	2.7	54
137	Vanadium dioxide–zinc oxide stacked photocathodes for photo-rechargeable zinc-ion batteries. Journal of Materials Chemistry A, 2021, 9, 23199-23205.	5.2	41
138	A self-preserving pitted texture enables reversible topographic evolution and cycling on Zn metal anodes. Journal of Materials Chemistry A, 2021, 9, 25495-25501.	5.2	5
139	Low temperature induced highly stable Zn metal anodes for aqueous zinc-ion batteries. Chemical Communications, 2021, 57, 11477-11480.	2.2	18
140	Recent progress in tackling Zn anode challenges for Zn ion batteries. Journal of Materials Chemistry A, 2021, 9, 25750-25772.	5.2	29
141	Interfacial Manipulation via In Situ Grown ZnSe Cultivator toward Highly Reversible Zn Metal Anodes. Advanced Materials, 2021, 33, e2105951.	11.1	212
142	Wide Voltage Aqueous Asymmetric Supercapacitors: Advances, Strategies, and Challenges. Advanced Functional Materials, 2022, 32, 2108107.	7.8	90
143	Hierarchical Kâ€Birnessiteâ€MnO ₂ Carbon Framework for Highâ€Energyâ€Density and Durable Aqueous Zincâ€Ion Battery. Small, 2021, 17, e2104557.	5.2	37
144	Iron-doped nanoflakes of layered double hydroxide of nickel for high-performance hybrid zinc batteries. Materials Today Energy, 2021, 22, 100879.	2.5	6

#	Article	IF	CITATIONS
145	Highâ€Performance Aqueous Zinc Batteries Based on Organic/Organic Cathodes Integrating Multiredox Centers. Advanced Materials, 2021, 33, e2106469.	11.1	98
146	Advanced Multifunctional Aqueous Rechargeable Batteries Design: From Materials and Devices to Systems. Advanced Materials, 2022, 34, e2104327.	11.1	78
147	The role of oxygen vacancies in metal oxides for rechargeable ion batteries. Science China Chemistry, 2021, 64, 1826-1853.	4.2	33
148	Synchronous-ultrahigh conductive-reactive N-atoms doping strategy of carbon nanofibers networks for highâ€performance flexible energy storage. Energy Storage Materials, 2022, 44, 250-262.	9.5	35
149	Deficiency and surface engineering boosting electronic and ionic kinetics in NH4V4O10 for high-performance aqueous zinc-ion battery. Energy Storage Materials, 2022, 44, 197-205.	9.5	100
150	Metal-organic frameworks and their derivatives in stable Zn metal anodes for aqueous Zn-ion batteries. ChemPhysMater, 2022, 1, 252-263.	1.4	25
151	Highly Reversible Zn Metal Anode Stabilized by Dense and Anionâ€Derived Passivation Layer Obtained from Concentrated Hybrid Aqueous Electrolyte. Advanced Functional Materials, 2022, 32, 2103959.	7.8	48
152	Cotton-derived cellulose film as a dendrite-inhibiting separator to stabilize the zinc metal anode of aqueous zinc ion batteries. Energy Storage Materials, 2022, 44, 57-65.	9.5	211
153	Roadmap on the protective strategies of zinc anodes in aqueous electrolyte. Energy Storage Materials, 2022, 44, 104-135.	9.5	94
154	Application of expanded graphite-based materials for rechargeable batteries beyond lithium-ions. Nanoscale, 2021, 13, 19291-19305.	2.8	29
155	Flexible Electron-Rich Ion Channels Enable Ultrafast and Stable Aqueous Zinc-Ion Storage. ACS Applied Materials & Interfaces, 2021, 13, 54096-54105.	4.0	10
156	Unveiling performance evolution mechanisms of MnO2 polymorphs for durable aqueous zinc-ion batteries. Energy Storage Materials, 2022, 44, 508-516.	9.5	93
157	Redox-active zinc thiolates for low-cost aqueous rechargeable Zn-ion batteries. Chemical Science, 2021, 12, 15253-15262.	3.7	10
158	Redistributing Zn ion flux by bifunctional graphitic carbon nitride nanosheets for dendrite-free zinc metal anodes. Journal of Materials Chemistry A, 2021, 9, 27408-27414.	5.2	37
159	Anti-aggregation growth and hierarchical porous carbon encapsulation enables the C@VO2 cathode with superior storage capability for aqueous zinc-ion batteries. Journal of Energy Chemistry, 2022, 67, 645-654.	7.1	25
160	In situ separator modification via CVD-derived N-doped carbon for highly reversible Zn metal anodes. Nano Research, 2022, 15, 9785-9791.	5.8	36
161	Dual redox groups enable organic cathode material with a high capacity for aqueous zinc-organic batteries. Electrochimica Acta, 2022, 404, 139620.	2.6	21
162	Carbon nanomaterials for highly stable Zn anode: Recent progress and future outlook. Journal of Electroanalytical Chemistry, 2022, 904, 115883.	1.9	19

#	Article	IF	CITATIONS
163	Achieving mechanically sturdy properties and high energy density for Zn-ion structural batteries based on carbon-fiber-reinforced composites. Composites Science and Technology, 2022, 218, 109156.	3.8	14
164	Stabilizing zinc anode via a chelation and desolvation electrolyte additive. , 2022, 1, 100007.		83
165	Hierarchical Atomic Layer Deposited V ₂ O ₅ on 3D Printed Nanocarbon Electrodes for Highâ€Performance Aqueous Zincâ€Ion Batteries. Small, 2022, 18, e2105572.	5.2	29
166	A Longâ€Life Manganese Oxide Cathode Material for Aqueous Zinc Batteries with a Negatively Charged Porous Host to Promote the Backâ€Đeposition of Dissolved Mn ²⁺ . Advanced Functional Materials, 2022, 32, 2106994.	7.8	39
167	A rechargeable aqueous manganese-ion battery based on intercalation chemistry. Nature Communications, 2021, 12, 6991.	5.8	77
168	Coaxial 3D-printing constructing all-in-one fibrous lithium-, sodium-, and zinc-ion batteries. Chemical Engineering Journal, 2022, 433, 133815.	6.6	13
169	Directing the Preferred Crystal Orientation by a Cellulose Acetate/Graphene Oxide Composite Separator for Dendrite-Free Zn-Metal Anodes. ACS Applied Energy Materials, 2021, 4, 14599-14607.	2.5	25
170	Boosting the active sites and kinetics of VO2 by Mn pre-intercalated and PVP modified nanostructure to improve the cycle stability for aqueous zinc batteries. Chemical Engineering Journal, 2022, 433, 133528.	6.6	22
171	Turning the Byproduct Zn ₄ (OH) ₆ SO ₄ · <i>x</i> H ₂ O into a Uniform Solid Electrolyte Interphase to Stabilize Aqueous Zn Anode. , 2021, 3, 1819-1825.		50
172	Bi Doping-Enhanced Reversible-Phase Transition of α-MnO ₂ Raising the Cycle Capability of Aqueous Zn–Mn Batteries. ACS Applied Materials & Interfaces, 2021, 13, 55208-55217.	4.0	33
173	A facile pyrolysis method to prepare vanadium oxides for high performance aqueous Zn-ion battery. Current Applied Physics, 2022, 34, 85-94.	1.1	6
174	Facile hydrothermal synthesis of V2O5 nanofibers as cathode material for aqueous zinc-ion batteries. Journal of Alloys and Compounds, 2022, 896, 163071.	2.8	12
175	Synthesis and Performance Optimization of Manganeseâ€based Cathode Materials for Zincâ€lon Batteries. Batteries and Supercaps, 2022, 5, .	2.4	10
176	A non-flammable hydrous organic electrolyte for sustainable zinc batteries. Nature Sustainability, 2022, 5, 205-213.	11.5	277
177	Improving the capacity of zinc-ion batteries through composite defect engineering. RSC Advances, 2021, 11, 34079-34085.	1.7	7
178	Engineering oxygen vacancies and surface chemical reconstruction of MOF-derived hierarchical CoO/Ni ₂ P-Co ₂ P nanosheet arrays for advanced aqueous zinc-ion batteries. Dalton Transactions, 2021, 50, 17538-17548.	1.6	8
179	Organic Acid Etching Strategy for Dendrite Suppression in Aqueous Zincâ€lon Batteries. Advanced Energy Materials, 2022, 12, 2102797.	10.2	79
180	Binder-free three-dimensional interconnected CuV ₂ O ₅ · <i>n</i> H ₂ O nests as cathodes for high-loading aqueous zinc-ion batteries. Inorganic Chemistry Frontiers, 2022, 9, 792-804.	3.0	16

#	Article	IF	CITATIONS
181	Chaotropic anion based "water-in-salt―electrolyte realizes a high voltage Zn–graphite dual-ion battery. Journal of Materials Chemistry A, 2022, 10, 2064-2074.	5.2	28
182	Designing Structural Electrochemical Energy Storage Systems: A Perspective on the Role of Device Chemistry. Frontiers in Chemistry, 2021, 9, 810781.	1.8	6
183	Twoâ€Dimensional Organic Supramolecule via Hydrogen Bonding and π–π Stacking for Ultrahigh Capacity and Longâ€Life Aqueous Zinc–Organic Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	99
184	Zinc ion thermal charging cell for low-grade heat conversion and energy storage. Nature Communications, 2022, 13, 132.	5.8	37
185	Two-dimensional MXenes for electrochemical energy storage applications. Journal of Materials Chemistry A, 2022, 10, 1105-1149.	5.2	63
186	High energy-power density Zn-ion hybrid supercapacitors with N/P co-doped graphene cathode. Journal of Power Sources, 2022, 521, 230941.	4.0	60
187	Hydrothermal synthesis of ammonium vanadate [(NH4)2V7O16•3.6H2O] as a promising zinc-ion cathode: Experimental and theoretical study of its storage. Electrochimica Acta, 2022, 404, 139785.	2.6	9
188	V-MOF@graphene derived two-dimensional hierarchical V2O5@graphene as high-performance cathode for aqueous zinc-ion batteries. Materials Today Chemistry, 2022, 23, 100731.	1.7	16
189	Electrolyte/electrode interfacial electrochemical behaviors and optimization strategies in aqueous zinc-ion batteries. Energy Storage Materials, 2022, 45, 618-646.	9.5	125
190	Galvanically replaced artificial interfacial layer for highly reversible zinc metal anodes. Applied Physics Reviews, 2022, 9, .	5.5	40
191	An integrated electrode strengthened by dense layer for aqueous zinc ion batteries with long lifespan. Journal of Alloys and Compounds, 2022, 896, 162948.	2.8	10
192	3D printed high-performance sodium ion and zinc ion full batteries. Journal of Alloys and Compounds, 2022, 900, 163394.	2.8	8
193	Boosting effects of hydroxyl groups on porous carbon for improved aqueous zinc-ion capacitors. Journal of Energy Storage, 2022, 48, 103996.	3.9	18
194	Reversible K _{0.54} V ₂ O ₅ Nanorods for High-Performance Aqueous Zinc-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 1656-1661.	2.5	14
195	Optimizing nanostructure and constructing heterostructure via Mo/W incorporation to improve electrochemical properties of NiCoP for hybrid supercapacitors. Science China Materials, 2022, 65, 1195-1206.	3.5	12
196	A Selfâ€Regulated Interface toward Highly Reversible Aqueous Zinc Batteries. Advanced Energy Materials, 2022, 12, .	10.2	164
197	A new phosphate member: ZnMn2(PO4)2 as an advanced cathode material for aqueous and nonaqueous zinc ion batteries. Journal of Alloys and Compounds, 2022, 905, 163939.	2.8	7
198	Nanosheet-Assembled MnO2-Integrated Electrode Based on the Low-Temperature and Green Chemical Route. Crystals, 2022, 12, 115.	1.0	4

#	Article	IF	CITATIONS
199	Edge-segregated ternary Pd–Pt–Ni spiral nanosheets as high-performance bifunctional oxygen redox electrocatalysts for rechargeable zinc–air batteries. Journal of Materials Chemistry A, 2022, 10, 3808-3817.	5.2	17
200	A coaxial zinc–tin vertically oriented array-based anode for achieving ultrahigh areal current and capacity up to 80 mA cm ^{â"2} and 80 mA h cm ^{â"2} . Journal of Materials Chemistry A, 2022, 10, 1919-1927.	5.2	7
202	Revisiting Charge Storage Mechanism of Reduced Graphene Oxide in Zinc Ion Hybrid Capacitor beyond the Contribution of Oxygenâ€Containing Groups. Advanced Functional Materials, 2022, 32, .	7.8	45
203	Improvement of structural stability of cathode by manganese additive in electrolyte for zincâ€ion batteries. International Journal of Energy Research, 2022, 46, 8464-8470.	2.2	6
204	Reversible Zn stripping/plating achieved by surface thin Sn layer for high-performance aqueous zinc metal batteries. Journal of Materials Science and Technology, 2022, 117, 72-78.	5.6	9
205	Stability Enhancement of Zincâ€lon Batteries Using Nonâ€Aqueous Electrolytes. Batteries and Supercaps, 2022, 5, .	2.4	31
206	Waterâ€Processable and Multiscaleâ€Designed Vanadium Oxide Cathodes with Predominant Zn ²⁺ Intercalation Pseudocapacitance toward High Gravimetric/Areal/Volumetric Capacity. Small, 2022, 18, e2105796.	5.2	19
207	Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives. Nano-Micro Letters, 2022, 14, 42.	14.4	207
208	Ammonium vanadate cathode materials with enhanced Zn storage by the optimization of electrolytes. CrystEngComm, 2022, 24, 1387-1393.	1.3	7
209	K-Ion intercalated V ₆ O ₁₃ with advanced high-rate long-cycle performance as cathode for Zn-ion batteries. Journal of Materials Chemistry C, 2022, 10, 590-597.	2.7	11
210	Orthoquinone–Based Covalent Organic Frameworks with Ordered Channel Structures for Ultrahigh Performance Aqueous Zinc–Organic Batteries. Angewandte Chemie, 2022, 134, .	1.6	29
211	Coupling aqueous zinc batteries and perovskite solar cells for simultaneous energy harvest, conversion and storage. Nature Communications, 2022, 13, 64.	5.8	43
212	Strategies of regulating Zn ²⁺ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy and Environmental Science, 2022, 15, 499-528.	15.6	313
213	Electrochemically induced phase transition in a nanoflower vanadium tetrasulfide cathode for high-performance zinc-ion batteries. Journal of Energy Chemistry, 2022, 69, 356-362.	7.1	56
214	Efficient Zn Metal Anode Enabled by O,N-Codoped Carbon Microflowers. Nano Letters, 2022, 22, 1350-1357.	4.5	63
215	Reversible Transformation of a Zinc Salt-Boosted High Areal Capacity Manganese Dioxide Cathode for Energy-Dense and Stable Aqueous Zinc Batteries. ACS Applied Energy Materials, 2022, 5, 1478-1486.	2.5	9
216	Highly efficient hydrogen production via a zinc-carbon @ nickel system. International Journal of Hydrogen Energy, 2022, 47, 5354-5360.	3.8	5
217	Eutectic electrolyte based on <i>N</i> -methylacetamide for highly reversible zinc–iodine battery. Energy and Environmental Science, 2022, 15, 1192-1200.	15.6	89

#	Article	IF	CITATIONS
218	Twoâ€Dimensional Organic Supramolecule via Hydrogen Bonding and π–π Stacking for Ultrahigh Capacity and Long‣ife Aqueous Zinc–Organic Batteries. Angewandte Chemie, 2022, 134, .	1.6	18
219	Orthoquinone–Based Covalent Organic Frameworks with Ordered Channel Structures for Ultrahigh Performance Aqueous Zinc–Organic Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	124
220	High strength hydrogels enable dendrite-free Zn metal anodes and high-capacity Zn–MnO ₂ batteries <i>via</i> a modified mechanical suppression effect. Journal of Materials Chemistry A, 2022, 10, 3122-3133.	5.2	17
221	Highâ€Capacity and Longâ€Life Zinc Electrodeposition Enabled by a Selfâ€Healable and Desolvation Shield for Aqueous Zincâ€Ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	80
222	Highâ€Capacity and Longâ€Life Zinc Electrodeposition Enabled by a Selfâ€Healable and Desolvation Shield for Aqueous Zincâ€Ion Batteries. Angewandte Chemie, 2022, 134, e202114789.	1.6	8
223	Gamma(É£)-MnO2/rGO Fibered Cathode Fabrication from Wet Spinning and Dip Coating Techniques for Cable-Shaped Zn-Ion Batteries. Advanced Fiber Materials, 2022, 4, 457-474.	7.9	27
224	An Inâ€Depth Study of Regulable Zincophilic Alloy Matrix toward Stable Zinc Metal Batteries. Advanced Materials Interfaces, 2022, 9, .	1.9	15
225	Brookite phase vanadium dioxide (B) with nanosheet structure for superior rate capability aqueous Zn-ion batteries. Journal of Electroanalytical Chemistry, 2022, 907, 116039.	1.9	7
226	Nano-sized split V2O5 with H2O-intercalated interfaces as a stable cathode for zinc ion batteries without an aging process. Chemical Engineering Journal, 2022, 434, 134738.	6.6	28
227	Unraveling dynamical behaviors of zinc metal electrodes in aqueous electrolytes through an operando study. Energy Storage Materials, 2022, 46, 243-251.	9.5	31
228	Ultrafast, long-life, high-loading, and wide-temperature zinc ion supercapacitors. Energy Storage Materials, 2022, 46, 233-242.	9.5	53
229	Uniform zinc deposition on O,N-dual functionalized carbon cloth current collector. Journal of Energy Chemistry, 2022, 69, 76-83.	7.1	19
230	Three-dimensional interconnected ultrathin manganese dioxide nanosheets grown on carbon cloth combined with Ti3C2Tx MXene for high-capacity zinc-ion batteries. Journal of Colloid and Interface Science, 2022, 615, 151-162.	5.0	25
231	A carbonyl-rich covalent organic framework as a high-performance cathode material for aqueous rechargeable zinc-ion batteries. Chemical Science, 2022, 13, 2385-2390.	3.7	66
232	The charge density of intercalants inside layered birnessite manganese oxide nanosheets determining Zn-ion storage capability towards rechargeable Zn-ion batteries. Journal of Materials Chemistry A, 2022, 10, 5561-5568.	5.2	11
233	High-performance zinc-ion battery cathode enabled by deficient manganese monoxide/graphene heterostructures. Electrochimica Acta, 2022, 411, 140045.	2.6	8
234	New Phosphate Zn ₂ Fe(PO ₄) ₂ Cathode Material for Nonaqueous Zinc Ion Batteries with Long Life Span. ACS Applied Materials & Interfaces, 2022, 14, 8888-8895.	4.0	11
235	Synthesis of Nitrogenâ€Doped KMn ₈ O ₁₆ with Oxygen Vacancy for Stable Zinc″on Batteries. Advanced Science, 2022, 9, e2106067.	5.6	70

#	Article	IF	CITATIONS
236	Aqueous Zn-ion batteries: Cathode materials and analysis. Current Opinion in Electrochemistry, 2022, 33, 100954.	2.5	9
237	Reunderstanding the Reaction Mechanism of Aqueous Zn–Mn Batteries with Sulfate Electrolytes: Role of the Zinc Sulfate Hydroxide. Advanced Materials, 2022, 34, e2109092.	11.1	97
238	Recent Advances of Aqueous Rechargeable Zincâ€lodine Batteries: Challenges, Solutions, and Prospects. Advanced Materials, 2022, 34, e2108856.	11.1	119
239	Electrochemical interface reconstruction to eliminate surface heterogeneity for dendrite-free zinc anodes. Energy Storage Materials, 2022, 47, 319-326.	9.5	39
240	Ultra-stable zinc-ion batteries by suppressing vanadium dissolution via multiple ion-bonded vanadate cathodes. Applied Physics Reviews, 2022, 9, 011416.	5.5	5
241	A Versatile Cation Additive Enabled Highly Reversible Zinc Metal Anode. Advanced Energy Materials, 2022, 12, .	10.2	95
242	Electrolyte Salts and Additives Regulation Enables High Performance Aqueous Zinc Ion Batteries: A Mini Review. Small, 2022, 18, e2104640.	5.2	69
243	Modulated bonding interaction in propanediol electrolytes toward stable aqueous zinc-ion batteries. Science China Materials, 2022, 65, 1156-1164.	3.5	37
244	An ultrathin rechargeable solid-state zinc ion fiber battery for electronic textiles. Science Advances, 2021, 7, eabl3742.	4.7	145
245	Electrochemical Interface Reconstruction to Eliminate Surface Heterogeneity for Dendrite-Free Zinc Anodes. SSRN Electronic Journal, 0, , .	0.4	0
246	Simultaneous Pre-Intercalation of Caesium and Sodium Ions into Vanadium Oxide Bronze Nanowires for High-Performance Aqueous Zinc-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
247	Metal oxide–carbon composite electrode materials for rechargeable batteries. , 2022, , 237-254.		0
248	DesigningÂOrganic/InorganicÂCathodes of MnO2ÂHalf-Wrapped byÂAromaticÂPolymers forÂHigh-PerformanceÂAqueousÂZinc-IonÂBatteries. SSRN Electronic Journal, 0, , .	0.4	0
249	Boosting the Cycling Stability of Aqueous Zinc-Ion Batteries Through Nanofibrous Coating of Bead-Like Mnox Cathode. SSRN Electronic Journal, 0, , .	0.4	0
250	Pseudocapacitive storage in cathode materials of aqueous zinc ion batteries toward high power and energy density. Journal of Materials Chemistry A, 2022, 10, 9773-9787.	5.2	30
251	Electrospun V ₂ O ₃ @Carbon Nanofibers as a Flexible and Binder-Free Cathode for Highly Stable Aqueous Zn-Ion Full Batteries. ACS Applied Energy Materials, 2022, 5, 3525-3535.	2.5	27
252	Low Currentâ€Density Stable Zincâ€Metal Batteries Via Aqueous/Organic Hybrid Electrolyte. Batteries and Supercaps, 2022, 5, .	2.4	42
253	Open-Framework Metal Oxides for Fast and Reversible Hydrated Zinc-Ion Intercalation. ACS Applied Materials & Amp; Interfaces, 2022, 14, 10407-10418.	4.0	5

#	Article	IF	CITATIONS
254	Enabling Reversible MnO ₂ /Mn ²⁺ Transformation by Al ³⁺ Addition for Aqueous Zn–MnO ₂ Hybrid Batteries. ACS Applied Materials & Interfaces, 2022, 14, 10526-10534.	4.0	20
255	Unraveling the Role of Nitrogenâ€Doped Carbon Nanowires Incorporated with <scp>MnO₂</scp> Nanosheets as High Performance Cathode for Zincâ€ion Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	27
256	Ca/Ni Codoping Enables the Integration of High-Rate and High-Capacity Zn-Ion Storage Performances for Layered Hydrated Vanadate. Industrial & Engineering Chemistry Research, 2022, 61, 4212-4221.	1.8	4
257	Potassium Ammonium Vanadate with Rich Oxygen Vacancies for Fast and Highly Stable Zn-Ion Storage. ACS Nano, 2022, 16, 4588-4598.	7.3	118
258	Synthesis and Optimization of ZnMn ₂ O ₄ Cathode Material for Zinc-Ion Battery by Citric Acid Sol-Gel Method. Journal of the Electrochemical Society, 2022, 169, 030531.	1.3	12
259	An Ultrafast, Durable, and Highâ€Loading Polymer Anode for Aqueous Zincâ€Ion Batteries and Supercapacitors. Advanced Materials, 2022, 34, e2200077.	11.1	60
260	Highly Crystalline Flower-Like Covalent-Organic Frameworks Enable Highly Stable Zinc Metal Anodes. ACS Applied Energy Materials, 2022, 5, 3715-3723.	2.5	29
261	Advances of Metal Oxide Composite Cathodes for Aqueous Zincâ€lon Batteries. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	4
262	From room temperature to harsh temperature applications: Fundamentals and perspectives on electrolytes in zinc metal batteries. Science Advances, 2022, 8, eabn5097.	4.7	164
263	A binderâ€free bivalent manganese oxide cathode elective structure with high activity in aqueous zinc ion batteries. International Journal of Energy Research, 2022, 46, 9720-9732.	2.2	9
264	Carbonâ€coated Vanadium Oxide Nanoflowers with K ⁺ Ions Preâ€embedment as a Highâ€rate Cathode for Zincâ€Ion Batteries. ChemNanoMat, 2022, 8, .	1.5	8
265	Synergetic V ₂ O ₅ ·3H ₂ O/Metallic VS ₂ Nanocomposites Endow a Long Life and High Rate Capability to Aqueous Zinc-Ion Batteries. Energy & Fuels, 2022, 36, 3319-3327.	2.5	6
266	How Is Cycle Life of Three-Dimensional Zinc Metal Anodes with Carbon Fiber Backbones Affected by Depth of Discharge and Current Density in Zinc–Ion Batteries?. ACS Applied Materials & Interfaces, 2022, 14, 12323-12330.	4.0	27
267	Protonâ€Assisted Aqueous Manganeseâ€ion Battery Chemistry. Angewandte Chemie, 2022, 134, .	1.6	6
268	Regulating the Electrolyte Solvation Structure Enables Ultralong Lifespan Vanadiumâ€Based Cathodes with Excellent Lowâ€Temperature Performance. Advanced Functional Materials, 2022, 32, .	7.8	56
269	In-situ prepared of quadrilateral flake Zn0.25(NH4)V2O5·H2O as a cathode for aqueous rechargeable Zn-ion batteries. Applied Surface Science, 2022, 592, 153137.	3.1	14
270	Manganeseâ€based materials as cathode for rechargeable aqueous zincâ€ion batteries. , 2022, 1, .		33
271	Preparation of NaV ₆ O ₁₅ Nanosheet Cathodes with High Cycling Performance and Good Capacity Retention Rate in Aqueous Zincâ€Ion Batteries. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	0.8	7

#	Article	IF	CITATIONS
272	Protonâ€Assisted Aqueous Manganeseâ€lon Battery Chemistry. Angewandte Chemie - International Edition, 2022, 61, .	7.2	33
273	Recent progress, mechanisms, and perspectives for crystal and interface chemistry applying to the Zn metal anodes in aqueous zincâ€ion batteries. SusMat, 2022, 2, 114-141.	7.8	60
274	Highâ€Efficiency and Stable Znâ^'Na3V2(PO4)3 Aqueous Battery Enabled by Electrolyteâ€Induced Interphasial Engineering. ChemSusChem, 2022, , .	3.6	11
275	Additiveâ€Free Ultrastable Hydrated Vanadium Oxide Sol/Carbon Nanotube Ink for Durable and Highâ€Power Aqueous Zinc″on Battery. Advanced Materials Interfaces, 2022, 9, .	1.9	3
276	Chemical Passivation Stabilizes Zn Anode. Advanced Materials, 2022, 34, e2109872.	11.1	81
277	Construction of Novel Hierarchical Honeycomb-Like Mn ₃ O ₄ MnO ₂ Core-Shell Architecture with High Voltage for Advanced Aqueous Zinc-Ion Batteries. Journal of the Electrochemical Society, 2022, 169, 040519.	1.3	11
278	Vanadium-based cathodes for aqueous zinc ion batteries: Structure, mechanism and prospects. Chinese Chemical Letters, 2023, 34, 107399.	4.8	9
279	Boosting the Cycling Stability of Aqueous Zinc-Ion Batteries through Nanofibrous Coating of a Bead-like MnO _x Cathode. ACS Applied Materials & Interfaces, 2022, 14, 17570-17577.	4.0	12
280	Organic Macromolecule regulated the structure of vanadium oxide with high capacity and stability for aqueous Zinc-ion batteries. Applied Surface Science, 2022, 592, 153295.	3.1	9
281	A high-performance silver-doped manganese oxide nanowire cathode based on combination displacement/intercalation reaction and deposition-dissolution mechanism. Journal of Alloys and Compounds, 2022, , 164944.	2.8	Ο
282	Pillaring of a conductive polymer in layered V2O5 boosting ultra-fast Zn2+/H+ storage in aqueous media. Electrochimica Acta, 2022, 416, 140270.	2.6	8
283	Improved working voltage and high rate performance of sodium vanadate cathode materials for aqueous zinc ion batteries by altering synthetic solution pH guiding the structure change. Materials Today Communications, 2022, 31, 103460.	0.9	5
284	A high strength, anti-corrosion and sustainable separator for aqueous zinc-based battery by natural bamboo cellulose. Energy Storage Materials, 2022, 48, 191-191.f6.	9.5	43
285	Ultrahigh-energy and -power aqueous rechargeable zinc-ion microbatteries based on highly cation-compatible vanadium oxides. Journal of Materials Science and Technology, 2022, 120, 159-166.	5.6	11
286	Manipulating the Zinc Deposition Behavior in Hexagonal Patterns at the Preferential Zn (100) Crystal Plane to Construct Surficial Dendriteâ€Free Zinc Metal Anode. Small, 2022, 18, e2105978.	5.2	61
287	Discharging Behavior of Hollandite α-MnO ₂ in a Hydrated Zinc-Ion Battery. ACS Applied Materials & Interfaces, 2021, 13, 59937-59949.	4.0	28
288	Separator Effect on Zinc Electrodeposition Behavior and Its Implication for Zinc Battery Lifetime. Nano Letters, 2021, 21, 10446-10452.	4.5	94
289	<i>In Situ</i> Electrochemically Activated Vanadium Oxide Cathode for Advanced Aqueous Zn-Ion Batteries. Nano Letters, 2022, 22, 119-127.	4.5	113

	CITATI	CITATION REPORT	
#	Article	IF	CITATIONS
290	A Symmetric Allâ \in Organic Proton Battery in Mild Electrolyte. Angewandte Chemie, 2022, 134, .	1.6	29
291	A Symmetric Allâ€Organic Proton Battery in Mild Electrolyte. Angewandte Chemie - International Edition, 2022, 61, e202115180.	7.2	76
292	Recent Developments and Challenges of Vanadium Oxides (V _{<i>x</i>} O _{<i>y</i>}) Cathodes for Aqueous Zincâ€ion Batteries. Chemical Record, 2022, 22, e202100275.) 2.9	20
293	Aqueous Znâ€based rechargeable batteries: Recent progress and future perspectives. InformaÄnÃ- Materiály, 2022, 4, .	8.5	77
294	Characterization of Acetonitrile Isotopologues as Vibrational Probes of Electrolytes. Journal of Physical Chemistry B, 2022, 126, 278-291.	1.2	15
295	The back-deposition of dissolved Mn ²⁺ to MnO ₂ cathodes for stable cycling in aqueous zinc batteries. Chemical Communications, 2022, 58, 4845-4848.	2.2	3
296	Electrochemical Performance of LiMn2O4 Cathodes in Zn-Containing Aqueous Electrolytes. Journal of Electrochemical Science and Technology, 2022, 13, 177-185.	0.9	1
297	MXene chemistry, electrochemistry and energy storage applications. Nature Reviews Chemistry, 2022, 6, 389-404.	13.8	429
298	Effects of Valence States of Working Cations on the Electrochemical Performance of Sodium Vanadate. ACS Applied Materials & amp; Interfaces, 2022, 14, 19714-19724.	4.0	2
299	Manipulating Polymer Configuration to Accelerate Cation Intercalation Kinetics for Highâ€Performance Aqueous Zincâ€Ion Batteries. Advanced Functional Materials, 2022, 32, .	7.8	38
300	Synthesis of MXene and its application for zincâ€ion storage. SusMat, 2022, 2, 293-318.	7.8	51
301	Recent progress in advanced flexible zinc ion battery design. Applied Physics Reviews, 2022, 9, .	5.5	26
302	Dual-anion-coordinated solvation sheath for stable aqueous zinc batteries. Journal of Power Sources, 2022, 535, 231452.	4.0	15
303	Regulating Dendriteâ€Free Zinc Deposition by Red Phosphorousâ€Derived Artificial Protective Layer for Zinc Metal Batteries. Advanced Science, 2022, 9, e2200155.	5.6	41
304	Zinc Anodes Modified by Oneâ€Molecularâ€Thick Selfâ€Assembled Monolayers for Simultaneous Suppression of Sideâ€Reactions and Dendriteâ€Formation in Aqueous Zincâ€Ion Batteries. Small, 2022, 18 e2201284.	8, 5.2	14
305	Exchange-Mediated Transport in Battery Electrolytes: Ultrafast or Ultraslow?. Journal of the American Chemical Society, 2022, 144, 8591-8604.	6.6	18
306	Interface and electronic structure engineering induced Prussian blue analogues with ultra-stable capability for aqueous NH ₄ +storage. Nanoscale, 2022, 14, 8501-8509.	2.8	35
307	Research on the Electrochemical Performance of Polyvanadate Material K4na2v10o28 as a Novel Aqueous Zinc-Ion Batteries Cathode. SSRN Electronic Journal, 0, , .	0.4	0

ARTICLE IF CITATIONS # Stabilization of VOPO₄·2H₂O voltage and capacity retention in aqueous zinc 308 2.2 3 batteries with a hydrogen bond regulator. Chemical Communications, 2022, 58, 5905-5908. Zinc-Ion Storage Mechanism of Polyaniline for Rechargeable Aqueous Zinc-Ion Batteries. 309 Nanomaterials, 2022, 12, 1438. A hydrophobic and fluorophilic coating layer for stable and reversible aqueous zinc metal anodes. 310 6.6 38 Chemical Engineering Journal, 2022, 446, 136607. Largeâ€Scale Integration of a Zinc Metasilicate Interface Layer Guiding Wellâ€Regulated Zn Deposition. 11.1 Advanced Materials, 2022, 34, e2202188. High-Voltage Manganese Oxide Cathode with Two-Electron Transfer Enabled by a Phosphate Proton 312 8.8 33 Reservoir for Aqueous Zinc Batteries. ACS Energy Letters, 2022, 7, 1814-1819. Stable Zinc Anodes Enabled by a Zincophilic Polyanionic Hydrogel Layer. Advanced Materials, 2022, 34, 11.1 168 e2202382. Sodium Preâ€Intercalated Carbon/V₂O₅ Constructed by Sustainable Sodium Lignosulfonate for Stable Cathodes in Zincâ€ion Batteries: A Comprehensive Study. ChemSusChem, 2022, 15, . 314 3.6 10 Synergistic chemical and electrochemical strategy for high-performance Zn//MnO2 batteries. Chinese 4.8 21 Chemical Letters, 2023, 34, 107493. Crystal form modulation enables high-performance manganese dioxide cathode for aqueous zinc ion 316 2.8 9 battery. Journal of Alloys and Compounds, 2022, 913, 165207. Oxygen/fluorine-functionalized flexible carbon electrodes for high-performance and anti-self-discharge Zn-ion hybrid capacitors. Journal of Power Sources, 2022, 538, 231586. Manipulating Horizontal Zn Deposition with Graphene Interpenetrated Zn Hybrid Foils for 318 7.313 <scp>Dendriteâ€Free</scp> Aqueous Zinc Ion Batteries. Energy and Environmental Materials, 2023, 6, . Dual metal ions and water molecular pre-intercalated Î-MnO2 spherical microflowers for aqueous 319 5.0 36 zinc ion batteries. Journal of Colloid and Interface Science, 2022, 623, 456-466. Achieving Ultrahighâ€Rate Planar and Dendriteâ€Free Zinc Electroplating for Aqueous Zinc Battery 320 11.1 88 Anodes. Advanced Materials, 2022, 34, e2202552. An in-depth mechanistic insight into the redox reaction and degradation of aqueous Zn-MnO2 4.8 batteries. Chinese Chemical Letters, 2023, 34, 107525. A_{<i>m</i>}V₂O₅ with Binary Phases as High-Performance Cathode Materials for Zinc-Ion Batteries: Effect of the Pre-Intercalated Cations A and Reversible 322 4.0 13 Transformation of Coordination Polyhedra. ACS Applied Materials & amp; Interfaces, 2022, 14, 24415-24424. Carbon Nanotube-Functionalized Surface-Assisted Growth of Cobalt Phosphate Nanodots: A Highly 14 Stable and Bendable All-Solid-State Symmetric Supercapacitor. Energy & amp; Fuels, 2022, 36, 5953-5964. Synergetic Effect of Alkaliâ€6ite Substitution and Oxygen Vacancy Boosting Vanadate Cathode for 324 7.8 28 Superâ€Stable Potassium and Zinc Storage. Advanced Functional Materials, 2022, 32, . Review of room-temperature liquid metals for advanced metal anodes in rechargeable batteries. Energy Storage Materials, 2022, 50, 473-494.

#	Article	IF	Citations
326	Simultaneous pre-intercalation of caesium and sodium ions into vanadium oxide bronze nanowires for high-performance aqueous zinc-ion batteries. Materials Chemistry Frontiers, 2022, 6, 1920-1928.	3.2	6
327	Design Concepts of Transition Metal Dichalcogenides for Highâ€Performance Aqueous Znâ€Ion Storage. Chemistry - A European Journal, 2022, 28, .	1.7	4
328	Interface regulated MnO2/Mn2+ redox chemistry in aqueous Zn ion batteries. Chemical Engineering Journal, 2022, 446, 137205.	6.6	21
329	Ultrastable organic cathode derived by pigment/rGO for aqueous zinc-ion batteries. Chemical Engineering Journal, 2022, 446, 137289.	6.6	17
330	Engineering hydrated vanadium oxide by K+ and Ni2+ incorporation for aqueous zinc ion batteries. Materials Chemistry and Physics, 2022, 287, 126358.	2.0	0
331	An Air-Rechargeable Zn/Organic Battery with Proton Storage. Journal of the American Chemical Society, 2022, 144, 10301-10308.	6.6	58
332	Toward Longâ€Life Aqueous Zinc Ion Batteries by Constructing Stable Zinc Anodes. Chemical Record, 2022, 22, .	2.9	17
333	Construction Strategy of VO ₂ @V ₂ C 1D/2D Heterostructure and Improvement of Zinc-Ion Diffusion Ability in VO ₂ (B). ACS Applied Materials & Interfaces, 2022, 14, 28760-28768.	4.0	35
334	Stability and kinetics enhancement of hydrated vanadium oxide via sodium-ion pre-intercalation. Materials Today Energy, 2022, 28, 101063.	2.5	7
335	Research on the electrochemical performance of polyoxovanadate material K4Na2V10O28 as a novel aqueous zinc-ion batteries cathode. Electrochimica Acta, 2022, 424, 140621.	2.6	11
336	Recent advances in metal pyrophosphates for electrochemical supercapacitors: A review. Journal of Energy Storage, 2022, 52, 104986.	3.9	17
337	Unraveling a cathode/anode compatible electrolyte for high-performance aqueous rechargeable zinc batteries. Energy Storage Materials, 2022, 50, 464-472.	9.5	23
338	A quinoxalinophenazinedione covalent triazine framework for boosted high-performance aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2022, 10, 13868-13875.	5.2	35
339	Boosted Zn ²⁺ storage performance of hydrated vanadium oxide by defect and heterostructure. Journal of Materials Chemistry A, 2022, 10, 13428-13438.	5.2	12
340	Flexible Zinc-Ion Microbattery Based on a Vs2@Mxene Cathode with High Cycle Life. SSRN Electronic Journal, 0, , .	0.4	0
341	BiOI Nanopaper As a High-Capacity, Long-Life and Insertion-Type Anode for a Flexible Quasi-Solid-State Zn-Ion Battery. ACS Applied Materials & Interfaces, 2022, 14, 25516-25523.	4.0	19
342	A piece of common cellulose paper but with outstanding functions for advanced aqueous zinc-ion batteries. Materials Today Energy, 2022, 28, 101076.	2.5	27
343	Insight on Cathodes Chemistry for Aqueous Zinc″on Batteries: From Reaction Mechanisms, Structural Engineering, and Modification Strategies. Small, 2022, 18, .	5.2	30

#	Article	IF	CITATIONS
344	Regulation of Zinc Interface by Maltitol for Long-Life Dendrite-free Aqueous Zinc Ion Batteries. Journal of Electronic Materials, 2022, 51, 4763-4771.	1.0	5
345	Anion Concentration Gradient-Assisted Construction of a Solid–Electrolyte Interphase for a Stable Zinc Metal Anode at High Rates. Journal of the American Chemical Society, 2022, 144, 11168-11177.	6.6	94
346	Biomolecular Regulation of Zinc Deposition to Achieve Ultra‣ong Life and Highâ€Rate Zn Metal Anodes. Small, 2022, 18, .	5.2	26
347	Surface-Alloyed Nanoporous Zinc as Reversible and Stable Anodes for High-Performance Aqueous Zinc-Ion Battery. Nano-Micro Letters, 2022, 14, .	14.4	65
348	Electrodeposited Layered Sodium Vanadyl Phosphate (Na _{<i>x</i>} VOPO ₄ · <i>n</i> H ₂ O) as Cathode Material for Aqueous Rechargeable Zinc Metal Batteries. Energy & Fuels, 2022, 36, 6520-6531.	2.5	3
349	Zn _{0.52} V ₂ O _{5â^`<i>a</i>} â<1.8 H ₂ O Cathode Stabilized I Situ Phase Transformation for Aqueous Zincâ€Ion Batteries with Ultraâ€Long Cyclability. Angewandte Chemie - International Edition, 2022, 61, .	by In 7.2	41
350	Zn _{0.52} V ₂ O _{5â^'<i>a</i>} â<1.8 H ₂ O Cathode Stabilized l Situ Phase Transformation for Aqueous Zincâ€lon Batteries with Ultraâ€Long Cyclability. Angewandte Chemie, 2022, 134, .	by In 1.6	1
351	Recent progress of artificial interfacial layers in aqueous Zn metal batteries. EnergyChem, 2022, 4, 100076.	10.1	59
352	Recent advances in MOFs/MOF derived nanomaterials toward high-efficiency aqueous zinc ion batteries. Coordination Chemistry Reviews, 2022, 468, 214642.	9.5	55
353	Defect regulated spinel Mn3O4 obtained by glycerol–assisted method for high–energy–density aqueous zinc–ion batteries. Journal of Colloid and Interface Science, 2022, 625, 354-362.	5.0	3
354	Rapid microwave-assisted synthesis strategy of dual-cationic molybdates as high-performance electrodes for alkaline battery-supercapacitor hybrid devices. Journal of Alloys and Compounds, 2022, 920, 165863.	2.8	3
355	In-situ crosslinked Zn2+-conducting polymer complex interphase with synergistic anion shielding and cation regulation for high-rate and dendrite-free zinc metal anodes. Chemical Engineering Journal, 2022, 448, 137653.	6.6	18
356	Rational design of ZnMn2O4 nanoparticles on carbon nanotubes for high-rate and durable aqueous zinc-ion batteries. Chemical Engineering Journal, 2022, 448, 137742.	6.6	100
357	Synthesis of NiSe nanorod array structure as a binder-free cathode for an aqueous rechargeable Ni–Zn battery. New Journal of Chemistry, 2022, 46, 14451-14457.	1.4	2
358	Interlayer Doping of Pseudocapacitive Hydrated Vanadium Oxide Via Mn2+ for High-Performance Aqueous Zinc-Ion Battery. SSRN Electronic Journal, 0, , .	0.4	0
359	Transition Metal Dichalcogenides for Highâ^'Performance Aqueous Zinc Ion Batteries. Batteries, 2022, 8, 62.	2.1	10
360	Challenges and Perspectives for Doping Strategy for Manganese-Based Zinc-ion Battery Cathode. Energies, 2022, 15, 4698.	1.6	11
361	Realizing high-voltage aqueous zinc-ion batteries with expanded electrolyte electrochemical stability window. Chinese Chemical Letters, 2023, 34, 107629.	4.8	16

#	Article	IF	CITATIONS
362	Amorphous nickel borate nanosheets as cathode material with high capacity and better cycling performance for zinc ion battery. Chinese Chemical Letters, 2023, 34, 107669.	4.8	1
363	Two-dimensional materials for aqueous zinc-ion batteries. 2D Materials, 2022, 9, 042001.	2.0	10
364	Triggering Zn ²⁺ Unsaturated Hydration Structure via Hydrated Salt Electrolyte for High Voltage and Cycling Stable Rechargeable Aqueous Zn Battery. Advanced Energy Materials, 2022, 12, .	10.2	28
365	Zn ₃ V ₄ (PO ₄) ₆ : A New Rocking-Chair-Type Cathode Material with High Specific Capacity Derived from Zn ²⁺ /H ⁺ Cointercalation for Aqueous Zn-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 32066-32074.	4.0	8
366	Scientific Challenges and Improvement Strategies of Znâ€Based Anodes for Aqueous Znâ€lon Batteries. Chemical Record, 2022, 22, .	2.9	9
367	Manipulating alloying reaction to achieve the stable and dendrite-free zinc metal anodes. Chemical Engineering Journal, 2022, 450, 138048.	6.6	26
368	Oxygen vacancies and Nâ€doping in organic–inorganic preâ€intercalated vanadium oxide for highâ€performance aqueous zincâ€ion batteries. InformaÂnÃ-Materiály, 2022, 4, .	8.5	60
369	Super Flexible Cathode Material with 3D Crossâ€Linking System Based on Polyvinyl Alcohol Hydrogel for Boosting Aqueous Zinc Ion Batteries. ChemElectroChem, 0, , .	1.7	0
370	Improved reversible zinc storage achieved in aÂconstitutionally crystallineâ€stable Mn(VO3)2 nanobelts cathode. Chemistry - A European Journal, 0, , .	1.7	1
371	A durable ZnS cathode for aqueous Zn-S batteries. Nano Energy, 2022, 101, 107474.	8.2	33
372	Recent advances of micro-nanofiber materials for rechargeable zinc-air batteries. Energy Storage Materials, 2022, 51, 181-211.	9.5	19
373	Highly active crystal planes-oriented texture for reversible high-performance Zn metal batteries. Energy Storage Materials, 2022, 51, 550-558.	9.5	29
374	Three-dimensional ordered macroporous patterned structure for dendrite-free and stable zinc anodes. Materials Today Chemistry, 2022, 26, 101057.	1.7	7
375	Copper activated near-full two-electron Mn4+/Mn2+ redox for mild aqueous Zn/MnO2 battery. Chemical Engineering Journal, 2022, 450, 137923.	6.6	14
376	High energy superstable hybrid capacitor with a <scp>selfâ€regulated</scp> Zn/electrolyte interface and <scp>3D</scp> grapheneâ€like carbon cathode. InformaÄnÃ-Materiály, 2022, 4, .	8.5	14
377	Toward High Energy Density Aqueous Zincâ€lon Batteries: Recent Progress and Future Perspectives. Batteries and Supercaps, 2022, 5, .	2.4	7
378	A Review on 3D Zinc Anodes for Zinc Ion Batteries. Small Methods, 2022, 6, .	4.6	124
379	Electrochemical energy storage devices under particular service environments: Achievements, challenges, and perspective. Applied Physics Reviews, 2022, 9, .	5.5	11

	CITATION R	EPORT	
#	Article	IF	CITATIONS
380	A new sodium ion preintercalated and oxygen vacancy-enriched vanadyl phosphate cathode for aqueous zinc-ion batteries. Journal of Colloid and Interface Science, 2022, 627, 1021-1029.	5.0	14
381	A hydrophobic layer of amino acid enabling dendrite-free Zn anodes for aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2022, 10, 17501-17510.	5.2	40
382	Accelerated ion/electron transport kinetics and increased active sites via local internal electric fields in heterostructured VO2-carbon cloth for enhanced zinc-ion storage. Nano Research, 2023, 16, 503-512.	5.8	16
383	Large-area hydrated vanadium oxide/carbon nanotube composite films for high-performance aqueous zinc-ion batteries. Science China Chemistry, 2022, 65, 1725-1732.	4.2	6
384	Bidirectional Interface Protection of a Concentrated Electrolyte, Enabling High-Voltage and Long-Life Aqueous Zn Hybrid-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 35864-35872.	4.0	12
385	Novel Inorganic–Organic Hybrid Cathode for Aqueous Zinc-Ion Batteries: V ₂ O ₅ Pillared with Diethylenetriamine like a Double-Stud. ACS Sustainable Chemistry and Engineering, 2022, 10, 10243-10251.	3.2	8
386	Electrolytes for Multivalent Metalâ€ion Batteries: Current Status and Future Prospect. ChemSusChem, 2022, 15, .	3.6	7
387	Mechanical Insights into the Electrochemical Properties of Thornlike Micro-/Nanostructures of PDA@MnO ₂ @NMC Composites in Aqueous Zn Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 36079-36091.	4.0	12
388	Functional Fiber Materials to Smart Fiber Devices. Chemical Reviews, 2023, 123, 613-662.	23.0	69
389	Balanced Interfacial Ion Concentration and Migration Steric Hindrance Promoting Highâ€Efficiency Deposition/Dissolution Battery Chemistry. Advanced Materials, 2022, 34, .	11.1	48
390	High-cycling Stability of Zn/MnHCF Batteries Boosted by Non-aqueous Ethanol Electrolyte. Chemistry Letters, 2022, 51, 993-996.	0.7	3
391	MOF-derived defect-rich CeO2 as ion-selective smart artificial SEI for dendrite-free Zn-ion battery. Chemical Engineering Journal, 2023, 451, 138769.	6.6	31
392	Functional carbon materials for high-performance Zn metal anodes. Journal of Energy Chemistry, 2022, 75, 135-153.	7.1	70
393	Multi-Functional Potassium Ion Assists Ammonium Vanadium Oxide Cathode for High-Performance Aqueous Zinc-Ion Batteries. Batteries, 2022, 8, 84.	2.1	3
394	Cationâ€Anion Redox Active Organic Complex for High Performance Aqueous Zinc Ion Battery. Energy and Environmental Materials, 2024, 7, .	7.3	7
395	Novel Organic Cathode with Conjugated N-Heteroaromatic Structures for High-Performance Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 38844-38853.	4.0	21
396	Upcycling spent alkaline batteries into rechargeable zinc metal batteries. Nano Energy, 2022, 102, 107724.	8.2	8
397	Stable Imprinted Zincophilic Zn Anodes with High Capacity. Advanced Functional Materials, 2022, 32, .	7.8	35

#	Article	IF	CITATIONS
398	Csâ€Induced Phase Transformation of Vanadium Oxide for Highâ€Performance Zincâ€Ion Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	4
399	Tuning Znâ€lon Solvation Chemistry with Chelating Ligands toward Stable Aqueous Zn Anodes. Advanced Materials, 2022, 34, .	11.1	70
400	Interfacial engineering on metal anodes in rechargeable batteries. EnergyChem, 2022, 4, 100089.	10.1	12
401	Flexible zinc-ion microbattery based on a VS2/MXene cathode with high cycle life. Journal of Power Sources, 2022, 545, 231944.	4.0	22
402	Stable Zn anodes enabled by high-modulus agarose gel electrolyte with confined water molecule mobility. Electrochimica Acta, 2022, 429, 140985.	2.6	13
403	Prussian blue analogs cathodes for aqueous zinc ion batteries. Materials Today Energy, 2022, 29, 101095.	2.5	45
404	Intrinsic structural optimization of zinc anode with uniform second phase for stable zinc metal batteries. Energy Storage Materials, 2022, 52, 161-168.	9.5	24
405	Tailoring layered transition metal compounds for high-performance aqueous zinc-ion batteries. Energy Storage Materials, 2022, 52, 250-283.	9.5	23
406	Electrospun manganese sesquioxide as cathode for aqueous zinc ion battery with high-rate performance and long cycle life. Materials Letters, 2022, 327, 132920.	1.3	3
407	The emerging aqueous zinc-organic battery. Coordination Chemistry Reviews, 2022, 472, 214772.	9.5	42
408	In situ synthesis of a self-supported MnO2-based cathode for high-performance zinc-ion batteries by K+ pre-intercalation. Applied Surface Science, 2022, 604, 154578.	3.1	6
409	Advances and perspectives on separators of aqueous zinc ion batteries. , 2022, 1, 100005.		43
410	Synergistic interlayer and defect engineering of hydrated vanadium oxide toward stable Zn-ion batteries. Chemical Engineering Journal, 2022, 450, 138367.	6.6	22
411	Adjusting the V5+ content of vanadium oxide cathodes for high-performance Zn-ion batteries by aging. Journal of Alloys and Compounds, 2022, 926, 166773.	2.8	4
412	Ion-exchange-induced high-performance of inverse spinel Mg2VO4 for aqueous zinc-ion batteries. Journal of Power Sources, 2022, 549, 232075.	4.0	13
413	Advanced aqueous proton batteries: working mechanism, key materials, challenges and prospects. EnergyChem, 2022, 4, 100092.	10.1	30
414	Inorganic manganese oxide/quinone coupling for high-capacity aqueous Zn-ion battery. Energy Storage Materials, 2022, 52, 675-684.	9.5	25
415	Inhibition of zinc dendrites by dopamine modified hexagonal boron nitride electrolyte additive for zinc-ion batteries. Journal of Power Sources, 2022, 548, 232074.	4.0	15

#	Article	IF	CITATIONS
416	Planar and dendrite-free zinc deposition enabled by exposed crystal plane optimization of zinc anode. Energy Storage Materials, 2022, 53, 273-304.	9.5	63
417	Toward emerging two-dimensional nickel-based materials for electrochemical energy storage: Progress and perspectives. Energy Storage Materials, 2022, 53, 79-135.	9.5	49
418	One-step targeted treatment for Zn flatting and protection. Energy Storage Materials, 2022, 53, 13-21.	9.5	9
419	Na superionic conductor-type compounds as protective layers for dendrites-free aqueous Zn-ion batteries. Journal of Colloid and Interface Science, 2023, 629, 3-11.	5.0	8
420	High performance of Mn-doped VO2 cathode for aqueous zinc-ion batteries: An insight into Zn2+ storage mechanism. Chemical Engineering Journal, 2023, 452, 139115.	6.6	21
421	Optimization of acetamide based deep eutectic solvents with dual cations for high performance and low temperature-tolerant aqueous zinc ion batteries via tuning the ratio of co-solvents. Journal of Colloid and Interface Science, 2023, 629, 166-178.	5.0	12
422	In-situ electrochemical etching of V4AlC3 MAX to V2O5/C composite as Zn-ion storage host. Chemical Engineering Journal, 2023, 451, 138809.	6.6	9
423	CeO2/MnOx@C hollow cathode derived from self-assembly of Ce-Mn-MOFs for high-performance aqueous zinc-ion batteries. Journal of Colloid and Interface Science, 2023, 629, 733-743.	5.0	12
424	Choline chloride enhances the electrochemical stability of zinc plating/stripping. Chemical Communications, 2022, 58, 10088-10090.	2.2	3
425	Microstructural engineering of hydrated vanadium pentoxide for boosted zinc ion thermoelectrochemical cells. Journal of Materials Chemistry A, 2022, 10, 21446-21455.	5.2	11
426	A strategy for anode modification for future zinc-based battery application. Materials Horizons, 2022, 9, 2722-2751.	6.4	38
427	Revitalizing zinc-ion batteries with advanced zinc anode design. Nanoscale Horizons, 2022, 8, 29-54.	4.1	19
428	A polyamino acid with zincophilic chains enabling high-performance Zn anodes. Journal of Materials Chemistry A, 2022, 10, 20779-20786.	5.2	19
429	Structure Topology of N-Heteroaromatic Fused Rings as Redox Î-Conjugated Polymers for High Rate Capability Aqueous Zinc-Ion Battery. SSRN Electronic Journal, 0, , .	0.4	0
430	Subtly manipulating Zn ²⁺ -coordinated configurations with a complexing agent to boost the reversibility of the zinc anode. Chemical Communications, 2022, 58, 9104-9107.	2.2	3
431	A two-dimensional conductive polymer/V ₂ O ₅ composite with rapid zinc-ion storage kinetics for high-power aqueous zinc-ion batteries. Nanoscale, 2022, 14, 12013-12021.	2.8	7
432	Advances in the regulation of kinetics of cathodic H ⁺ /Zn ²⁺ interfacial transport in aqueous Zn/MnO ₂ electrochemistry. Nanoscale, 2022, 14, 14433-14454.	2.8	5
433	Chemically grown Co ₂ P ₂ O ₇ microplates: extrinsic pseudocapacitance enriched ultraflexible all-solid-state supercapacitors. Sustainable Energy and Fuels, 2022, 6, 4085-4101.	2.5	0

#	Article	IF	CITATIONS
434	Novel Zinc-Based Molten Salt Batteries with High Voltages in Medium Temperature Environment. SSRN Electronic Journal, 0, , .	0.4	0
435	3D graphene-like oxygen and sulfur-doped porous carbon nanosheets with multilevel ion channels for high-performance aqueous Zn-ion storage. Carbon, 2023, 201, 624-632.	5.4	21
436	Highly flexible MnO2@polyaniline core-shell nanowire film toward substantially expedited zinc energy storage. Chemical Engineering Journal, 2023, 452, 139408.	6.6	16
437	Oxygen defect engineering triggered by S-doping boosts the performance of H2V3O8 nanobelts for aqueous Zn-ion storage. Chemical Engineering Journal, 2023, 452, 139396.	6.6	15
438	Interspace and Vacancy Modulation: Promoting the Zinc Storage of an Alcoholâ€Based Organic–Inorganic Cathode in a Water–Organic Electrolyte. Advanced Materials, 2022, 34, .	11.1	17
439	Recent advances in cathode materials for aqueous zinc-ion batteries: Mechanisms, materials, challenges, and opportunities. MRS Energy & Sustainability, 2022, 9, 248-280.	1.3	7
440	Ultralow-water-activity electrolyte endows vanadium-based zinc-ion batteries with durable lifespan exceeding 30 000 cycles. Energy Storage Materials, 2022, 53, 774-782.	9.5	19
441	Bulk-phase and interface stability strategies of manganese oxide cathodes for aqueous Zn-MnOx batteries. Frontiers in Chemistry, 0, 10, .	1.8	1
442	Carbon-encapsulated V2O3 nanorods for high-performance aqueous Zn-ion batteries. Frontiers in Chemistry, 0, 10, .	1.8	9
443	Fewâ€Atomicâ€Layered Coâ€Doped BiOBr Nanosheet: Freeâ€Standing Anode with Ultrahigh Mass Loading for "Rocking Chair―Zincâ€Ion Battery. Advanced Science, 2022, 9, .	5.6	16
444	Regulation and Stabilization of the Zinc Metal Anode Interface by Electroless Plating of a Multifunctionalized Polydopamine Layer. ACS Applied Materials & Interfaces, 2022, 14, 43215-43225.	4.0	11
445	Hydrogenâ€Bond Reinforced Superstructural Manganese Oxide As the Cathode for Ultraâ€Stable Aqueous Zinc Ion Batteries. Advanced Energy Materials, 2022, 12, .	10.2	52
446	Insight on the Doubleâ€Edged Sword Role of Water Molecules in the Anode of Aqueous Zincâ€Ion Batteries. Small Structures, 2022, 3, .	6.9	33
447	Structure and oxygen-defect regulation of hydrated vanadium oxide for enhanced zinc ion storage via interlayer doping strategy. Nano Research, 2023, 16, 6094-6103.	5.8	7
448	Rechargeable Batteries for Grid Scale Energy Storage. Chemical Reviews, 2022, 122, 16610-16751.	23.0	340
449	Oxygen functionalized interface enables high MnO2 electrolysis kinetics for high energy aqueous Zn-MnO2 decoupled battery. Applied Physics Letters, 2022, 121, .	1.5	4
450	Additive engineering for a hydrophilic/zincophilic polymeric layer towards dendrite-free zinc anode. Materials Today Energy, 2022, 29, 101130.	2.5	15
451	Bilayer separator enabling dendrite-free zinc anode with ultralong lifespan >5000Âh. Green Energy and Environment, 2024, 9, 771-776.	4.7	2

#	Article	IF	CITATIONS
452	Effect of heat treatment on the electrochemical performance of V2O5•nH2O as a cathode material for aqueous rechargeable zinc ion batteries. Journal of Industrial and Engineering Chemistry, 2022, 115, 554-560.	2.9	4
453	Redistributing zinc-ion flux by constructing a hybrid conductor interface for dendrite-free zinc anode. Journal of Power Sources, 2022, 551, 232173.	4.0	4
454	Enhanced polymerization interface of Ni12P5 nanowires toward high-rate and durable cathode for alkaline Ni–Zn batteries. Journal of Power Sources, 2022, 550, 232170.	4.0	11
455	Novel zinc-based molten salt batteries with high voltages in medium temperature environment. Journal of Power Sources, 2022, 550, 232143.	4.0	3
456	Accessing the proton storage in neutral buffer electrolytes using an electrodeposited molybdenum phosphate. Energy Storage Materials, 2022, 53, 569-579.	9.5	9
457	Anode optimization strategies for aqueous zinc-ion batteries. Chemical Science, 2022, 13, 14246-14263.	3.7	36
458	Emerging strategies for steering orientational deposition toward high-performance Zn metal anodes. Energy and Environmental Science, 2022, 15, 5017-5038.	15.6	93
459	Ultraconformal Horizontal Zinc Deposition toward Dendriteâ€Free Anode. Small Structures, 2023, 4, .	6.9	14
460	Organic Zincâ€lon Battery: Planar, Ï€â€Conjugated Quinoneâ€Based Polymer Endows Ultrafast Ion Diffusion Kinetics. Angewandte Chemie - International Edition, 2022, 61, .	7.2	67
461	A Synergistic Strategy of Organic Molecules Introduced a High Zn ²⁺ Flux Solid Electrolyte Interphase for Stable Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 48081-48090.	4.0	14
462	Unlocking the Potential of Vanadium Oxide for Ultrafast and Stable Zn ²⁺ Storage Through Optimized Stress Distribution: From Engineering Simulation to Elaborate Structure Design. Small Methods, 2022, 6, .	4.6	9
463	Exploration of Calcium-Doped Manganese Monoxide Cathode for High-Performance Aqueous Zinc-Ion Batteries. Energy & Fuels, 2022, 36, 13296-13306.	2.5	4
464	Organic Zincâ€lon Battery: Planar, Ï€â€Conjugated Quinoneâ€Based Polymer Endows Ultrafast Ion Diffusion Kinetics. Angewandte Chemie, 2022, 134, .	1.6	6
465	Long-Life Aqueous Zinc-Ion Batteries of Organic Iminodianthraquinone/rGO Cathode Assisted by Zn ²⁺ Binding with Adjacent Molecules. ACS Applied Materials & Interfaces, 2022, 14, 49746-49754.	4.0	9
466	Iodine Promoted Ultralow Zn Nucleation Overpotential and Zn-Rich Cathode for Low-Cost, Fast-Production and High-Energy Density Anode-Free Zn-Iodine Batteries. Nano-Micro Letters, 2022, 14, .	14.4	28
467	Polymeric Singleâ€Ion Conductors with Enhanced Sideâ€Chain Motion for Highâ€Performance Solid Zincâ€Ion Batteries. Advanced Materials, 2022, 34, .	11.1	34
468	Al ³⁺ Introduction Hydrated Vanadium Oxide Induced High Performance for Aqueous Zincâ€ion Batteries. Small, 2022, 18, .	5.2	20
469	Active cation-integration high-entropy Prussian blue analogues cathodes for efficient Zn storage. Nano Research, 2023, 16, 2486-2494.	5.8	16

#	Article	IF	CITATIONS
470	Unveiling the "Proton Lubricant―Chemistry in Aqueous Zincâ€MoS ₂ Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	44
471	Molecularâ€Crowding Effect Mimicking Coldâ€Resistant Plants to Stabilize the Zinc Anode with Wider Service Temperature Range. Advanced Materials, 2023, 35, .	11.1	68
472	Unveiling the "Proton Lubricant―Chemistry in Aqueous Zincâ€MoS ₂ Batteries. Angewandte Chemie, 2022, 134, .	1.6	2
473	Interfacial Designing of MnO ₂ Halfâ€Wrapped by Aromatic Polymers for Highâ€Performance Aqueous Zincâ€Ion Batteries. Angewandte Chemie, 2022, 134, .	1.6	3
474	Interfacial Designing of MnO ₂ Halfâ€Wrapped by Aromatic Polymers for Highâ€Performance Aqueous Zincâ€Ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	44
475	Recent advances in carbon materials for flexible zinc ion batteries. New Carbon Materials, 2022, 37, 827-851.	2.9	13
476	V ₂ O ₅ as a versatile electrode material for postlithium energy storage systems. , 2023, 2, .		7
477	Highly Reversible Zn Metal Anodes Realized by Synergistically Enhancing Ion Migration Kinetics and Regulating Surface Energy. Advanced Functional Materials, 2022, 32, .	7.8	27
478	Methylene blue intercalated vanadium oxide with synergistic energy storage mechanism for highly efficient aqueous zinc ion batteries. Journal of Energy Chemistry, 2023, 77, 269-279.	7.1	21
479	MXeneâ€Boosted Imine Cathodes with Extended Conjugated Structure for Aqueous Zincâ€lon Batteries. Advanced Materials, 2022, 34, .	11.1	41
480	Polypyrrole based cathode material for battery application. Chemical Engineering Journal Advances, 2022, 12, 100416.	2.4	6
481	MOF-derived heterostructured C@VO2 @V2O5 for stable aqueous zinc-ion batteries cathode. Journal of Alloys and Compounds, 2023, 932, 167681.	2.8	17
482	Deposition behavior regulated by an SPSF@PMIA nanofiber separator for high-performance zinc ion batteries. Journal of Materials Chemistry A, 2022, 10, 24761-24771.	5.2	23
483	From anode to cell: synergistic protection strategies and perspectives for stabilized Zn metal in mild aqueous electrolytes. Energy Storage Materials, 2023, 54, 623-640.	9.5	41
484	MOF-Derived Mn ₃ O ₄ @C Hierarchical Nanospheres as Cathodes for Aqueous Zinc-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 14144-14154.	2.5	11
485	Recent advances and perspectives for Zn-based batteries: Zn anode and electrolyte. , 2023, 2, e9120039.		61
486	Highly Flexible Kâ€intercalated MnO ₂ /Carbon Membrane for Highâ€Performance Aqueous Zincâ€ion Battery Cathode. Small, 2023, 19, .	5.2	33
487	MOF-derived Zn/Co co-doped MnO/C microspheres as cathode and Ti3C2@Zn as anode for aqueous zinc-ion full battery. Chemical Engineering Journal, 2023, 454, 140394.	6.6	41

#	Article	IF	CITATIONS
488	The Gel-State Electrolytes in Zinc-Ion Batteries. Batteries, 2022, 8, 214.	2.1	13
489	Unraveling the high Energy efficiency for Zn metal hexacyanoferrate batteries in a zinc-potassium hybrid configuration. Nano Energy, 2022, 104, 107990.	8.2	10
490	Cobalt-doped MoS2·nH2O nanosheets induced heterogeneous phases as high-rate capability and long-term cyclability cathodes for wearable zinc-ion batteries. Energy Storage Materials, 2023, 55, 1-11.	9.5	24
491	The protective effect and its mechanism for electrolyte additives on the anode interface in aqueous zinc-based energy storage devices. Nano Materials Science, 2022, , .	3.9	9
492	Differentiating contribution to desolvation ability from molecular structure and composition for screening highly-effective additives to boost reversibility of zinc metal anode. Energy Storage Materials, 2023, 55, 669-679.	9.5	16
493	An "immobilizing and relocating―strategy for a highly reversible metallic zinc anode. Journal of Materials Chemistry A, 2023, 11, 1361-1368.	5.2	3
494	Engineering crystal water in potassium ammonium vanadate for fast Zn-ion storage. Chemical Communications, 0, , .	2.2	1
495	Ferrocene Preintercalated Vanadium Oxides with Rich Oxygen Vacancies for Ultrahigh Rate and Durable Zn-Ion Storage. Electrochimica Acta, 2023, 439, 141693.	2.6	2
496	An ion exchange membrane-free, ultrastable zinc-iodine battery enabled by functionalized graphene electrodes. Energy Storage Materials, 2023, 55, 680-690.	9.5	27
497	Aqueous Zn-ion batteries using amorphous Zn-buserite with high activity and stability. Journal of Materials Chemistry A, 2023, 11, 1380-1393.	5.2	5
498	Dendrite-free Zn anodes enabled by Sn-Cu bimetal/rGO functional protective layer for aqueous Zn-based batteries. Applied Surface Science, 2023, 613, 156129.	3.1	8
499	Solvothermally prepared hydrated VO2(B) for aqueous zinc ion batteries with high capacity and excellent rate capability. Journal of Alloys and Compounds, 2023, 936, 168218.	2.8	4
500	Dynamic reconstruction of Ni-Zn alloy solid-electrolyte interface for highly stable Zn anode. Nano Research, 2023, 16, 11604-11611.	5.8	2
501	Ultraâ€Stable Zn Anode Enabled by Fiberâ€Directed Ion Migration Using Massâ€Producible Separator. Advanced Functional Materials, 2023, 33, .	7.8	30
502	In Situ Reconstruction of Dendrite-Free Zinc Anode with Cu from Reactive Copper Phthalocyanine Interlayer. ACS Sustainable Chemistry and Engineering, 2022, 10, 15838-15845.	3.2	5
503	Vanadium Oxide–Conducting Polymers Composite Cathodes for Aqueous Zinc-Ion Batteries: Interfacial Design and Enhancement of Electrochemical Performance. Energies, 2022, 15, 8966.	1.6	4
504	Interface challenges and optimization strategies for aqueous zinc-ion batteries. Journal of Energy Chemistry, 2023, 77, 642-659.	7.1	38
505	Revealing the Real Charge Carrier in Aqueous Zinc Batteries Based on Polythiophene/Manganese Dioxide Cathode. Small Structures, 2023, 4, .	6.9	10

#	Article	IF	CITATIONS
506	Pre-removing partial ammonium ions from the interlayer of ammonium vanadate with acid treating for quasi-solid-state flexible zinc ion batteries. Chemical Engineering Journal, 2023, 455, 140679.	6.6	14
507	The Flow Battery for Stationary Large-Scale Energy Storage. Engineering, 2023, 21, 42-44.	3.2	3
508	A dendrite-free and corrosion-suppressive metallic Zn anode regulated by the hybrid aqueous/organic electrolyte. , 2022, , .		0
509	Integrating molybdenum sulfide selenide-based cathode with C-O-Mo heterointerface design and atomic engineering for superior aqueous Zn-ion batteries. Nano Research, 2023, 16, 4933-4940.	5.8	10
510	Ag-Doping Effect on MnO2 Cathodes for Flexible Quasi-Solid-State Zinc-Ion Batteries. Batteries, 2022, 8, 267.	2.1	3
511	Three-in-one organic-inorganic heterostructures: From scalable ball-milling synthesis to freestanding cathodes with high areal capacity for aqueous zinc-ion batteries. Chemical Engineering Journal, 2023, 457, 141140.	6.6	11
512	Hierarchical Carbon Nanosheet Embedded MnO _{<i>x</i>} Cathode for Highâ€Performance Aqueous Zincâ€lon Batteries. Batteries and Supercaps, 2023, 6, .	2.4	0
513	High-Energy and Long-Lived Zn–MnO ₂ Battery Enabled by a Hydrophobic-Ion-Conducting Membrane. ACS Nano, 2022, 16, 20730-20738.	7.3	14
514	Highâ€Index Zinc Facet Exposure Induced by Preferentially Orientated Substrate for Dendriteâ€Free Zinc Anode. Advanced Energy Materials, 2023, 13, .	10.2	23
515	Recent Progress in Highâ€voltage Aqueous Zincâ€based Hybrid Redox Flow Batteries. Chemistry - an Asian Journal, 2023, 18, .	1.7	1
516	Organic Compound as a Cathode for Aqueous Zinc-Ion Batteries with Improved Electrochemical Performance via Multiple Active Centers. ACS Applied Energy Materials, 2022, 5, 15780-15787.	2.5	9
517	Expanding Layer Spacing of Carbonâ€Coated Vanadium Oxide via Ammonium Ions for Fast Electrochemical Kinetics in Aqueous Zincâ€Ion Batteries. Energy Technology, 2023, 11, .	1.8	4
518	Recent Advances of Transition Metal Sulfides/Selenides Cathodes for Aqueous Zincâ€lon Batteries. Advanced Energy Materials, 2023, 13, .	10.2	35
519	In Situ Grown Hierarchical Electrospun Nanofiber Skeletons with Embedded Vanadium Nitride Nanograins for Ultraâ€Fast and Superâ€Long Cycle Life Aqueous Znâ€Ion Batteries. Advanced Energy Materials, 2023, 13, .	10.2	20
520	Engineering pâ€Band Center of Oxygen Boosting H ⁺ Intercalation in δâ€MnO ₂ for Aqueous Zinc Ion Batteries. Angewandte Chemie, 2023, 135, .	1.6	2
521	Aminosilane Molecular Layer Enables Successive Capture-Diffusion-Deposition of Ions toward Reversible Zinc Electrochemistry. ACS Nano, 2023, 17, 668-677.	7.3	30
522	Manipulating OH ^{â^'} â€Mediated Anodeâ€Cathode Crossâ€Communication Toward Longâ€Life Aqueous Zincâ€Vanadium Batteries. Angewandte Chemie, 2023, 135, .	1.6	2
523	Manipulating OH ^{â^'} â€Mediated Anodeâ€Cathode Crossâ€Communication Toward Longâ€Life Aqueous Zincâ€Vanadium Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	19

#	Article	IF	CITATIONS
524	Anomalous Zn ²⁺ Storage Behavior in Dualâ€Ionâ€Inâ€Sequence Reconstructed Vanadium Oxides. Advanced Functional Materials, 2023, 33, .	7.8	16
525	Novel aqueous rechargeable nickel//bismuth battery based on highly porous Bi2WO6 and Co0.5Ni0.5MoO4 microspheres. Rare Metals, 2023, 42, 902-915.	3.6	5
526	Comprehensive H ₂ O Molecules Regulation via Deep Eutectic Solvents for Ultra‣table Zinc Metal Anode. Angewandte Chemie, 2023, 135, .	1.6	1
527	Comprehensive H ₂ 0 Molecules Regulation via Deep Eutectic Solvents for Ultra‣table Zinc Metal Anode. Angewandte Chemie - International Edition, 2023, 62, .	7.2	63
528	Engineering pâ€Band Center of Oxygen Boosting H ⁺ Intercalation in δâ€MnO ₂ for Aqueous Zinc Ion Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	50
529	Effects of Position and Quantity of the Cyano Group in Organic Electrode Materials on Electrochemical Performance. Batteries and Supercaps, 2023, 6, .	2.4	2
530	Coâ€Intercalation of Dual Charge Carriers in Metalâ€Ionâ€Confining Layered Vanadium Oxide Nanobelts for Aqueous Zincâ€Ion Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	57
531	Natural Peach Gum as Porous Carbon Precursor and Gel Electrolyte for Highâ€Performance Zincâ€ŀon Hybrid Supercapacitors. Advanced Sustainable Systems, 2023, 7, .	2.7	3
532	Coâ€Intercalation of Dual Charge Carriers in Metalâ€Ionâ€Confining Layered Vanadium Oxide Nanobelts for Aqueous Zincâ€Ion Batteries. Angewandte Chemie, 2023, 135, .	1.6	1
533	Proton storage chemistry in aqueous zincâ€organic batteries: A review. InformaÄnÃ-Materiály, 2023, 5, .	8.5	29
534	Polyanionâ€Type Na ₃ V ₂ (PO ₄) ₂ F ₃ @rGO with Highâ€Voltage and Ultralongâ€Life for Aqueous Zinc Ion Batteries. Small, 2023, 19, .	5.2	27
535	An Overview of Challenges and Strategies for Stabilizing Zinc Anodes in Aqueous Rechargeable Zn-Ion Batteries. Batteries, 2023, 9, 41.	2.1	11
536	Stable Zn electrodes enabled by an ultra-thin Zn phosphate protective layer. Journal of Materials Chemistry A, 2023, 11, 3051-3059.	5.2	10
537	<i>N</i> -Heteroaromatic fused-ring cyanides extended as redox polymers for high rate capability aqueous zinc-ion battery. Journal of Materials Chemistry A, 2023, 11, 2412-2418.	5.2	2
538	Interface Engineering of Zinc Electrode for Rechargeable Alkaline Zincâ€Based Batteries. Small Methods, 2023, 7, .	4.6	13
539	Intercalation-induced amorphous hydrated vanadium oxide for boosted aqueous Zn ²⁺ storage. Chemical Communications, 2023, 59, 1365-1368.	2.2	2
540	Recent advances in manipulating strategy of aqueous electrolytes for Zn anode stabilization. Energy Storage Materials, 2023, 56, 227-257.	9.5	35
541	Nanoscale Ultrafine Zinc Metal Anodes for High Stability Aqueous Zinc Ion Batteries. Nano Letters, 2023, 23, 541-549.	4.5	30

		CITATION REPORT		
#	Article		IF	Citations
542	Aqueous transition-metal ion batteries: Materials and electrochemistry. EnergyChem, 2	2023, 5, 100097.	10.1	6
543	An artificial β-PVDF nanofiber layer for dendrite-free zinc anode in rechargeable aqueor Journal of Materials Science, 2023, 58, 1708-1720.	us batteries.	1.7	3
544	Issues and strategies of cathode materials for mild aqueous static zinc-ion batteries. G Engineering, 2023, 4, 264-284.	reen Chemical	3.3	1
545	Study on electrochemical properties of zinc site–doped hollow spherical Zn1â^'yXyC materials. Ionics, 0, , .	0@2MnCO3	1.2	1
546	Ni/Fe Bimetallic Ions Co-Doped Manganese Dioxide Cathode Materials for Aqueous Zin Batteries, 2023, 9, 50.	ic-Ion Batteries.	2.1	0
547	Nanostructured Zn Mn3‒O4 thin films by pulsed laser deposition: A spectroscopic ar study towards the application in aqueous Zn-ion batteries. Electrochimica Acta, 2023,	nd electrochemical 442, 141909.	2.6	3
548	Tuning Discharge Behavior of Hollandite α-MnO ₂ in Hydrated Zinc Ion Ba Metal Substitution. Journal of Physical Chemistry C, 2023, 127, 907-918.	attery by Transition	1.5	2
549	A Novel Layered WO ₃ Derived from An Ion Etching Engineering for Ultraf Storage in Frozen Electrolyte. Advanced Functional Materials, 2023, 33, .	ast Proton	7.8	9
550	Manganese ion batteries: LiV3O8 nanorods as a robust and long-life cathode module. J Sources, 2023, 558, 232542.	Journal of Power	4.0	1
551	Reconstructing anode/electrolyte interface and solvation structure towards high stable Chemical Engineering Journal, 2023, 457, 141272.	e zinc anode.	6.6	26
552	2D V10O24·nH2O sheets as a high-performance cathode material for aqueous zinc-ic Electrochimica Acta, 2023, 442, 141882.	on batteries.	2.6	8
553	Interlayer doping of pseudocapacitive hydrated vanadium oxide via Mn2+ for high-perf aqueous zinc-ion battery. Electrochimica Acta, 2023, 441, 141810.	ormance	2.6	4
554	Design and construction of poly(benzoquinone-diamine)/Ti3C2TX hybrid electrode tov aqueous zinc-ion batteries. Composites Part B: Engineering, 2023, 252, 110517.	vard advanced	5.9	6
555	Insights on rational design and energy storage mechanism of Mn-based cathode mater high performance aqueous zinc-ion batteries. Coordination Chemistry Reviews, 2023,	rials towards 479, 215009.	9.5	40
556	Electrolyte engineering strategies for regulation of the Zn metal anode in aqueous Znâ 2023, 2, .	ì€ion batteries. ,		28
557	Novel Deep Eutectic Electrolyte Induced by Na··N Interactions for Sodium Batterie Engineering Chemistry Research, 2023, 62, 51-61.	s. Industrial &	1.8	4
558	Insights on Artificial Interphases of Zn and Electrolyte: Protection Mechanisms, Constr Techniques, Applicability, and Prospective. Advanced Functional Materials, 2023, 33, .	ucting	7.8	53
559	How About Vanadiumâ€Based Compounds as Cathode Materials for Aqueous Zinc Ion Advanced Science, 2023, 10, .	Batteries?.	5.6	45

#	Article	IF	CITATIONS
560	Two-dimensional sandwich-like heterostructures of amorphous VOx/MXene as freestanding cathode materials with superior electrochemical performance for aqueous zinc-ion batteries. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	0
561	Amorphous Heterostructure Derived from Divalent Manganese Borate for Ultrastable and Ultrafast Aqueous Zinc Ion Storage. Advanced Science, 2023, 10, .	5.6	11
562	Ultrahighâ€Rate Zn Stripping and Plating by Capacitive Charge Carriers Enrichment Boosting Znâ€Based Energy Storage. Advanced Energy Materials, 2023, 13, .	10.2	24
563	Zn ₃ (PO ₄) ₂ Protective Layer on Zn Anode for Improved Electrochemical Properties in Aqueous Zn-ion Batteries. Journal of Electrochemical Science and Technology, 0, , .	0.9	0
564	Mini-Review on the Regulation of Electrolyte Solvation Structure for Aqueous Zinc Ion Batteries. Batteries, 2023, 9, 73.	2.1	3
565	Biâ€MOF Modulating MnO ₂ Deposition Enables Ultraâ€Stable Cathodeâ€Free Aqueous Zincâ€Ion Batteries. Small, 2023, 19, .	5.2	14
566	A dendrite-free and anticaustic Zn anode enabled by high current-induced reconstruction of the electrical double layer. Chemical Communications, 2023, 59, 2437-2440.	2.2	8
567	Recent advances in 3D printed electrode materials for electrochemical energy storage devices. Journal of Energy Chemistry, 2023, 81, 272-312.	7.1	16
568	Two-dimensional CuO nanosheets-induced MOF composites and derivatives for dendrite-free zinc-ion batteries. Nano Research, 2023, 16, 6881-6889.	5.8	8
569	Advances and strategies of electrolyte regulation in Zn-ion batteries. Materials Chemistry Frontiers, 2023, 7, 3232-3258.	3.2	11
570	Defect engineering of two-dimensional materials for advanced energy conversion and storage. Chemical Society Reviews, 2023, 52, 1723-1772.	18.7	66
571	Ultrafast 3D Hybridâ€lon Transport in Porous V ₂ O ₅ Cathodes for Superiorâ€Rate Rechargeable Aqueous Zinc Batteries. Advanced Energy Materials, 2023, 13, .	10.2	32
572	Mitigating the dissolution of V2O5 in aqueous ZnSO4 electrolyte through Ti-doping for zinc storage. Chinese Chemical Letters, 2024, 35, 108421.	4.8	10
573	Enhanced zinc ion storage performance of V2O5·nH2O prepared by hydrothermal method with the assistance of sodium dodecylbenzene sulfonate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 668, 131459.	2.3	2
574	Mechanism enhancement of V3O7/V6O13 heterostructures to achieve high-performance aqueous Zn-Ion batteries. Chemical Engineering Journal, 2023, 463, 142309.	6.6	12
575	Hollandite-type VO1.52(OH)0.77 nanorod arrays on carbon cloth toward the improvement of zinc diffusion. Applied Surface Science, 2023, 619, 156704.	3.1	1
576	Recent advances of cathode materials for zinc-ion hybrid capacitors. Nano Energy, 2023, 109, 108290.	8.2	21
577	Ion transport phenomena in electrode materials. Chemical Physics Reviews, 2023, 4, 021302.	2.6	0

#	Article	IF	CITATIONS
578	A Janus separator towards dendrite-free and stable zinc anodes for long-duration aqueous zinc ion batteries. Journal of Energy Chemistry, 2023, 81, 583-592.	7.1	11
579	Recent progress and challenges of Zn anode modification materials in aqueous Zn-ion batteries. Coordination Chemistry Reviews, 2023, 485, 215142.	9.5	31
580	Building stable small molecule imide cathodes toward ultralong-life aqueous zinc-organic batteries. Chemical Engineering Journal, 2023, 465, 142824.	6.6	6
581	Zn@cellulose nanofibrils composite three-dimensional carbon framework for long-life Zn anode. Industrial Crops and Products, 2023, 194, 116343.	2.5	13
582	Microfluidic-oriented assembly of Mn3O4@C/GFF cathode with multiscale synergistic structure for high-performance aqueous zinc-ion batteries. Carbon, 2023, 208, 247-254.	5.4	3
583	Mn pre-intercalated hydrated vanadium pentoxide activated by nitrogen plasma for enhanced zinc ion storage. Journal of Energy Storage, 2023, 63, 106988.	3.9	5
584	A design of MnO-CNT@C3N4 cathodes for high-performance aqueous zinc-ion batteries. Journal of Colloid and Interface Science, 2023, 642, 340-350.	5.0	10
585	Epitaxial deposition of Zn (0 0 2) for stable zinc metal anodes. Chemical Engineering Journal, 2023, 458, 141509.	6.6	2
586	Synergistic interlayer and structure engineering construction of layered hydrated vanadates/graphene for stable aqueous zinc-ion batteries. Journal of Alloys and Compounds, 2023, 941, 168936.	2.8	5
587	Voltage induced lattice contraction enabling superior cycling stability of MnO2 cathode in aqueous zinc batteries. Energy Storage Materials, 2023, 56, 524-531.	9.5	11
588	Synthesis of V ₂ O ₅ Nanoribbon–Reduced Graphene Oxide Hybrids as Stable Aqueous Zinc-Ion Battery Cathodes via Divalent Transition Metal Cation-Mediated Coprecipitation. ACS Sustainable Chemistry and Engineering, 2023, 11, 2670-2679.	3.2	9
589	State of the art of lithium-ion battery material potentials: An analytical evaluations, issues and future research directions. Journal of Cleaner Production, 2023, 394, 136246.	4.6	28
590	Dynamically Interfacial pHâ€Buffering Effect Enabled by <i>N</i> â€Methylimidazole Molecules as Spontaneous Proton Pumps toward Highly Reversible Zincâ€Metal Anodes. Advanced Materials, 0, , 2208630.	11.1	37
591	Addition of Dioxane in Electrolyte Promotes (002)-Textured Zinc Growth and Suppressed Side Reactions in Zinc-Ion Batteries. ACS Nano, 2023, 17, 3765-3775.	7.3	99
592	Spatiotemporal Resolution of Phase Formation in Thick Porous Sodium Vanadium Oxide (NaV ₃ O ₈) Electrodes via <i>Operando</i> Energy Dispersive X-ray Diffraction. Journal of Physical Chemistry C, 2023, 127, 3940-3951.	1.5	2
593	Covalent organic frameworks as electrode materials for rechargeable metalâ€ion batteries. , 2023, 2, 231-259.		14
594	Hexamethylenetetramine additive with zincophilic head and hydrophobic tail for realizing ultra-stable Zn anode. Chemical Engineering Journal, 2023, 460, 141902.	6.6	22
595	Morphology controllable fabrication of arch-like covalent triazine framework nanosheets for high-rate and high energy density zinc-ion hybrid supercapacitors. Chemical Engineering Journal, 2023, 461, 141925.	6.6	9

#	Article	IF	Citations
596	A UiO-66-NH ₂ MOF derived N doped porous carbon and ZrO ₂ composite cathode for zinc-ion hybrid supercapacitors. Inorganic Chemistry Frontiers, 2023, 10, 2115-2124.	3.0	5
597	Tuning ionic conduction and structure stability of ammonium vanadate by intercalating polyaniline molecules for advanced aqueous zinc-ion batteries. Inorganic Chemistry Frontiers, 2023, 10, 1926-1937.	3.0	7
598	Chrysanthemum-like Polyaniline-Anchored PANI _{0.22} ·V ₂ O ₅ ·0.88H ₂ O-Hybridized Cathode for High-Stable Aqueous Zinc-Ion Batteries. ACS Applied Energy Materials, 2023, 6, 3102-3112.	2.5	5
599	Amorphous Kâ€Buserite Microspheres for Highâ€Performance Aqueous Znâ€Ion Batteries and Hybrid Supercapacitors. Advanced Science, 2023, 10, .	5.6	6
600	Electron transmission matrix and anion regulation strategy-derived oxygen-deficient δ-MnO ₂ for a high-rate and long-life aqueous zinc-ion battery. Nanoscale, 2023, 15, 6353-6362.	2.8	11
601	Zn-Ion Transporting, <i>In Situ</i> Formed Robust Solid Electrolyte Interphase for Stable Zinc Metal Anodes over a Wide Temperature Range. ACS Energy Letters, 2023, 8, 1613-1625.	8.8	48
602	Graphene Film with a Controllable Microstructure for Efficient Electrochemical Energy Storage. ACS Applied Materials & amp; Interfaces, 2023, 15, 13086-13096.	4.0	1
603	Recent progress of dendriteâ€free stable zinc anodes for advanced zincâ€based rechargeable batteries: Fundamentals, challenges, and perspectives. SusMat, 2023, 3, 180-206.	7.8	15
604	Ultralowâ€Saltâ€Concentration Electrolyte for Highâ€Voltage Aqueous Zn Metal Batteries. Advanced Functional Materials, 2023, 33, .	7.8	24
605	Nonepitaxial Electrodeposition of (002)â€Textured Zn Anode on Textureless Substrates for Dendriteâ€Free and Hydrogen Evolutionâ€Suppressed Zn Batteries. Advanced Materials, 2023, 35, .	11.1	49
606	Reversible Zn Metal Anodes Enabled by Trace Amounts of Underpotential Deposition Initiators. Angewandte Chemie, 2023, 135, .	1.6	1
607	Reversible Zn Metal Anodes Enabled by Trace Amounts of Underpotential Deposition Initiators. Angewandte Chemie - International Edition, 2023, 62, .	7.2	74
608	Electrolyte Modulation Strategies for High Performance Zinc Batteries. Batteries and Supercaps, 2023, 6, .	2.4	3
609	A diluent protective organic additive electrolyte of hydrophilic hyperbranched polyester for long-life reversible aqueous zinc manganese oxide batteries. Frontiers of Materials Science, 2023, 17, .	1.1	0
610	Progress and perspective on multi-dimensional structured carbon nanomaterials for cathodes in aqueous zinc-based energy storage. Materials Research Letters, 2023, 11, 481-516.	4.1	5
611	Ammonium Ion Batteries: Material, Electrochemistry and Strategy. Angewandte Chemie - International Edition, 2023, 62, .	7.2	32
612	Ammonium Ion Batteries: Material, Electrochemistry and Strategy. Angewandte Chemie, 2023, 135, .	1.6	2
613	Observation of Zn Dendrite Growth via Operando Digital Microscopy and Time-Lapse Tomography. ACS Applied Materials & amp; Interfaces, 0, , .	4.0	1

		CITATION REPORT		
#	ARTICLE	106 212	IF	CITATIONS
614	Electrode/electrolyte interfacial engineering for aqueous Zna€ion batteries. , 2023, 2,	186-212.		9
615	Research progress of "rocking chair―type zinc-ion batteries with zinc metal-free a Chemical Letters, 2023, 34, 108307.	anodes. Chinese	4.8	9
616	Solute-solvent dual engineering toward versatile electrolyte for high-voltage aqueous a energy storage devices. Fundamental Research, 2023, , .	zinc-based	1.6	2
617	Insight into the development of electrolytes for aqueous zinc metal batteries from alka neutral. Chinese Chemical Letters, 2024, 35, 108337.	aline to	4.8	5
618	Fluoride-Based Stable Quasi-Solid-State Zinc Metal Battery with Superior Rate Capabili Materials & Interfaces, 2023, 15, 15574-15584.	ty. ACS Applied	4.0	2
619	Environmentally Friendly and Flexible Aqueous Zinc Ion Batteries Using an Organic And Activated Carbon as the Cathode. ACS Sustainable Chemistry and Engineering, 2023,	ode and 11, 5065-5071.	3.2	4
620	Interfacial Designs of MXenes for Mild Aqueous Zincâ€ion Storage. Small Methods, 20)23, 7, .	4.6	5
621	Crystallographic engineering of Zn anodes for aqueous batteries. EScience, 2023, 3, 1	00120.	25.0	34
622	A cobalt corrole with a biologically relevant imidazolium pendant for boosted electroca oxygen reduction. Journal of Porphyrins and Phthalocyanines, 2023, 27, 719-727.	atalytic	0.4	1
623	Metal-Organic Framework-Based Materials in Aqueous Zinc-Ion Batteries. Internationa Molecular Sciences, 2023, 24, 6041.	Journal of	1.8	6
624	Facing the capacity fading of vanadium-based zinc-ion batteries. Trends in Chemistry,	2023, 5, 380-392.	4.4	53
625	A dendrite-free Ga-In-Sn-Zn solid-liquid composite anode for rechargeable zinc batterie Storage Materials, 2023, 58, 195-203.	s. Energy	9.5	12
626	Versatile metallo-supramolecular polymeric interphase for highly reversible zinc metal Energy Storage Materials, 2023, 58, 204-214.	anodes.	9.5	5
627	Low-Cost and Large-Scale Preparation of H ₂ O and Mg ²⁺ Co Vanadium Oxide with High-Performance Aqueous Zn-Ion Batteries. Energy & Fuels 5530-5539.	-Preintercalated s, 2023, 37,	2.5	1
628	Vanadium Oxide: Phase Diagrams, Structures, Synthesis, and Applications. Chemical R 4353-4415.	eviews, 2023, 123,	23.0	77
629	Dual mechanism of ion (de)intercalation and iodine redox towards advanced zinc batt and Environmental Science, 2023, 16, 2358-2367.	eries. Energy	15.6	29
630	Molecular Engineering on MoS ₂ Interlayer for High-Capacity and Rapid-C Ion Batteries. Nanoscale Advances, 0, , .	harging Aqueous	2.2	0
631	Rationalized Electroepitaxy toward Scalable Singleâ€Crystal Zn Anodes. Advanced Ma	terials, 2023, 35, .	11.1	15

#	Article	IF	CITATIONS
632	Engineering d-p orbital hybridization through regulation of interband energy separation for durable aqueous Zn//VO2(B) batteries. Chemical Engineering Journal, 2023, 464, 142711.	6.6	6
633	Cationâ€Selective Interface for Kinetically Enhanced Dendriteâ€Free Zn Anodes. Advanced Energy Materials, 2023, 13, .	10.2	20
634	A Sulfur Heterocyclic Quinone Cathode TowardsÂHighâ€Rate and Longâ€Cycle Aqueous Znâ€Organic Batteries. Advanced Materials, 2023, 35, .	11.1	24
635	Modulating the Protonâ€Conducting Lanes in Spinel ZnMn ₂ O ₄ through Offâ€Stoichiometry. Advanced Energy Materials, 2023, 13, .	10.2	7
636	Poly(quinone-1,4-diaminoanthraquinone) cathodes for stable Zn2+ storage in aqueous zinc-ion batteries. Ionics, 2023, 29, 2319-2328.	1.2	3
637	Aromatic additives with designed functions ameliorating chemo-mechanical reliability for zinc-ion batteries. Energy Storage Materials, 2023, 59, 102769.	9.5	18
638	Refining the Grain Size of Zinc Electrodeposit by Pb ²⁺ Ion Grinding for Compact and Stable Zinc Anode. Batteries and Supercaps, 2023, 6, .	2.4	1
639	Revealing the Self-Generated Heterointerface of NaV ₂ O ₅ in Zn Storage via a Scalable Production Method. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	0
640	Developing Cathode Materials for Aqueous Zinc Ion Batteries: Challenges and Practical Prospects. Advanced Functional Materials, 2024, 34, .	7.8	45
641	Bifunctional Interphase with Targetâ€Distributed Desolvation Sites and Directionally Depositional Ion Flux for Sustainable Zinc Anode. Angewandte Chemie, 0, , .	1.6	0
642	Bifunctional Interphase with Targetâ€Distributed Desolvation Sites and Directionally Depositional Ion Flux for Sustainable Zinc Anode. Angewandte Chemie - International Edition, 2023, 62, .	7.2	22
643	In situ characterizations for aqueous rechargeable zinc batteries. , 2023, 2, 310-338.		5
644	Surface Oxidation State Variations and Insulator–Metal Transition Modulations in Vanadium Oxides with Pulsed Hydrogen Plasma. Advanced Materials Interfaces, 0, , .	1.9	0
645	In situ synthesis of Bi3+-doped δ-MnO2 cathode to enhance the cycle stability for aqueous zinc-ion batteries. Journal of Solid State Electrochemistry, 0, , .	1.2	3
646	Recent advances in interfacial modification of zinc anode for aqueous rechargeable zinc ion batteries. Journal of Energy Chemistry, 2023, 83, 287-303.	7.1	36
647	Facile synthesis of Mn2O3/Mn3O4 composites with superior zinc ion storage performance. Materials Research Bulletin, 2023, 165, 112292.	2.7	3
648	Aqueous Zinc–Chlorine Battery Modulated by a MnO ₂ Redox Adsorbent. Small Methods, 0, , .	4.6	8
663	Synthesis and catalytic applications of metal boride ceramics. , 2023, , 57-105.		0

ARTICLE IF CITATIONS Recent developments in zinc metal anodes, cathodes, and electrolytes for zinc-ion hybrid capacitors. 682 2.5 5 Sustainable Energy and Fuels, 2023, 7, 3776-3795. Charge-Transfer Complex-Based Artificial Layers for Stable and Efficient Zn Metal Anodes. ACS Energy 694 8.8 29 Letters, 2023, 8, 2718-2727. A new class of pseudocapacitive electrode materials for electrochemical energy storage in 710 0 rechargeable batteries., 2023, , 181-224. Design strategies for rechargeable aqueous metal-ion batteries. Science China Chemistry, 0, , . Porous framework materials for stable Zn anodes in aqueous zinc-ion batteries. Inorganic Chemistry 729 3.0 1 Frontiers, 2023, 10, 5555-5572. A dual-mediator for a sulfur cathode approaching theoretical capacity with low overpotential in aqueous Zn–S batteries. Energy and Environmental Science, 2023, 16, 4326-4333. 15.6 Versatile nicotinamide enabling dendrite-free and efficient deposition for aqueous Zn-I₂ 750 2.2 0 batteries. Chemical Communications, 2023, 59, 11847-11850. On Energy Storage Chemistry of Aqueous Zn-Ion Batteries: From Cathode to Anode. Electrochemical 13.1 Energy Reviews, 2023, 6, . 811 An Electrochemical Perspective of Aqueous Zinc Metal Anode. Nano-Micro Letters, 2024, 16, . 14.4 1 Recent advances in electrospinning nanofiber materials for aqueous zinc ion batteries. Chemical Science, 2023, 14, 13346-13366. Tailoring hydroxyl groups of organic phenazine anodes for high-performance and stable alkaline 841 15.6 1 batteries. Énergy and Environmental Science, 2024, 17, 114-122. Engineering hosts for Zn anodes in aqueous Zn-ion batteries. Energy and Environmental Science, 2024, 845 15.6 17, 369-385. One-dimensional tunnel VO₂(B) cathode materials for high-performance aqueous zinc ion batteries: a mini review of recent advances and future perspectives. Green Chemistry, 2024, 26, 856 4.6 0 1709-1724. Research on the Integrated Design Method of Construction and Maintenance in the Whole Life Cycle of Expressway. Lecture Notes in Civil Engineering, 2024, , 757-766.