Criegee intermediates: production, detection and reaction

International Reviews in Physical Chemistry 39, 385-424 DOI: 10.1080/0144235x.2020.1792104

Citation Report

#	Article	IF	CITATIONS
1	Impact of Criegee Intermediate Reactions with Peroxy Radicals on Tropospheric Organic Aerosol. ACS Earth and Space Chemistry, 2020, 4, 1743-1755.	2.7	16
2	Infrared characterization of the products and the rate coefficient of the reaction between Criegee intermediate CH ₂ OO and HCl. Physical Chemistry Chemical Physics, 2021, 23, 11082-11090.	2.8	15
3	The effect of ammonia and formic acid on the oxidation of CO <i>via</i> a simple Criegee intermediate. Physical Chemistry Chemical Physics, 2021, 23, 5392-5406.	2.8	6
4	Important Oxidants and Their Impact on the Environmental Effects of Aerosols. Journal of Physical Chemistry A, 2021, 125, 3813-3825.	2.5	15
5	Investigation of the Production of Trifluoroacetic Acid from Two Halocarbons, HFC-134a and HFO-1234yf and Its Fates Using a Global Three-Dimensional Chemical Transport Model. ACS Earth and Space Chemistry, 2021, 5, 849-857.	2.7	19
6	Fates of Organic Hydroperoxides in Atmospheric Condensed Phases. Journal of Physical Chemistry A, 2021, 125, 4513-4523.	2.5	23
7	Substituent Effect in the Reactions between Criegee Intermediates and 3-Aminopropanol. Journal of Physical Chemistry A, 2021, 125, 6580-6590.	2.5	5
8	Photodissociation Dynamics of CH ₂ OO on Multiple Potential Energy Surfaces: Experiment and Theory. Journal of Physical Chemistry A, 2021, 125, 6571-6579.	2.5	16
9	Reaction mechanism and kinetics of Criegee intermediate and hydroperoxymethyl formate. Journal of Environmental Sciences, 2021, 105, 128-137.	6.1	6
10	Gas-phase and aqueous-surface reaction mechanism of Criegee radicals with serine and nucleation of products: A theoretical study. Chemosphere, 2021, 280, 130709.	8.2	4
11	Reactivity and internal dynamics in the Criegee intermediate CH2OO CO2 system: A rotational study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 260, 119945.	3.9	1
12	Aqueous-phase fates of α-alkoxyalkyl-hydroperoxides derived from the reactions of Criegee intermediates with alcohols. Physical Chemistry Chemical Physics, 2021, 23, 4605-4614.	2.8	13
13	Expanded scope of Griesbaum co-ozonolysis for the preparation of structurally diverse sensors of ferrous iron. RSC Advances, 2021, 11, 34338-34342.	3.6	3
14	Spectroscopic characterization and photochemistry of the Criegee intermediate CF3C(H)OO. Journal of Environmental Sciences, 2022, 114, 160-169.	6.1	2
15	Decomposition mechanism of α-alkoxyalkyl-hydroperoxides in the liquid phase: temperature dependent kinetics and theoretical calculations. Environmental Science Atmospheres, 2022, 2, 241-251.	2.4	3
16	Low-temperature reaction dynamics of paramagnetic species in the gas phase. Chemical Communications, 2022, 58, 3240-3254.	4.1	3
17	Temperature-dependent kinetics of the atmospheric reaction between CH ₂ OO and acetone. Physical Chemistry Chemical Physics, 2022, 24, 13066-13073.	2.8	14
18	Decomposition of multifunctionalized α-alkoxyalkyl-hydroperoxides derived from the reactions of Criegee intermediates with diols in liquid phases. Physical Chemistry Chemical Physics, 2022, 24, 11562-11572.	2.8	5

		CITATION REPORT	
#	Article	IF	Citations
19	Estimation of mechanistic parameters in the gas-phase reactions of ozone with alkenes for use automated mechanism construction. Atmospheric Chemistry and Physics, 2022, 22, 6167-619	e in 4.9	5
20	Identification, monitoring, and reaction kinetics of reactive trace species using time-resolved mid-infrared quantum cascade laser absorption spectroscopy: development, characterisation, initial results for the CH ₂ OO Criegee intermediate. Atmospheric Measurement Techniques. 2022. 15. 2875-2887.	and 3.1	2
21	Optical Frequency Combs for Molecular Spectroscopy, Kinetics, and Sensing. ACS Symposium , 61-88.	Series, 0, 0.5	2
22	Techniques for measuring indoor radicals and radical precursors. Applied Spectroscopy Review 2022, 57, 580-624.	s, 6.7	2
23	Electronic Absorption Spectroscopy and Photochemistry of Criegee Intermediates. Photochem and Photobiology, 2023, 99, 4-18.	istry 2.5	11
24	Proton-Catalyzed Decomposition of Multifunctionalized Organic Hydroperoxides Derived from Reactions of Criegee Intermediates with Ethylene Glycol in Aqueous Organic Media. ACS Earth Space Chemistry, 2022, 6, 1937-1947.		3
25	Multiple evaluations of atmospheric behavior between Criegee intermediates and HCHO: Gas-J air-water interface reaction. Journal of Environmental Sciences, 2023, 127, 308-319.	bhase and 6.1	5
26	Mechanism and kinetics of the reaction of the Criegee intermediate CH ₂ OO with acid studied using a step-scan Fourier-transform IR spectrometer. Physical Chemistry Chemical Physics, 2022, 24, 18568-18581.		8
27	Stability of Terpenoid-Derived Secondary Ozonides in Aqueous Organic Media. Journal of Physi Chemistry A, 2022, 126, 5386-5397.	cal 2.5	6
28	Infrared Characterization of the Products and Rate Coefficient of the Reaction between Criege Intermediate CH ₂ OO and HNO ₃ . Journal of Physical Chemistry A, 0,	e 2.5	4
29	Characterization and Quantification of Particle-Bound Criegee Intermediates in Secondary Org Aerosol. Environmental Science & Technology, 2022, 56, 12945-12954.	anic 10.0) 4
30	Comparing the Excited State Dynamics of CH ₂ OO, the Simplest Criegee Intermed Following Vertical versus Adiabatic Excitation. Journal of Physical Chemistry A, 2022, 126, 623	liate, 2.5 6-6243. 2.5	4
31	Unimolecular Kinetics of Stabilized CH ₃ CHOO Criegee Intermediates: <i>syn</i> -CH ₃ CHOO Decomposition and <i>anti</i> -CH ₃ CHOO Iso Journal of Physical Chemistry A, 2022, 126, 6984-6994.	omerization. 2.5	7
32	Photoionization energetics and dissociation pathways of hydroperoxyethyl formate produced reaction of CH3CHOOÂ+Âformic acid. Chemical Physics Letters, 2022, 809, 140179.	in the 2.6	1
33	Recent advances in quantum fragmentation approaches to complex molecular and condensed systems. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, .	â€phase 14.6	10
34	Enthalpies of formation for Criegee intermediates: A correlation energy convergence study. Jou of Chemical Physics, 2023, 158, .	ırnal 3.0	О
35	Temperatureâ€dependent kinetics of the reactions of CH ₂ OO with acetone, biac acetylacetone. International Journal of Chemical Kinetics, 2023, 55, 154-166.	etyl, and 1.6	1
36	Organic Peroxides in Aerosol: Key Reactive Intermediates for Multiphase Processes in the Atmo Chemical Reviews, 2023, 123, 1635-1679.	osphere. 47.7	29

#	Article	IF	CITATIONS
37	Electronic Spectroscopy and Dissociation Dynamics of Vinyl-Substituted Criegee Intermediates: 2-Butenal Oxide and Comparison with Methyl Vinyl Ketone Oxide and Methacrolein Oxide Isomers. Journal of Physical Chemistry A, 2023, 127, 203-215.	2.5	6
38	Interfacial Extraction to Trap and Characterize the Criegee Intermediates from Phospholipid Ozonolysis. Analytical Chemistry, 2023, 95, 5018-5023.	6.5	3
39	Kinetics of the Simplest Criegee Intermediate CH ₂ OO Reaction with <i>tert</i> -Butylamine. Journal of Physical Chemistry A, 2023, 127, 2432-2439.	2.5	1
40	Photoelectron Photoion Coincidence Spectroscopy of Biradicals. ChemPhysChem, 2023, 24, .	2.1	4
41	Modeling the Ground- and Excited-State Unimolecular Decay of the Simplest Fluorinated Criegee Intermediate, HFCOO, Formed from the Ozonolysis of Hydrofluoroolefin Refrigerants. Journal of Physical Chemistry A, 2023, 127, 6377-6384.	2.5	0
42	The simplest Criegee intermediate CH ₂ OO reaction with dimethylamine and trimethylamine: kinetics and atmospheric implications. Physical Chemistry Chemical Physics, 2023, 25, 23187-23196.	2.8	0
43	OH Roaming and Beyond in the Unimolecular Decay of the Methyl-Ethyl-Substituted Criegee Intermediate: Observations and Predictions. Journal of the American Chemical Society, 2023, 145, 19405-19420.	13.7	6
44	Substituent dependence on the reactions of Criegee intermediates with carbon dioxide and carbon monoxide. ChemPlusChem, 0, , .	2.8	0
45	Infrared Characterization of the Products of the Reaction between the Criegee Intermediate CH ₃ CHOO and HCI. Journal of Physical Chemistry A, 2023, 127, 6902-6915.	2.5	1
46	Kinetics of the Simplest Criegee Intermediate Reaction with Water Vapor: Revisit and Isotope Effect. Journal of Physical Chemistry A, 2023, 127, 8059-8072.	2.5	1
47	Criegee Intermediate-Mediated Oxidation of Dimethyl Disulfide: Effect of Formic Acid and Its Atmospheric Relevance. Journal of Physical Chemistry A, 2023, 127, 8415-8426.	2.5	0
48	Kinetic study of C1 criegee intermediate with diethylamine and ethylamine and their atmospheric implications. Chemical Physics Letters, 2023, 832, 140885.	2.6	0
49	OH Roaming during the Ozonolysis of α-Pinene: A New Route to Highly Oxygenated Molecules?. Journal of Physical Chemistry A, 0, , .	2.5	0
50	Reaction between Criegee Intermediate CH ₂ OO and Isobutyraldehyde: Kinetics and Atmospheric Implications. ChemistrySelect, 2023, 8, .	1.5	0
51	Detailed mechanism and kinetics of reactions of <i>anti</i> and <i>syn</i> -CH ₃ CHOO with HC(O)OH: infrared spectra of conformers of hydroperoxyethyl formate. Physical Chemistry Chemical Physics, 2024, 26, 1950-1966.	2.8	0
52	A possible unaccounted source of nitrogen-containing compound formation in aerosols: amines reacting with secondary ozonides. Atmospheric Chemistry and Physics, 2024, 24, 155-166.	4.9	0
53	Impact of temperature on the role of Criegee intermediates and peroxy radicals in dimer formation from <i>β</i> -pinene ozonolysis. Atmospheric Chemistry and Physics, 2024, 24, 167-184.	4.9	0
54	Mechanistic insights into Criegee intermediates with benzoic acid at gas-phase and air-water interface and nucleation of product. Atmospheric Environment, 2024, 320, 120338.	4.1	0

#	Article	IF	CITATIONS
55	New insights into the mechanism and kinetics of the addition reaction of unsaturated Criegee intermediates to CF ₃ COOH and tropospheric implications. Environmental Sciences: Processes and Impacts, 2024, 26, 751-764.	3.5	0
56	Temperature-Dependent Kinetics of the Reactions of the Criegee Intermediate CH ₂ OO with Hydroxyketones. Journal of Physical Chemistry A, 2024, 128, 1880-1891.	2.5	0

CITATION REPORT