Prediction of breeding regions for the desert locust Sch

Scientific Reports 10, 11937 DOI: 10.1038/s41598-020-68895-2

Citation Report

#	Article	IF	CITATIONS
1	Adult Desert Locust Swarms, Schistocerca gregaria, Preferentially Roost in the Tallest Plants at Any Given Site in the Sahara Desert. Agronomy, 2020, 10, 1923.	1.3	6
2	The Compounded Effects of COVID-19 Pandemic and Desert Locust Outbreak on Food Security and Food Supply Chain. Sustainability, 2021, 13, 1063.	1.6	39
3	Potential distribution of Schistocerca gregaria gregaria in southwestern Asia. Agricultural and Forest Entomology, 2021, 23, 388.	0.7	1
4	Biological control of desert locust (<i>Schistocerca gregaria</i> Forskål). CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , .	0.6	4
5	Application of Remote Sensing Data for Locust Research and Management—A Review. Insects, 2021, 12, 233.	1.0	30
6	Detecting Desert Locust Breeding Grounds: A Satellite-Assisted Modeling Approach. Remote Sensing, 2021, 13, 1276.	1.8	16
7	Unlocking the potential for achievement of the UN Sustainable Development Goal 2 – â€~Zero Hunger' – in Africa: targets, strategies, synergies and challenges. Food and Nutrition Research, 2021, 65, .	1.2	18
8	A review of satellite-based global agricultural monitoring systems available for Africa. Global Food Security, 2021, 29, 100543.	4.0	36
9	Lethal yellowing disease: insights from predicting potential distribution under different climate change scenarios. Journal of Plant Diseases and Protection, 2021, 128, 1313-1325.	1.6	10
10	Modelling the effect of desert locust infestation on crop production with intervention measures. Heliyon, 2021, 7, e07685.	1.4	4
11	A PLAN for Tackling the Locust Crisis in East Africa. , 2021, , .		5
12	Radar monitoring unveils migration dynamics of the yellow-spined bamboo locust (Orthoptera:) Tj ETQq1 1 0.784	3],4 rgBT	Qverlock 1
13	Importance of human capital, field knowledge and experience to improve pest locust management. Pest Management Science, 2021, 77, 5463-5474.	1.7	7
14	Modeling current and future potential distributions of desert locust Schistocerca gregaria (Forskål) under climate change scenarios using MaxEnt. Journal of Asia-Pacific Biodiversity, 2021, 14, 399-409.	0.2	21
15	Prediction of desert locust breeding areas using machine learning methods and SMOS (MIR_SMNRT2) Near Real Time product. Journal of Arid Environments, 2021, 194, 104599.	1.2	13
16	Current and potential geographic distribution of red palm mite (Raoiella indica Hirst) in Brazil. Ecological Informatics, 2021, 65, 101396.	2.3	4
17	Old pesticide, new use: Smart and safe enantiomer of isocarbophos in locust control. Ecotoxicology and Environmental Safety, 2021, 225, 112710.	2.9	10
18	The potential habitat of desert locusts is contracting: predictions under climate change scenarios. PeerJ, 2021, 9, e12311.	0.9	14

CITATION REPORT

#	Article	IF	CITATIONS
19	Opportunities for an African greenhouse gas observation system. Regional Environmental Change, 2021, 21, 1.	1.4	8
20	Desert Locust Episode in Pakistan, 2018–2021, and the Current Status of Integrated Desert Locust Management. Journal of Integrated Pest Management, 2022, 13, .	0.9	11
21	An IoT-based Smart Agriculture System with Locust Prevention and Data Prediction. , 2021, , .		10
22	New data on the distribution of Orthoptera (Caelifera: Ensifera) from eastern Morocco, with notes on chorology. Annales De La Societe Entomologique De France, 0, , 1-16.	0.4	Ο
23	Integrating Remote Sensing and Machine Learning for Regional-Scale Habitat Mapping: Advances and Future Challenges for Desert Locust Monitoring. IEEE Geoscience and Remote Sensing Magazine, 2021, , 2-32.	4.9	6
24	The Handsome Cross Grasshopper Oedaleus decorus (Germar, 1825) (Orthoptera: Acrididae) as a Neglected Pest in the South-Eastern Part of West Siberian Plain. Insects, 2022, 13, 49.	1.0	3
25	Predicting suitable breeding areas for different locust species – A multi-scale approach accounting for environmental conditions and current land cover situation. International Journal of Applied Earth Observation and Geoinformation, 2022, 107, 102672.	1.4	9
26	Dynamic Forecast of Desert Locust Presence Using Machine Learning with a Multivariate Time Lag Sliding Window Technique. Remote Sensing, 2022, 14, 747.	1.8	9
27	The use of multisource spatial data for determining the proliferation of stingless bees in Kenya. GIScience and Remote Sensing, 2022, 59, 648-669.	2.4	6
28	Desert Locust Cropland Damage Differentiated from Drought, with Multi-Source Remote Sensing in Ethiopia. Remote Sensing, 2022, 14, 1723.	1.8	4
29	The effect of climate variability in the efficacy of the entomopathogenic fungus Metarhizium acridum against the desert locust Schistocerca gregaria. Scientific Reports, 2022, 12, 7535.	1.6	8
30	Major Natural Disasters in Deserts: Interventions Using Geospatial Technologies. Water Science and Technology Library, 2022, , 351-379.	0.2	1
31	Sexual repurposing of juvenile aposematism in locusts. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	3
32	Advances in data-collection tools and analytics for crop pest and disease management. Current Opinion in Insect Science, 2022, 54, 100964.	2.2	0
33	Desert Locusts: Can Mathematical Models Help to Control Them?. , 2022, , 405-417.		1
34	Climate Change and Pathways Used by Pests as Challenges to Plant Health in Agriculture and Forestry. Sustainability, 2022, 14, 12421.	1.6	16
35	Ecological determinants and risk areas of <i>Striga hermonthica</i> infestation in western Kenya under changing climate. Weed Research, 2023, 63, 45-56.	0.8	4
36	COVID-19 and Its Implications on Agriculture, Environment, and Water Sectors. , 2023, , 3-16.		0

	CHATION N	N REPORT		
#	Article	IF	CITATIONS	
38	Sustainable aquifer management for food security. Agricultural Water Management, 2023, 281, 108073.	2.4	3	
39	Application of geospatial and remote sensing data to support locust management. International Journal of Applied Earth Observation and Geoinformation, 2023, 117, 103212.	0.9	0	
40	Spatiotemporal Distribution and Main Influencing Factors of Grasshopper Potential Habitats in Two Steppe Types of Inner Mongolia, China. Remote Sensing, 2023, 15, 866.	1.8	5	
41	Predicting inhabitable areas for locust based on field observation and multi-environmental factors in alpine grassland—A case study in the Qilian Mountain National Park, China. Frontiers in Ecology and Evolution, 0, 11, .	1.1	0	
42	Spatiotemporal riskÂforecasting to improve locust management. Current Opinion in Insect Science, 2023, 56, 101024.	2.2	5	
43	<scp>dynamicSDM</scp> : An R package for species geographical distribution and abundance modelling at high spatiotemporal resolution. Methods in Ecology and Evolution, 2023, 14, 1190-1199.	2.2	2	
44	Desert Locust (Schistocerca gregaria) Invasion Risk and Vegetation Damage in a Key Upsurge Area. Earth, 2023, 4, 187-208.	0.9	1	
53	Risks of Deserts Locust and Its Mitigation. Disaster Resilience and Green Growth, 2023, , 361-392.	0.2	0	

54 Crop Improvement in the Desert. , 2023, , 465-485.