High-Efficiency Perovskite Solar Cells

Chemical Reviews 120, 7867-7918 DOI: 10.1021/acs.chemrev.0c00107

Citation Report

#	Article	IF	CITATIONS
1	A dual promotion strategy of interface modification and ion doping for efficient and stable carbon-based planar CsPbBr3 perovskite solar cells. Journal of Materials Chemistry C, 2020, 8, 17211-17221.	2.7	10
2	Regulating Surface Termination for Efficient Inverted Perovskite Solar Cells with Greater Than 23% Efficiency. Journal of the American Chemical Society, 2020, 142, 20134-20142.	6.6	414
3	Incorporating quantum dots for high efficiency and stable perovskite photovoltaics. Journal of Materials Chemistry A, 2020, 8, 25017-25027.	5.2	24
4	Unraveling the Photogenerated Electron Localization on the Defect-Free CH3NH3PbI3(001) Surfaces: Understanding and Implications from a First-Principles Study. Journal of Physical Chemistry Letters, 2020, 11, 8041-8047.	2.1	6
5	Varying the Concentration of Organic Acid and Amine Ligands Allows Tuning between Quantum Dots and Magic-Sized Clusters of CH ₃ NH ₃ PbBr ₃ Perovskite: Implications for Photonics and Energy Conversion. ACS Applied Nano Materials, 2020, 3, 12379-12387.	2.4	20
6	Recent Progress in 2D/3D Multidimensional Metal Halide Perovskites Solar Cells. Frontiers in Materials, 2020, 7, .	1.2	33
7	Three-Dimensional Lead Bromide Hybrid Ferroelectric Realized by Lattice Expansion. Journal of the American Chemical Society, 2020, 142, 19698-19704.	6.6	31
8	Stable and Efficient Methylammoniumâ€, Cesiumâ€, and Bromideâ€Free Perovskite Solar Cells by Inâ€Situ Interlayer Formation. Advanced Functional Materials, 2021, 31, 2007520.	7.8	34
9	Highly Reproducible Fabrication of Perovskite Films with an Ultrawide Antisolvent Dripping Window for Large cale Flexible Solar Cells. Solar Rrl, 2021, 5, .	3.1	16
10	Inorganic Electron Transport Materials in Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2008300.	7.8	105
11	Squaraine Dyes for Photovoltaic and Biomedical Applications. Advanced Functional Materials, 2021, 31, 2008201.	7.8	59
12	Recent research progress for upconversion assisted dye-sensitized solar cells. Chinese Chemical Letters, 2021, 32, 1834-1846.	4.8	28
13	Recent Advances in Carbon Nanotube Utilizations in Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2004765.	7.8	37
14	CHAPTER 6. Atomic and Molecular Functionalization of Graphitic Carbon Nitride for Solar Cell Applications. RSC Nanoscience and Nanotechnology, 2021, , 221-261.	0.2	2
15	Nanometer-thick [(FPEA) ₂ PbX ₄ ; X = I and Br] 2D halide perovskite based thin films for pollutant detection and nonconventional photocatalytic degradation. Materials Advances, 2021, 2, 5712-5722.	2.6	5
16	Designing high performance conjugated materials for photovoltaic cells with the aid of intramolecular noncovalent interactions. Chemical Communications, 2021, 57, 302-314.	2.2	65
17	Pb in halide perovskites for photovoltaics: reasons for optimism. Materials Advances, 2021, 2, 6125-6135.	2.6	16
18	A low-cost and green-solvent-processable hole-transport material enabled by a traditional bidentate ligand for highly efficient inverted perovskite solar cells. Journal of Materials Chemistry C, 2021, 9, 8930-8938.	2.7	8

		Citation Re	PORT	
#	Article		IF	Citations
19	Carbon-based electrodes for perovskite solar cells. Materials Advances, 2021, 2, 5560-	5579.	2.6	49
20	Dynamic structural property of organic-inorganic metal halide perovskite. IScience, 20	21, 24, 101959.	1.9	29
21	Perovskite photodetectors and their application in artificial photonic synapses. Chemic Communications, 2021, 57, 11429-11442.	cal	2.2	27
22	Synergistic improvements in the performance and stability of inverted planar MAPbl ₃ -based perovskite solar cells incorporating benzylammonium halio Materials Chemistry Frontiers, 2021, 5, 3378-3387.	de salt additives.	3.2	18
23	Reliability of 3D Cs ₂ M ⁺ M ³⁺ X ₆ ty perovskite solar cells: assessing the figures of merit. Journal of Materials Chemistry A, 17701-17719.	pe absorbers for 2021, 9,	5.2	12
24	Top transparent electrodes for fabricating semitransparent organic and perovskite sol Journal of Materials Chemistry C, 2021, 9, 9102-9123.	ar cells.	2.7	17
25	Sustainable and cost-efficient electro-synthesis of formamidine acetate from cyanamic acidic electrolyte. Green Chemistry, 2021, 23, 3289-3294.	le in aqueous	4.6	10
26	A tailored graft-type polymer as a dopant-free hole transport material in indoor perovs photovoltaics. Journal of Materials Chemistry A, 2021, 9, 15294-15300.	kite	5.2	27
27	The regulatory effect of triphenylphosphine oxide on perovskites for morphological an improvement. Journal of Materials Chemistry C, 2021, 9, 6399-6403.	d radiative	2.7	2
28	Two-dimensional halide perovskites: synthesis, optoelectronic properties, stability, and Nanoscale, 2021, 13, 12394-12422.	l applications.	2.8	38
29	Accelerated design of promising mixed lead-free double halide organic–inorganic pe photovoltaics using machine learning. Nanoscale, 2021, 13, 12250-12259.	rovskites for	2.8	21
30	Suppressed ion migration in powder-based perovskite thick films using an ionic liquid. Materials Chemistry C, 2021, 9, 11827-11837.	Journal of	2.7	5
31	Carbon nanodots enhanced performance of Cs0.15FA0.85PbI3 perovskite solar cells. I 2021, 14, 2294-2300.	Nano Research,	5.8	15
32	Passivation and process engineering approaches of halide perovskite films for high eff stability perovskite solar cells. Energy and Environmental Science, 2021, 14, 2906-295	ciency and 3.	15.6	170
33	Influence of the MACI additive on grain boundaries, trap-state properties, and charge of perovskite solar cells. Physical Chemistry Chemical Physics, 2021, 23, 6162-6170.	lynamics in	1.3	18
34	Three-dimensional tellurium and nitrogen Co-doped mesoporous carbons for high perf supercapacitors. RSC Advances, 2021, 11, 8628-8635.	ormance	1.7	10
35	Visualization of halide perovskite crystal growth processes by <i>in situ</i> heating W measurements. Chemical Communications, 2021, 57, 2685-2688.	AXS	2.2	1
36	Charge-transfer induced multifunctional BCP:Ag complexes for semi-transparent perov cells with a record fill factor of 80.1%. Journal of Materials Chemistry A, 2021, 9, 1200	/skite solar 9-12018.	5.2	29

#	Article	IF	CITATIONS
37	Tetra-indole core as a dual agent: a hole selective layer that passivates defects in perovskite solar cells. Journal of Materials Chemistry C, 2021, 9, 7074-7082.	2.7	8
38	A dithieno[3,2- <i>a</i> :3′,2′- <i>j</i>][5,6,11,12]chrysene diimide based polymer as an electron transport layer for efficient inverted perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 2703-2710.	2.7	2
39	Frenkel defects promote polaronic exciton dissociation in methylammonium lead iodide perovskites. Physical Chemistry Chemical Physics, 2021, 23, 6583-6590.	1.3	2
40	A novel 3-methylthiophene additive to boost the performance and stability of perovskite solar cells. RSC Advances, 2021, 11, 10425-10433.	1.7	9
41	Understanding the origin of broad-band emission in CH ₃ NH ₃ PbBr ₃ . Journal of Materials Chemistry C, 2021, 9, 2793-2800.	2.7	14
42	Recent Progress in Growth of Single-Crystal Perovskites for Photovoltaic Applications. ACS Omega, 2021, 6, 1030-1042.	1.6	35
43	Spontaneous Radiation Amplification in a Microsphereâ€Coupled CsPbBr ₃ Perovskite Vertical Structure. Advanced Optical Materials, 2021, 9, 2001932.	3.6	6
44	The Impact of PbI 2 :KI Alloys on the Performance of Sequentially Deposited Perovskite Solar Cells. European Journal of Inorganic Chemistry, 2021, 2021, 821-830.	1.0	5
45	Merocyanine with Hole-Transporting Ability and Efficient Defect Passivation Effect for Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 869-876.	8.8	64
46	Europium ions doped WOx nanorods for dual interfacial modification facilitating high efficiency and stability of perovskite solar cells. Nano Energy, 2021, 80, 105564.	8.2	26
47	Stabilizing Mixed Halide Lead Perovskites against Photoinduced Phase Segregation by A-Site Cation Alloying. ACS Energy Letters, 2021, 6, 837-847.	8.8	34
48	Highly In-Plane Polarization-Sensitive Photodetection in CsPbBr3 Single Crystal. Journal of Physical Chemistry Letters, 2021, 12, 1904-1910.	2.1	24
49	TiO2-Graphene Quantum Dots Nanocomposites for Photocatalysis in Energy and Biomedical Applications. Catalysts, 2021, 11, 319.	1.6	28
50	A multifunctional pentlandite counter electrode toward efficient and stable sensitized solar cells. Advanced Composites and Hybrid Materials, 2021, 4, 392-400.	9.9	28
51	Highâ€Performance Rb–Cs _{0.14} FA _{0.86} Pb(Br _{<i>x</i>} I _{1â^'<i>x</i>}) ₃ Perovskite Solar Cells Achieved by Regulating the Halogen Exchange in Vapor–Solid Reaction Process. Solar Rrl, 2021, 5, 2100102.	3.1	13
52	Controllable Synthesis, Core-Shell Nanostructures, and Supercapacitor Performance of Highly Uniform Polypyrrole/Polyaniline Nanospheres. ACS Applied Energy Materials, 2021, 4, 3701-3711.	2.5	28
53	Simultaneous Transport Promotion and Recombination Suppression in Perovskite Solar Cells by Defect Passivation with Li-Doped Graphitic Carbon Nitride. Journal of Physical Chemistry C, 2021, 125, 5525-5533.	1.5	7
54	Suppression of hysteresis in all-inorganic perovskite solar cells by the incorporation of PCBM. Applied Physics Letters, 2021, 118, .	1.5	18

#	Article	IF	CITATIONS
55	A Review on Encapsulation Technology from Organic Light Emitting Diodes to Organic and Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2100151.	7.8	114
56	Mesoscopic TiO ₂ /Nb ₂ O ₅ Electron Transfer Layer for Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2021, 8, 2100177.	1.9	20
57	Review of Interface Passivation of Perovskite Layer. Nanomaterials, 2021, 11, 775.	1.9	25
58	Bismuth Doping Alters Structural Phase Transitions in Methylammonium Lead Tribromide Single Crystals. Journal of Physical Chemistry Letters, 2021, 12, 2749-2755.	2.1	14
59	How antisolvent miscibility affects perovskite film wrinkling and photovoltaic properties. Nature Communications, 2021, 12, 1554.	5.8	63
60	Dual Additive for Simultaneous Improvement of Photovoltaic Performance and Stability of Perovskite Solar Cell. Advanced Functional Materials, 2021, 31, 2100396.	7.8	66
61	Tailoring the Dimensionality of Hybrid Perovskites in Mesoporous Carbon Electrodes for Typeâ€II Band Alignment and Enhanced Performance of Printable Holeâ€Conductorâ€Free Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2100292.	10.2	85
62	Highly crystalline methylammonium lead iodide films: Phase transition from tetragonal to cubic structure by thermal annealing. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, 022801.	0.9	1
63	Slow halide exchange in CsPbIBr2 films for high-efficiency, carbon-based, all-inorganic perovskite solar cells. Science China Materials, 2021, 64, 2107-2117.	3.5	10
64	Unusual Hole Transfer Dynamics of the NiO Layer in Methylammonium Lead Tri-iodide Absorber Solar Cells. Journal of Physical Chemistry Letters, 2021, 12, 2770-2779.	2.1	12
65	Multifunctional Two-Dimensional Conjugated Materials for Dopant-Free Perovskite Solar Cells with Efficiency Exceeding 22%. ACS Energy Letters, 0, , 1521-1532.	8.8	103
66	Creation of Highly Efficient and Durable Organic and Perovskite Solar Cells Using Nanocarbon Materials. Bulletin of the Chemical Society of Japan, 2021, 94, 1080-1089.	2.0	17
67	Monolithic all-perovskite tandem solar cells: recent progress and challenges. Journal of the Korean Ceramic Society, 2021, 58, 399-413.	1.1	14
68	Organic Tetrabutylammonium Cation Intercalation to Heal Inorganic CsPbl ₃ Perovskite. Angewandte Chemie, 2021, 133, 12459-12463.	1.6	24
69	An unconventional blade coating for low-cost fabrication of PCDTBT: PC70BM polymer and CH3NH3PbIxCl3-x perovskite solar cells. Surfaces and Interfaces, 2021, 23, 100969.	1.5	11
70	Microstructure Maps of Complex Perovskite Materials from Extensive Monte Carlo Sampling Using Machine Learning Enabled Energy Model. Journal of Physical Chemistry Letters, 2021, 12, 3591-3599.	2.1	16
71	Single-Step Microfluidic Synthesis of Halide Perovskite Nanolasers in Suspension. Chemistry of Materials, 2021, 33, 2777-2784.	3.2	13
72	Azahomofullerenes as New n-Type Acceptor Materials for Efficient and Stable Inverted Planar Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2021, 13, 20296-20 <u>304.</u>	4.0	13

#	Article	IF	CITATIONS
73	Organic Tetrabutylammonium Cation Intercalation to Heal Inorganic CsPbI ₃ Perovskite. Angewandte Chemie - International Edition, 2021, 60, 12351-12355.	7.2	94
74	Wide-Bandgap All-Inorganic CsPbIBr2 Top Cells With MoOx/Ag/TeO2 Composite Transparent Anode Towards Efficient Four-Terminal Perovskite/Si Tandem Solar Cells. IEEE Photonics Journal, 2021, 13, 1-8.	1.0	1
75	Photo-stable perovskite solar cells with reduced interfacial recombination losses using a CeOx interlayer. Science China Materials, 2021, 64, 1858-1867.	3.5	13
76	Effect of (CH ₃) ₂ Sn(COOH) ₂ Electron Transport Layer Thickness on Device Performance in n-i-p Planar Heterojunction Perovskite Solar Cells. Journal of Physical Chemistry C, 2021, 125, 7552-7559.	1.5	7
77	Efficient Optical Orientation and Slow Spin Relaxation in Lead-Free CsSnBr ₃ Perovskite Nanocrystals. ACS Energy Letters, 2021, 6, 1670-1676.	8.8	23
78	Material exploration via designing spatial arrangement of octahedral units: a case study of lead halide perovskites. Frontiers of Optoelectronics, 2021, 14, 252-259.	1.9	66
79	Band-Edge Orbital Engineering of Perovskite Semiconductors for Optoelectronic Applications. Journal of Physical Chemistry Letters, 2021, 12, 4227-4239.	2.1	50
80	On the role of solution-processed bathocuproine in high-efficiency inverted perovskite solar cells. Solar Energy, 2021, 218, 142-149.	2.9	23
81	Technical Challenges and Perspectives for the Commercialization of Solutionâ€Processable Solar Cells. Advanced Materials Technologies, 2021, 6, .	3.0	60
82	Quantum Dots for Photovoltaics: A Tale of Two Materials. Advanced Energy Materials, 2021, 11, 2100354.	10.2	77
83	19.59% Efficiency from Rb0.04-Cs0.14FA0.86Pb(Br I1â^')3 perovskite solar cells made by vapor–solid reaction technique. Science Bulletin, 2021, 66, 962-964.	4.3	19
84	Fluorinated Aromatic Formamidinium Spacers Boost Efficiency of Layered Ruddlesden–Popper Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 2072-2080.	8.8	66
85	One-step electrodeposition of CuSCN/CuI nanocomposite and its hole transport-ability in inverted planar perovskite solar cells. Nanotechnology, 2021, 32, 325402.	1.3	5
86	Nanoscale Silver Iodobismuthate Photosensitizer and Its Hybridization with Molecular Dye for Mesoporous TiO ₂ Film-based Solid-state Sensitized Solar Cells. Chemistry Letters, 2021, 50, 953-955.	0.7	1
87	Toward Large-Area and Fully Solution-Sheared Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 25926-25936.	4.0	13
88	Strategic Design of a Bifunctional NiFeCoW@NC Hybrid to Replace the Noble Platinum for Dye-Sensitized Solar Cells and Hydrogen Evolution Reactions. ACS Applied Materials & Interfaces, 2021, 13, 25010-25023.	4.0	17
89	Halide Perovskite Materials for Photo(Electro)Chemical Applications: Dimensionality, Heterojunction, and Performance. Advanced Energy Materials, 2022, 12, 2004002.	10.2	68
90	Regulating the Film Growth and Reducing the Defects for Efficient CsPbIBr ₂ Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 24654-24661.	4.0	21

#	Article	IF	CITATIONS
91	Electron Beam Irradiation of Lead Halide Perovskite Solar Cells: Dedoping of Organic Hole Transport Materials despite Hardness of the Perovskite Layer. ACS Applied Materials & Interfaces, 2021, 13, 24824-24832.	4.0	8
92	Exciton Self-Trapping Dynamics in 1D Perovskite Single Crystals: Effect of Quantum Tunnelling. Journal of Physical Chemistry Letters, 2021, 12, 4509-4516.	2.1	20
93	One-Step Spray-Coated All-Inorganic CsPbI ₂ Br Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 5466-5474.	2.5	16
94	Materials Design and Optimization for Next-Generation Solar Cell and Light-Emitting Technologies. Journal of Physical Chemistry Letters, 2021, 12, 4638-4657.	2.1	12
95	Methods of Stability Control of Perovskite Solar Cells for High Efficiency. Energies, 2021, 14, 2918.	1.6	12
96	In the Quest of Lowâ€Frequency Impedance Spectra of Efficient Perovskite Solar Cells. Energy Technology, 2021, 9, 2100229.	1.8	16
97	Modulating Polarization of Perovskite-Based Heterostructures via In Situ Semiconductor Generation and Enzyme Catalysis for Signal-Switchable Photoelectrochemical Biosensing. Analytical Chemistry, 2021, 93, 8370-8378.	3.2	32
98	Controlled growth of perovskite KMnF3 upconverting nanocrystals for near-infrared light-sensitive perovskite solar cells and photodetectors. Journal of Materials Science, 2021, 56, 14207-14221.	1.7	11
99	Investigation of polyaniline doped with camphorsulfonic acid in chloroform solution as a hole transporting layer in PTB7: PCBM and perovskite-based solar cells. Electrochimica Acta, 2021, 380, 138264.	2.6	14
100	Multiple-Noncovalent-Interaction-Stabilized Layered Dion–Jacobson Perovskite for Efficient Solar Cells. Nano Letters, 2021, 21, 5788-5797.	4.5	59
101	Charge Carrier Inhomogeneity of MAPbI3 Clarified by the Clustering of the Time-Resolved Microscopic Image Sequence. ACS Applied Energy Materials, 2021, 4, 6430-6435.	2.5	5
102	Symmetrical Conjugated Molecular Additive for Defect Passivation and Charge Transfer Bridge in Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 5935-5943.	2.5	14
103	Revealing Explicit Microsecond Carrier Diffusion from One Emission Center to Another in an All-Inorganic Perovskite Nanocrystal. Journal of Physical Chemistry Letters, 2021, 12, 5413-5422.	2.1	10
104	Preparation of nanoscale inorganic CsPbIxBr3-x perovskite photosensitizers on the surface of mesoporous TiO2 film for solid-state sensitized solar cells. Applied Surface Science, 2021, 551, 149387.	3.1	4
105	Simple and Convenient Interface Modification by Nanosized Diamond for Carbon Based All-Inorganic CsPbIBr ₂ Solar Cells. ACS Applied Energy Materials, 2021, 4, 5661-5667.	2.5	4
106	Recent progress in the high-temperature-resistant PI substrate with low CTE for CIGS thin-film solar cells. Materials Today Energy, 2021, 20, 100640.	2.5	23
107	Design of small molecular hole-transporting materials for stable and high-performance perovskite solar cells. Chemical Physics Reviews, 2021, 2, .	2.6	22
108	Improvement of the Resistive Switching Characteristics upon Halide Mixing in an All-Inorganic RbPbl ₃ Perovskite Polymer Composite Based Flexible Device. Journal of Physical Chemistry C, 2021, 125, 13610-13618.	1.5	27

#	ARTICLE	IF	CITATIONS
109	Resite Columnar Ordered Halida Doubla Perovskites: Theoretical Design and Experimental Verification		0
110	Journal of the American Chemical Society, 2021, 143, 10275-10281.	6.6	43
111	Broadband Photodetector Based on Inorganic Perovskite CsPbBr ₃ /GeSn Heterojunction. Small Methods, 2021, 5, e2100517.	4.6	26
112	Germaniumâ€Based Halide Perovskites: Materials, Properties, and Applications. ChemPlusChem, 2021, 86, 879-888.	1.3	50
113	Inclusion of 2D Transition Metal Dichalcogenides in Perovskite Inks and Their Influence on Solar Cell Performance. Nanomaterials, 2021, 11, 1706.	1.9	7
114	Performance Analysis of Perovskite Solar Cells Using DFT-Extracted Parameters of Metal-Doped TiO ₂ Electron Transport Layer. Journal of Physical Chemistry C, 2021, 125, 13158-13166.	1.5	20
115	Viscosity Blending Approach for 22.42% Efficient Perovskite Solar Cells. Bulletin of the Korean Chemical Society, 2021, 42, 1112-1120.	1.0	11
116	Managing Defects Density and Interfacial Strain via Underlayer Engineering for Inverted CsPbl ₂ Br Perovskite Solar Cells with All‣ayer Dopantâ€Free. Small, 2021, 17, e2101902.	5.2	14
117	Recent Progress on Formamidiniumâ€Đominated Perovskite Photovoltaics. Advanced Energy Materials, 2022, 12, 2100690.	10.2	45
118	Cs ₂ Zr _{1â^'} <i>_x</i> Te <i>_x</i> Cl ₆ Perovskite Microcrystals with Ultrahigh Photoluminescence Quantum Efficiency of 79.46% for High Light Efficiency White Light Emitting Diodes. Advanced Optical Materials, 2021, 9, 2100804.	3.6	36
119	Photon-assisted nanostructures of self-assembled soft materials. Nano Today, 2021, 38, 101199.	6.2	3
120	Light-Stable Methylammonium-Free Inverted Flexible Perovskite Solar Modules on PET Exceeding 10.5% on a 15.7 cm ² Active Area. ACS Applied Materials & amp; Interfaces, 2021, 13, 29576-29584.	4.0	22
121	Local Morphology Effects on the Photoluminescence Properties of Thin CsPbBr3 Nanocrystal Films. Nanomaterials, 2021, 11, 1470.	1.9	11
122	Overcoming Ni ³⁺ â€Induced Nonâ€Radiative Recombination at Perovskiteâ€Nickel Oxide Interfaces to Boost Voltages in Perovskite Solar Cells. Advanced Materials Interfaces, 2021, 8, 2100920.	1.9	25
123	Cation Dynamics in Hybrid Halide Perovskites. Annual Review of Materials Research, 2021, 51, 269-291.	4.3	21
124	Light emission from halide perovskite semiconductors: bulk crystals, thin films, and nanocrystals. Journal Physics D: Applied Physics, 2021, 54, 383001.	1.3	17
125	Effect of 2D perovskite layer and multivalent defect on the performance of 3D/2D bilayered perovskite solar cells through computational simulation studies. Solar Energy, 2021, 223, 193-201.	2.9	48
126	Enhancing Defect Tolerance with Ligands at the Surface of Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 6299-6304.	2.1	20

#	Article	IF	CITATIONS
127	Transformation and degradation of metal halide perovskites induced by energetic electrons and their practical implications. Nano Futures, 2021, 5, 032001.	1.0	4
128	Modification of compact TiO2 layer by TiCl4-TiCl3 mixture treatment and construction of high-efficiency carbon-based CsPbl2Br perovskite solar cells. Journal of Energy Chemistry, 2021, 63, 442-451.	7.1	17
129	ELECTRONIC AND OPTICAL MODIFICATION OF ORGANIC-HYBRID PEROVSKITES. Surface Review and Letters, 2021, 28, 2140010.	0.5	1
130	PdCu bimetallic nanoparticles decorated on ordered mesoporous silica (SBA-15) /MWCNTs as superior electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 25468-25485.	3.8	15
131	Constructing CdS-Based Electron Transporting Layers With Efficient Electron Extraction for Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2021, 11, 1014-1021.	1.5	6
132	Hole transporting electrodeposited PEDOT–polyelectrolyte layers for perovskite solar cells. Mendeleev Communications, 2021, 31, 454-455.	0.6	4
133	Electrical Conductivity of Halide Perovskites Follows Expectations from Classical Defect Chemistry. European Journal of Inorganic Chemistry, 2021, 2021, 2882-2889.	1.0	14
134	Mechanically robust, solar-driven, and degradable lignin-based polyurethane adsorbent for efficient crude oil spill remediation. Chemical Engineering Journal, 2021, 415, 128956.	6.6	83
135	Defect Passivation of Perovskite Films for Highly Efficient and Stable Solar Cells. Solar Rrl, 2021, 5, 2100295.	3.1	58
136	Fiberâ€Shaped Electronic Devices. Advanced Energy Materials, 2021, 11, 2101443.	10.2	74
136 137	Fiberâ€Shaped Electronic Devices. Advanced Energy Materials, 2021, 11, 2101443. Bioinspired molecules design for bilateral synergistic passivation in buried interfaces of planar perovskite solar cells. Nano Research, 2022, 15, 1069-1078.	10.2 5.8	74 52
136 137 138	Fiberâ€Shaped Electronic Devices. Advanced Energy Materials, 2021, 11, 2101443. Bioinspired molecules design for bilateral synergistic passivation in buried interfaces of planar perovskite solar cells. Nano Research, 2022, 15, 1069-1078. Quantitative F¶rster Resonance Energy Transfer: Efficient Light Harvesting for Sequential Photoâ€Thermoâ€Electric Conversion. Small, 2021, 17, e2103172.	10.2 5.8 5.2	74 52 13
136 137 138 139	Fiberâ€Shaped Electronic Devices. Advanced Energy Materials, 2021, 11, 2101443. Bioinspired molecules design for bilateral synergistic passivation in buried interfaces of planar perovskite solar cells. Nano Research, 2022, 15, 1069-1078. Quantitative F¶rster Resonance Energy Transfer: Efficient Light Harvesting for Sequential Photoâ€Fhermoâ€Electric Conversion. Small, 2021, 17, e2103172. Recent Advances of Perovskite Solar Cells Embedded with Plasmonic Nanoparticles. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100310.	10.2 5.8 5.2 0.8	74 52 13 12
136 137 138 139	Fiberâ €6 haped Electronic Devices. Advanced Energy Materials, 2021, 11, 2101443.Bioinspired molecules design for bilateral synergistic passivation in buried interfaces of planar perovskite solar cells. Nano Research, 2022, 15, 1069-1078.Quantitative Förster Resonance Energy Transfer: Efficient Light Harvesting for Sequential Photoâ€Thermoâ€Electric Conversion. Small, 2021, 17, e2103172.Recent Advances of Perovskite Solar Cells Embedded with Plasmonic Nanoparticles. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100310.Mechanism of Enhancement in Perovskite Solar Cells by Organosulfur Amine Constructed 2D/3D Heterojunctions. Journal of Physical Chemistry C, 2021, 125, 16428-16434.	10.2 5.8 5.2 0.8 1.5	74 52 13 12 23
 136 137 138 139 140 141 	Fiber‣haped Electronic Devices. Advanced Energy Materials, 2021, 11, 2101443. Bioinspired molecules design for bilateral synergistic passivation in buried interfaces of planar perovskite solar cells. Nano Research, 2022, 15, 1069-1078. Quantitative FŶrster Resonance Energy Transfer: Efficient Light Harvesting for Sequential Photoâ€Thermoâ€Electric Conversion. Small, 2021, 17, e2103172. Recent Advances of Perovskite Solar Cells Embedded with Plasmonic Nanoparticles. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100310. Mechanism of Enhancement in Perovskite Solar Cells by Organosulfur Amine Constructed 2D/3D Heterojunctions. Journal of Physical Chemistry C, 2021, 125, 16428-16434. Decisive Role of Elevated Mobility in X55 and X60 Hole Transport Layers for High-Performance Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 7681-7690.	10.2 5.8 5.2 0.8 1.5 2.5	 74 52 13 12 23 2
 136 137 138 139 140 141 142 	Fiberâ€5haped Electronic Devices. Advanced Energy Materials, 2021, 11, 2101443. Bioinspired molecules design for bilateral synergistic passivation in buried interfaces of planar perovskite solar cells. Nano Research, 2022, 15, 1069-1078. Quantitative F¶rster Resonance Energy Transfer: Efficient Light Harvesting for Sequential Photoâ€Flectric Conversion. Small, 2021, 17, e2103172. Recent Advances of Perovskite Solar Cells Embedded with Plasmonic Nanoparticles. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100310. Mechanism of Enhancement in Perovskite Solar Cells by Organosulfur Amine Constructed 2D/3D Heterojunctions. Journal of Physical Chemistry C, 2021, 125, 16428-16434. Decisive Role of Elevated Mobility in X55 and X60 Hole Transport Layers for High-Performance Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 7681-7690. Defect Passivation Effect of Chemical Groups on Perovskite Solar Cells. ACS Applied Materials & Amp; Interfaces, 2022, 14, 34161-34170.	10.2 5.8 5.2 0.8 1.5 2.5 4.0	 74 52 13 12 23 2 33
 136 137 138 139 140 141 142 143 	Fiberâ€6haped Electronic Devices. Advanced Energy Materials, 2021, 11, 2101443.Bioinspired molecules design for bilateral synergistic passivation in buried interfaces of planar perovskite solar cells. Nano Research, 2022, 15, 1069-1078.Quantitative FŶrster Resonance Energy Transfer: Efficient Light Harvesting for Sequential Photoå€Thermoå€Electric Conversion. Small, 2021, 17, e2103172.Recent Advances of Perovskite Solar Cells Embedded with Plasmonic Nanoparticles. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100310.Mechanism of Enhancement in Perovskite Solar Cells by Organosulfur Amine Constructed 2D/3D Heterojunctions. Journal of Physical Chemistry C, 2021, 125, 16428-16434.Decisive Role of Elevated Mobility in X55 and X60 Hole Transport Layers for High-Performance Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 7681-7690.Defect Passivation Effect of Chemical Groups on Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2022, 14, 34161-34170.Highå€Efficiency Carbonâ€Based CsPblBr ₂ Solar Cells with Interfacial Energy Loss Suppressed by a Thin Bulka€Heterojunction Layer. Solar Rrl, 2021, 5, 2100375.	 10.2 5.8 5.2 0.8 1.5 2.5 4.0 3.1 	 74 52 13 12 23 2 33 30

#	Article	IF	CITATIONS
145	A Facile and Effective Ozone Exposure Method for Wettability and Energy-Level Tuning of Hole-Transporting Layers in Lead-Free Tin Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 42935-42943.	4.0	10
146	Development and outlook of high output piezoelectric nanogenerators. Nano Energy, 2021, 86, 106080.	8.2	76
147	Hydrophobic compressed carbon/graphite based long-term stable perovskite solar cells. Materials Chemistry and Physics, 2021, 268, 124709.	2.0	7
148	Surfactant assisted electrochemical growth of ultra-thin CuSCN nanowires for inverted perovskite solar cell applications. Organic Electronics, 2021, 95, 106214.	1.4	4
149	Structural and Optoelectronic Properties of Two-Dimensional Ruddlesden–Popper Hybrid Perovskite CsSnBr3. Nanomaterials, 2021, 11, 2119.	1.9	7
150	Indoor Perovskite Photovoltaics for the Internet of Things—Challenges and Opportunities toward Market Uptake. Advanced Energy Materials, 2021, 11, 2101854.	10.2	52
151	Rapid discovery of narrow bandgap oxide double perovskites using machine learning. Computational Materials Science, 2021, 196, 110528.	1.4	33
152	Twoâ€Dimensional Antimonyâ€Based Perovskiteâ€Inspired Materials for Highâ€Performance Selfâ€Powered Photodetectors. Advanced Functional Materials, 2021, 31, 2106295.	7.8	32
153	Highly Stable Inorganic Lead Halide Perovskite toward Efficient Photovoltaics. Accounts of Chemical Research, 2021, 54, 3452-3461.	7.6	37
154	Performance optimization of homojunction perovskite solar cells by numerical simulation. Superlattices and Microstructures, 2021, 156, 106922.	1.4	6
155	Boosted Structural Stability and Interfacial Charge Transfer in C <i>_m</i> O <i>_n</i> Cl <i>_k</i> /[FA,MA]Pb _{1+<i>y</i>} l _{3 Heterostructures. Journal of Physical Chemistry C, 2021, 125, 18866-18876.}	}<‡ssub>	3
156	Metal Halide Perovskites for Solar Fuel Production and Photoreactions. Journal of Physical Chemistry Letters, 2021, 12, 8292-8301.	2.1	17
157	Unsupervised discovery of thin-film photovoltaic materials from unlabeled data. Npj Computational Materials, 2021, 7, .	3.5	13
158	Cost-Effective High-Throughput Calculation Based on Hybrid Density Functional Theory: Application to Cubic, Double, and Vacancy-Ordered Halide Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 7885-7891.	2.1	8
159	Role of Structural Phases and Octahedra Distortions in the Optoelectronic and Excitonic Properties of CsGeX ₃ (X = Cl, Br, I) Perovskites. Journal of Physical Chemistry C, 2021, 125, 19142-19155.	1.5	26
160	Antisolvent Engineering to Optimize Grain Crystallinity and Holeâ€Blocking Capability of Perovskite Films for Highâ€Performance Photovoltaics. Advanced Materials, 2021, 33, e2102816.	11.1	61
161	Charge transfer rates and electron trapping at buried interfaces of perovskite solar cells. Joule, 2021, 5, 2915-2933.	11.7	140
162	Efficient Computation of Structural and Electronic Properties of Halide Perovskites Using Density Functional Tight Binding: GFN1-xTB Method. Journal of Chemical Information and Modeling, 2021, 61, 4415-4424	2.5	16

#	Article	IF	CITATIONS
163	Star-shaped D-Ï€-D hole-transporting materials regulated by molecular planarity and their application in efficient perovskite solar cells. Journal of Power Sources, 2021, 506, 230102.	4.0	7
164	Perovskite Metal–Oxide–Semiconductor Structures for Interface Characterization. Advanced Materials Interfaces, 2021, 8, 2101004.	1.9	1
165	A Perspective on the Commercial Viability of Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100401.	3.1	33
166	Cyclohexylammoniumâ€Based 2D/3D Perovskite Heterojunction with Funnelâ€Like Energy Band Alignment for Efficient Solar Cells (23.91%). Advanced Energy Materials, 2021, 11, 2102236.	10.2	77
167	Solutionâ€Processed Compact Sb ₂ S ₃ Thin Films by a Facile One‣tep Deposition Method for Efficient Solar Cells. Solar Rrl, 2021, 5, 2100666.	3.1	16
168	Humidity-Assisted Chlorination with Solid Protection Strategy for Efficient Air-Fabricated Inverted CsPbI ₃ Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 3661-3668.	8.8	45
169	Ionic Liquid Additiveâ€Assisted Highly Efficient Electron Transport Layerâ€Free Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100648.	3.1	10
170	Energy landscape in silver-bismuth-iodide rudorffites: Combining scanning tunneling spectroscopy and Kelvin probe force microscopy. Physical Review Materials, 2021, 5, .	0.9	6
171	Boosting interfacial charge transfer by constructing rare earth–doped WOx nanorods/SnO2 hybrid electron transport layer for efficient perovskite solar cells. Materials Today Energy, 2021, 21, 100724.	2.5	8
172	Defects in CsPbX ₃ Perovskite: From Understanding to Effective Manipulation for Highâ€Performance Solar Cells. Small Methods, 2021, 5, e2100725.	4.6	37
173	Organic Matrix Assisted Lowâ€ŧemperature Crystallization of Black Phase Inorganic Perovskites. Angewandte Chemie, 2022, 134, .	1.6	3
174	Cost-Effective Strategy for the Synthesis of Air-Stable CH ₃ NH ₃ PbX ₃ (X = Cl, Br, and I) Quantum Dots with Bright Emission. Langmuir, 2021, 37, 11520-11525.	1.6	3
175	Polymerization stabilized black-phase FAPbI3 perovskite solar cells retain 100% of initial efficiency over 100Âdays. Chemical Engineering Journal, 2021, 419, 129482.	6.6	21
176	Moltenâ€Saltâ€Assisted CsPbl ₃ Perovskite Crystallization for Nearly 20%â€Efficiency Solar Cells. Advanced Materials, 2021, 33, e2103770.	11.1	81
177	Materials and Methods for Highâ€Efficiency Perovskite Solar Modules. Solar Rrl, 2022, 6, 2100455.	3.1	51
178	Sulfonated Dopantâ€Free Holeâ€Transport Material Promotes Interfacial Charge Transfer Dynamics for Highly Stable Perovskite Solar Cells. Advanced Sustainable Systems, 2021, 5, 2100244.	2.7	27
179	Influence of charge transporting layers on ion migration and interfacial carrier recombination in CH3NH3PbI3 perovskite solar cells. Chemical Physics Letters, 2021, 784, 139094.	1.2	3
180	Single-Source Thermal Ablation of halide perovskites, limitations and opportunities: The lesson of MAPbBr3. Journal of Alloys and Compounds, 2021, 875, 159954.	2.8	2

#	Article	IF	CITATIONS
181	Recent developments on hybrid perovskite materials for solar energy conversion and environmental protection. Current Opinion in Chemical Engineering, 2021, 33, 100708.	3.8	11
182	Surface-Orientation Elimination of Vapor-Deposited PbI ₂ Flakes for Efficient Perovskite Synthesis on Curved Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 45496-45504.	4.0	9
183	Multipulse Terahertz Spectroscopy Unveils Hot Polaron Photoconductivity Dynamics in Metal-Halide Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 8732-8739.	2.1	8
184	Understanding degradation mechanisms of perovskite solar cells due to electrochemical metallization effect. Solar Energy Materials and Solar Cells, 2021, 230, 111278.	3.0	20
185	Tinâ€Based Chiral Perovskites with Secondâ€Order Nonlinear Optical Properties. Advanced Photonics Research, 2021, 2, 2100056.	1.7	30
186	Optimization of TiO2 paste concentration employed as electron transport layers in fully ambient air processed perovskite solar cells with a low-cost architecture. Ceramics International, 2022, 48, 320-336.	2.3	36
187	Perovskite Anion Exchange: A Microdynamics Model and a Polar Adsorption Strategy for Precise Control of Luminescence Color. Advanced Functional Materials, 2021, 31, 2106871.	7.8	45
188	Nanoengineering Approaches to Tune Thermal and Electrical Conductivity of a BiSbTe Thermoelectric Alloy. Advanced Engineering Materials, 2022, 24, 2100955.	1.6	4
189	Femtosecond Upconversion Study of Interfacial Electron Transfer from Photoexcited CsPbBr ₃ Perovskite Nanocrystal to Rhodamine 6G. Journal of Physical Chemistry B, 2021, 125, 11017-11025.	1.2	7
190	Stability Issues of Perovskite Solar Cells: A Critical Review. Energy Technology, 2021, 9, 2100560.	1.8	31
191	Device simulation of FASnI3 based perovskite solar cell with Zn(O0.3, S0.7) as electron transport layer using SCAPS-1D. Optical Materials, 2021, 119, 111362.	1.7	79
192	A hole-transporting material with substituted fluorene as end groups for high-performance perovskite solar cells. Organic Electronics, 2022, 100, 106325.	1.4	8
193	Synergistic Effect of Defect Passivation and Crystallization Control Enabled by Bifunctional Additives for Carbon-Based Mesoscopic Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 45435-45445.	4.0	12
194	Ag/É'-Fe2O3 nanowire arrays enable effectively photoelectrocatalytic reduction of carbon dioxide to methanol. Journal of Power Sources, 2021, 507, 230272.	4.0	9
195	Synthesis and Spectroscopic Characterization of Thienopyrazine-Based Fluorophores for Application in Luminescent Solar Concentrators (LSCs). Molecules, 2021, 26, 5428.	1.7	7
196	Effect of Chemical Bonding Nature of Post-Treatment Materials on Photovoltaic Performance of Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 3435-3442.	8.8	34
197	Enhancing Performance and Stability of Tin Halide Perovskite Light Emitting Diodes via Coordination Engineering of Lewis Acid–Base Adducts. Advanced Functional Materials, 2021, 31, 2106974.	7.8	37
198	Organic Matrix Assisted Lowâ€ŧemperature Crystallization of Black Phase Inorganic Perovskites. Angewandte Chemie - International Edition, 2022, 61, .	7.2	32

#	Article	IF	CITATIONS
199	Synthesis of double emission Mn2+ doped CsPb (Cl/Br)3/SiO2 nanocrystals under the ethanol solution. Optical Materials, 2021, 120, 111462.	1.7	3
200	Perovskite Photovoltaic Devices with Carbonâ€Based Electrodes Withstanding Reverseâ€Bias Voltages up to –9 V and Surpassing IEC 61215:2016 International Standard. Solar Rrl, 2022, 6, 2100527.	3.1	35
201	Limitations and solutions for achieving high-performance perovskite tandem photovoltaics. Nano Energy, 2021, 88, 106219.	8.2	20
202	Embossed transparent electrodes assembled by bubble templates for efficient flexible perovskite solar cells. Nano Energy, 2021, 89, 106384.	8.2	28
203	Enhancing the performance of CsPbIBr2 solar cells through zinc halides doping. Synthetic Metals, 2021, 281, 116918.	2.1	5
204	Comprehensive passivation strategy for achieving inverted perovskite solar cells with efficiency exceeding 23% by trap passivation and ion constraint. Nano Energy, 2021, 89, 106370.	8.2	63
205	Mie-resonant mesoporous electron transport layer for highly efficient perovskite solar cells. Nano Energy, 2021, 89, 106484.	8.2	18
206	A bilateral cyano molecule serving as an effective additive enables high-efficiency and stable perovskite solar cells. Journal of Energy Chemistry, 2021, 62, 243-251.	7.1	35
207	Electrodeposition of nanostructured bilayer CuI@CuSCN as hole transport material for highly efficient inverted perovskite solar cells. Journal of Alloys and Compounds, 2021, 881, 160530.	2.8	20
208	Surface electrical properties modulation by multimode polarizations inside hybrid perovskite films investigated through contact electrification effect. Nano Energy, 2021, 89, 106318.	8.2	4
209	Visualizing band alignment across 2D/3D perovskite heterointerfaces of solar cells with light-modulated scanning tunneling microscopy. Nano Energy, 2021, 89, 106362.	8.2	13
210	Lead acetate (PbAc2)-derived and chloride-doped MAPbI3 solar cells with high fill factor resulting from optimized charge transport and trap state properties. Solar Energy, 2021, 228, 129-139.	2.9	8
211	Batch chemical bath deposition of large-area SnO2 film with mercaptosuccinic acid decoration for homogenized and efficient perovskite solar cells. Chemical Engineering Journal, 2021, 425, 131444.	6.6	29
212	Photostable electron-transport-layer-free flexible graphene quantum dots/perovskite solar cells by employing bathocuproine interlayer. Journal of Alloys and Compounds, 2021, 886, 161355.	2.8	10
213	Post-treatment by an ionic tetrabutylammonium hexafluorophosphate for improved efficiency and stability of perovskite solar cells. Journal of Energy Chemistry, 2022, 64, 8-15.	7.1	19
214	Recent strategies to improve moisture stability in metal halide perovskites materials and devices. Journal of Energy Chemistry, 2022, 65, 219-235.	7.1	23
215	Highly stable perovskite solar cells with a novel Ni-based metal organic complex as dopant-free hole-transporting material. Journal of Energy Chemistry, 2022, 65, 312-318.	7.1	11
216	A concentrated solar spectrum splitting photovoltaic cell-thermoelectric refrigerators combined system: Definition, combined system properties and performance evaluation. Energy, 2022, 238, 122042.	4.5	8

#	Article	IF	CITATIONS
217	Incorporation of Î ³ -aminobutyric acid and cesium cations to formamidinium lead halide perovskites for highly efficient solar cells. Journal of Energy Chemistry, 2022, 64, 561-567.	7.1	19
218	Complexity of Electron Injection Dynamics and Light Soaking Effects in Efficient Dyes for Modern DSSC. Energies, 2021, 14, 407.	1.6	1
219	Solution-processed NiO _x nanoparticles with a wide pH window as an efficient hole transport material for high performance tin-based perovskite solar cells. Journal Physics D: Applied Physics, 2021, 54, 144002.	1.3	8
220	Interfaces in metal halide perovskites probed by solid-state NMR spectroscopy. Journal of Materials Chemistry A, 2021, 9, 19206-19244.	5.2	28
221	Constructing high-performance H3PW12O40/CoS2 counter electrodes for quantum dot sensitized solar cells by reducing the surface work function of CoS2. Dalton Transactions, 2021, 50, 12879-12887.	1.6	4
222	Progress in copper metal halides for optoelectronic applications. Materials Chemistry Frontiers, 2021, 5, 4796-4820.	3.2	55
223	Solid-state NMR Studies of Halide Perovskite Materials with Photoconversion Potential. , 2021, , .		3
224	Influence of precursor solution temperature on the crystalline nature of mixed halide perovskite thin films grown by one-step deposition method. Journal of Materials Science: Materials in Electronics, 2021, 32, 2459-2470.	1.1	2
225	Nonlinear photocarrier dynamics and the role of shallow traps in mixed-halide mixed-cation hybrid perovskites. Journal of Materials Chemistry C, 2021, 9, 8204-8212.	2.7	6
226	A High-Voltage TENC-Based Droplet Energy Generator With Ultralow Liquid Consumption. IEEE Transactions on Nanobioscience, 2022, 21, 358-362.	2.2	6
227	Up-scalable emerging energy conversion technologies enabled by 2D materials: from miniature power harvesters towards grid-connected energy systems. Energy and Environmental Science, 2021, 14, 3352-3392.	15.6	26
228	Efficient surface passivation of perovskite films by a post-treatment method with a minimal dose. Journal of Materials Chemistry A, 2021, 9, 3441-3450.	5.2	60
229	Active area dependence of optoelectronic characteristics of perovskite LEDs. Journal of Materials Chemistry C, 2021, 9, 12661-12670.	2.7	8
230	Recent progress in integrated functional electrochromic energy storage devices. Journal of Materials Chemistry C, 2020, 8, 15507-15525.	2.7	68
231	Roadmap on organic–inorganic hybrid perovskite semiconductors and devices. APL Materials, 2021, 9, .	2.2	102
232	Enhanced Photovoltaic Properties of Perovskite Solar Cells by Employing Bathocuproine/Hydrophobic Polymer Films as Hole-Blocking/Electron-Transporting Interfacial Layers. Polymers, 2021, 13, 42.	2.0	10
233	Depth-dependent defect manipulation in perovskites for high-performance solar cells. Energy and Environmental Science, 2021, 14, 6526-6535.	15.6	114
234	Multiscale Simulation for Visible Light Communication using Perovskite Metasurface. , 2021, ,		2

		CITATION REPORT		
#	Article		IF	Citations
235	Metal nanoclusterâ€based devices: Challenges and opportunities. Aggregate, 2022, 3,	e132.	5.2	11
236	Organic π onjugated Molecules: From Nature to Artificial Applications. Where are t Israel Journal of Chemistry, 2022, 62, .	the Boundaries?.	1.0	5
237	Elimination of Interfacialâ€Electrochemicalâ€Reactionâ€Induced Polarization in Perovs for Ultrasensitive and Stable Xâ€Ray Detector Arrays. Advanced Materials, 2021, 33, e	;kite Single Crystals 2103078.	11.1	69
238	Evaluating the Band Gaps of Semiconductors by Cataluminescence. Analytical Chemist 14454-14461.	try, 2021, 93,	3.2	6
239	Polymerâ€Assisted Singleâ€6tep Slotâ€Die Coating of Flexible Perovskite Solar Cells a from Dimethyl Sulfoxide. ChemPlusChem, 2021, 86, 1442-1450.	t Mild Temperature	1.3	16
240	Structure–Composition–Property Relationships in Antiperovskite Nitrides: Guiding Design. ACS Applied Materials & Interfaces, 2021, 13, 48516-48524.	g a Rational Alloy	4.0	14
241	Unveiling the Effect of Potassium Treatment on the Mesoporous TiO ₂ / Pe Interface in Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 11488-1149	provskite 15.	2.5	13
242	Effect of illumination and applied potential on the electrochemical impedance spectra (FA/MA/Cs) 3D and 2D/3D perovskite solar cells. Journal of Electroanalytical Chemistry 115800.	in triple cation , 2021, 902,	1.9	9
243	Surface-coordinated metal-organic framework thin films (SURMOFs): From fabrication applications. EnergyChem, 2021, 3, 100065.	to energy	10.1	25
244	Light absorption enhancement in ultrathin perovskite solar cells using light scattering dielectric nanospheres. Optics Express, 2021, 29, 35366.	of high-index	1.7	6
245	Dynamic Symmetry Conversion in Mixed-Halide Hybrid Perovskite upon Illumination. A Letters, 2021, 6, 3858-3863.	CS Energy	8.8	5
246	Semitransparent Perovskite Solar Cells for Building Integration and Tandem Photovolta Strategies and Challenges. Solar Rrl, 2021, 5, 2100702.	aics: Design	3.1	31
247	Grain Boundary Engineering with Self-Assembled Porphyrin Supramolecules for Highly Large-Area Perovskite Photovoltaics. Journal of the American Chemical Society, 2021, 2	Efficient 143, 18989-18996.	6.6	83
248	Halide Perovskite Solar Cells for Building Integrated Photovoltaics: Transforming Buildi into Power Generators. Advanced Materials, 2022, 34, e2104661.	ng Façades	11.1	37
249	Interface Engineering of Mesoscopic Perovskite Solar Cells by Atomic Layer Deposition Ta ₂ O ₅ . ACS Applied Energy Materials, 2021, 4, 10433-1044	of -1.	2.5	9
250	Effects of many-body interactions on the transient optical properties of lead halide per Journal of Applied Physics, 2021, 130, .	ovskites.	1.1	3
251	Studying of the pressure-induced photoluminescence characteristics of CsPbI3 nanocr Materials, 2021, 122, 111648.	ystals. Optical	1.7	4
252	Dual-functional metal (IIB) diethyldithocarbamate salts passivation enabled high-efficie carbon-based CsPbIBr2 all-inorganic perovskite solar cells. Journal of Power Sources, 20 230675.	ncy and stable 021, 516,	4.0	7

#	Article	IF	CITATIONS
253	Probing the Role of Local Structure in Driving the Stability of Halide Perovskites CH ₃ NH ₃ PbX ₃ . Journal of Physical Chemistry C, 2021, 125, 24655-24662.	1.5	7
254	Efficient and stable mesoscopic perovskite solar cell in high humidity by localized Dion-Jacobson 2Dâ€3D heterostructures. Nano Energy, 2022, 91, 106666.	8.2	42
255	Structural distortion and photoconductive modulation of La1-xYxCoO3 epitaxial films. Ceramics International, 2022, 48, 3800-3807.	2.3	1
256	The Role of Alkyl Chain Length and Halide Counter Ion in Layered Dionâ^'Jacobson Perovskites with Aromatic Spacers. Journal of Physical Chemistry Letters, 2021, 12, 10325-10332.	2.1	23
257	Surface-tension release in PTAA-based inverted perovskite solar cells. Organic Electronics, 2022, 100, 106378.	1.4	20
258	High-Purity, Thick CsPbCl ₃ Films toward Selective Ultraviolet-Harvesting Visibly Transparent Photovoltaics. ACS Applied Energy Materials, 2021, 4, 12121-12127.	2.5	8
259	Naphthalene diimide-based electron transport materials for perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 27170-27192.	5.2	17
260	Development of encapsulation strategies towards the commercialization of perovskite solar cells. Energy and Environmental Science, 2022, 15, 13-55.	15.6	158
261	The high-performance MoO3â^'x/MXene cathodes for zinc-ion batteries based on oxygen vacancies and electrolyte engineering. Nano Energy, 2022, 91, 106651.	8.2	56
262	Synergistic passivation by alkali metal and halogenoid ions for high efficiency HTM-free carbon-based CsPbl2Br solar cells. Chemical Engineering Journal, 2022, 430, 133083.	6.6	26
263	Electron transport improvement of perovskite solar cells via intercalation of Na doped TiO2 from metal-organic framework MIL-125(Ti). Applied Surface Science, 2022, 574, 151735.	3.1	8
264	High-temperature inverted annealing for efficient perovskite photovoltaics. CrystEngComm, 0, , .	1.3	3
265	Device simulation of all-perovskite four-terminal tandem solar cells: towards 33% efficiency. EPJ Photovoltaics, 2021, 12, 4.	0.8	3
266	Interplay between Morphology and Electronic Structure in Emergent Organic and π-d Conjugated Organometal Thin Film Materials. Industrial & Engineering Chemistry Research, 2021, 60, 15365-15379.	1.8	2
267	Interfacial Defect Passivation and Charge Carrier Management for Efficient Perovskite Solar Cells via a Highly Crystalline Small Molecule. ACS Energy Letters, 2021, 6, 4209-4219.	8.8	63
268	Surface Reconstruction and In Situ Formation of 2D Layer for Efficient and Stable 2D/3D Perovskite Solar Cells. Small Methods, 2021, 5, e2101000.	4.6	33
269	Highly Efficient Bifacial Color‶unable Perovskite Solar Cells. Advanced Optical Materials, 2022, 10, 2101696.	3.6	7
270	A New Corner-Shared 1D Hybrid Lead Halide: Broad-Band Photoluminescence and Semiconductive Properties. Inorganic Chemistry Communication, 2021, , 109042.	1.8	3

#	Article	IF	CITATIONS
271	Highâ€Efficiency and Stable Perovskite Solar Cells Enabled by Lowâ€Dimensional Perovskite Surface Modifiers. Solar Rrl, 2022, 6, .	3.1	15
272	Recent Progress in Perovskiteâ€Based Reversible Photon–Electricity Conversion Devices. Advanced Functional Materials, 2022, 32, 2108926.	7.8	18
273	IngenierÃas de aditivos en celdas solares tipo perovskita. Ingenierias, 2021, 24, 3-12.	0.2	0
274	Magnetic-field manipulation of circularly polarized photoluminescence in chiral perovskites. Materials Horizons, 2022, 9, 740-747.	6.4	21
275	Organic building blocks at inorganic nanomaterial interfaces. Materials Horizons, 2022, 9, 61-87.	6.4	18
276	Interfacial fracture of hybrid organic–inorganic perovskite solar cells. Extreme Mechanics Letters, 2022, 50, 101515.	2.0	7
277	The evolution of small molecular acceptors for organic solar cells: Advances, challenges and prospects. Dyes and Pigments, 2022, 198, 109963.	2.0	13
278	Construction of nanostructured CH3NH3PbI3 layer for high-performance perovskite solar cells by Ar plasma etching. Materials Research Bulletin, 2022, 147, 111666.	2.7	7
279	Extended X-ray absorption fine structure (EXAFS) of FAPbI3 for understanding local structure-stability relation in perovskite solar cells. Journal of Energy Chemistry, 2022, 67, 549-554.	7.1	16
280	Top Thermal Annealing of 2D/3D Lead Halide Perovskites: Anisotropic Photoconductivity and Vertical Gradient of Dimensionality. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2021, 34, 263-269.	0.1	3
281	Skin-friendly corrugated multilayer microspherical sensor fabricated with silk fibroin, poly (lactic-co-glycolic acid), polyaniline, and kappa-carrageenan for wide range pressure detection. International Journal of Biological Macromolecules, 2022, 194, 755-762.	3.6	7
282	Perovskite intermediate phases fundamentally address the urgent stability issue. CheM, 2021, 7, 2862-2865.	5.8	2
283	Nanoscale chemical heterogeneity dominates the optoelectronic response of alloyed perovskite solar cells. Nature Nanotechnology, 2022, 17, 190-196.	15.6	75
284	Traversing Excitonic and Ionic Landscapes: Reduced-Dimensionality-Inspired Design of Organometal Halide Semiconductors for Energy Applications. Accounts of Chemical Research, 2021, 54, 4371-4382.	7.6	7
285	Synergetic effect of the surface ligand and SiO2 driven photoluminescence stabilization of the CH3NH3PbBr3 perovskite magic-sized clusters. Scientific Reports, 2021, 11, 22211.	1.6	5
286	Structural, Electronic Structure, and Photovoltaic Studies of MgO/TiO2/ITO Heterostructures. Journal of Electronic Materials, 2022, 51, 314-320.	1.0	2
287	Phosphine Oxide Additives for Highâ€Brightness Inorganic Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, 2101602.	3.6	12
288	Organic Devices: Fabrication, Applications, and Challenges. Journal of Electronic Materials, 2022, 51, 447-485.	1.0	20

#	Article	IF	Citations
289	Diammonium Molecular Configurationâ€Induced Regulation of Crystal Orientation and Carrier Dynamics for Highly Efficient and Stable 2D/3D Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	68
291	A methylammonium iodide healing method for CH ₃ NH ₃ PbI ₃ perovskite solar cells with high fill factor over 80%. Journal of Semiconductors, 2021, 42, 112202.	2.0	2
292	Colorful Transparent Silicon Photovoltaics with Unprecedented Flexibility. Advanced Functional Materials, 2022, 32, 2110435.	7.8	6
293	Restricting lithium-ion migration via Lewis base groups in hole transporting materials for efficient and stable perovskite solar cells. Chemical Engineering Journal, 2022, 433, 133534.	6.6	13
294	Diammonium Molecular Configurationâ€Induced Regulation of Crystal Orientation and Carrier Dynamics for Highly Efficient and Stable 2D/3D Perovskite Solar Cells. Angewandte Chemie, 2022, 134, .	1.6	28
295	Emerging Transistor Applications Enabled by Halide Perovskites. Accounts of Materials Research, 2022, 3, 8-20.	5.9	8
296	Mixed halide bulk perovskite triplet sensitizers: Interplay between band alignment, mid-gap traps, and phonons. Journal of Chemical Physics, 2021, 155, 234706.	1.2	8
297	The Role of Ending Groups in Nonâ€Fullerene Acceptors for Interfacial Modification in Perovskite Solar Cells. Solar Rrl, 0, , .	3.1	1
298	Microstructuring of 2D perovskites via ion-exchange fabrication. Applied Physics Letters, 2021, 119, 223102.	1.5	3
299	Study on Optical and Electrical Properties of Thermally Evaporated Tin Oxide Thin Films for Perovskite Solar Cells. Crystals, 2021, 11, 1380.	1.0	4
300	<scp>Formamidinium</scp> postâ€dripping on <scp>methylammonium lead iodide</scp> to achieve stable and efficient perovskite solar cells. International Journal of Energy Research, 2022, 46, 5306-5314.	2.2	7
301	Halogen Bond Involved Postâ€Treatment for Improved Performance of Printable Holeâ€Conductorâ€Free Mesoscopic Perovskite Solar Cells. Solar Rrl, 2022, 6, 2100851.	3.1	14
302	Two-Dimensional Organic Semiconductor-Incorporated Perovskite (OSiP) Electronics. ACS Applied Electronic Materials, 2021, 3, 5155-5164.	2.0	9
303	Stabilization Techniques of Lead Halide Perovskite for Photovoltaic Applications. Solar Rrl, 2022, 6, .	3.1	8
304	Hole transporting materials in inorganic CsPbI3â^'Br solar cells: Fundamentals, criteria and opportunities. Materials Today, 2022, 52, 250-268.	8.3	20
305	Interface Engineering in Perovskite Solar Cells by low concentration of PEAI solution in the antisolvent step. Energy Technology, 0, , .	1.8	5
306	Efficient Bulk Defect Suppression Strategy in FASnI ₃ Perovskite for Photovoltaic Performance Enhancement. Advanced Functional Materials, 2022, 32, 2107710.	7.8	40
307	Recent advances and emerging trends of rare-earth-ion doped spectral conversion nanomaterials in perovskite solar cells. Journal of Rare Earths, 2022, 40, 1651-1667.	2.5	19

#	Article	IF	CITATIONS
308	Chiral hybrid organic-inorganic metal halides: A route toward direct detection and emission of polarized light. Matter, 2021, 4, 3835-3851.	5.0	17
309	23.7% Efficient inverted perovskite solar cells by dual interfacial modification. Science Advances, 2021, 7, eabj7930.	4.7	205
310	Using Combinatorial Inkjet Printing for Synthesis and Deposition of Metal Halide Perovskites in Wavelength‧elective Photodetectors. Advanced Engineering Materials, 2022, 24, 2101111.	1.6	13
311	Infrared Colloidal Quantum Dot Image Sensors. IEEE Transactions on Electron Devices, 2022, 69, 2840-2850.	1.6	43
312	Solar energy conversion using first row d-block metal coordination compound sensitizers and redox mediators. Chemical Science, 2022, 13, 1225-1262.	3.7	35
313	Tailoring Phase Purity in the 2D/3D Perovskite Heterostructures Using Lattice Mismatch. ACS Energy Letters, 2022, 7, 550-559.	8.8	23
314	Perovskite Solar Cells Employing a PbSO ₄ (PbO) ₄ Quantum Dot-Doped Spiro-OMeTAD Hole Transport Layer with an Efficiency over 22%. ACS Applied Materials & Interfaces, 2022, 14, 2989-2999.	4.0	19
315	Fabrication of stable perovskite solar cells with efficiency over 20% in open air using <i>in situ</i> polymerized bi-functional additives. Journal of Materials Chemistry A, 2022, 10, 3688-3697.	5.2	16
316	Surface Defect Formation and Passivation in Formamidinium Lead Triiodide (FAPbI ₃) Perovskite Solar Cell Absorbers. Journal of Physical Chemistry Letters, 2022, 13, 324-330.	2.1	33
317	DFT and TDDFT investigation of four triphenylamine/phenothiazine-based molecules as potential novel organic hole transport materials for perovskite solar cells. Materials Chemistry and Physics, 2022, 278, 125603.	2.0	10
318	Evidence of auger heating in hot carrier cooling of CsPbBr3 nanocrystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635, 128025.	2.3	2
319	Impact of fluorine substitution in organic functional materials for perovskite solar cell. Dyes and Pigments, 2022, 198, 110029.	2.0	22
320	Effect of the substitution position and extending the conjugation in naphthalene-triphenylamine hole transport materials for perovskite solar cells. Synthetic Metals, 2022, 284, 116990.	2.1	4
321	An effective and economical encapsulation method for trapping lead leakage in rigid and flexible perovskite photovoltaics. Nano Energy, 2022, 93, 106853.	8.2	49
322	Uncovering synergistic effect of chloride additives for efficient quasi-2D perovskite solar cells. Chemical Engineering Journal, 2022, 432, 134367.	6.6	26
323	Stress-induced BiVO4 photoanode for enhanced photoelectrochemical performance. Applied Catalysis B: Environmental, 2022, 304, 121012.	10.8	52
324	Synergistic stabilization of CsPbI3 inorganic perovskite via 1D capping and secondary growth. Journal of Energy Chemistry, 2022, 68, 387-392.	7.1	16
325	Structural, magnetic, and dielectric properties of solution combustion synthesized LaFeO ₃ , LaFe _{0.9} Mn _{0.1} O ₃ , and LaMnO ₃ perovskites. Physical Chemistry Chemical Physics, 2022, 24, 5462-5478.	1.3	16

#	Article	IF	CITATIONS
326	Perovskite Solar Cells with Carbonâ€Based Electrodes – Quantification of Losses and Strategies to Overcome Them. Advanced Energy Materials, 2022, 12, .	10.2	29
327	Recent Advances in Organic and Organic–Inorganic Hybrid Materials for Piezoelectric Mechanical Energy Harvesting. Advanced Functional Materials, 2022, 32, .	7.8	124
328	Highly Anisotropic Organometal Halide Perovskite Nanowalls Grown by Glancingâ€Angle Deposition. Advanced Materials, 2022, 34, e2107739.	11.1	5
329	Formamidinium-based Ruddlesden–Popper perovskite films fabricated <i>via</i> two-step sequential deposition: quantum well formation, physical properties and film-based solar cells. Energy and Environmental Science, 2022, 15, 1144-1155.	15.6	27
330	Iontronic Electroluminescence Devices: Comparing Halide Perovskites and Conjugated Polymers. ACS Applied Electronic Materials, 2022, 4, 568-575.	2.0	4
331	Perovskite Nanowires for Next-Generation Optoelectronic Devices: Lab to Fab. ACS Applied Energy Materials, 2022, 5, 1342-1377.	2.5	9
332	Light-induced perovskite dynamic transformation enabling a photodetector to mimic a neuromorphic vision sensing system. Journal of Materials Chemistry C, 2022, 10, 3387-3395.	2.7	2
333	Retinomorphic optoelectronic devices for intelligent machine vision. IScience, 2022, 25, 103729.	1.9	16
334	Modification Strategies of Layered Double Hydroxides for Superior Supercapacitors. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	16
335	Coordination units of Mn ²⁺ modulation toward tunable emission in zero-dimensional bromides for white light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 2095-2102.	2.7	35
336	Methylthiophene terminated D–π–D molecular semiconductors as multifunctional interfacial materials for high performance perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 1862-1869.	2.7	4
337	Development of formamidinium lead iodide-based perovskite solar cells: efficiency and stability. Chemical Science, 2022, 13, 2167-2183.	3.7	37
338	Molecular Engineering in Perovskite Solar Cells: A Computational Study on 2â€Mercaptopyridine Derivatives as Surface Passivators against Water. Advanced Materials Interfaces, 2022, 9, .	1.9	11
339	The tin(<scp>ii</scp>) precursor is an active site to determine the crystal framework in CsSnI ₃ perovskite. Journal of Materials Chemistry A, 2022, 10, 4782-4790.	5.2	1
340	High throughput screening of promising lead-free inorganic halide double perovskites <i>via</i> first-principles calculations. Physical Chemistry Chemical Physics, 2022, 24, 3460-3469.	1.3	26
341	Emerging materials for circularly polarized light detection. Journal of Materials Chemistry C, 2022, 10, 2400-2410.	2.7	34
342	The first salicylaldehyde Schiff base organic–inorganic hybrid lead iodide perovskite ferroelectric. Chemical Communications, 2022, 58, 2192-2195.	2.2	7
343	Challenges for Thermally Stable Spiro-MeOTAD toward the Market Entry of Highly Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 34220-34227.	4.0	17

#	Article	IF	CITATIONS
344	Surface Passivation Using 2D Perovskites toward Efficient and Stable Perovskite Solar Cells. Advanced Materials, 2022, 34, e2105635.	11.1	221
345	Strain-induced bandgap engineering in CsGeX ₃ (X = I, Br or Cl) perovskites: insights from first-principles calculations. Physical Chemistry Chemical Physics, 2022, 24, 5448-5454.	1.3	12
346	Photothermal synergy for efficient dry reforming of CH ₄ by an Ag/AgBr/CsPbBr ₃ composite. Catalysis Science and Technology, 2022, 12, 1628-1636.	2.1	9
347	Deep Eutectic Solvents in Solar Energy Technologies. Molecules, 2022, 27, 709.	1.7	23
348	Ubiquitous clean and sustainable energy-driven self-rechargeable batteries realized by and used in organic electronics. Journal of Materials Chemistry C, 2022, 10, 388-412.	2.7	9
349	Potassium Iodide Doping Strategy for High-Efficiency Perovskite Solar Cells Revealed by Ultrafast Spectroscopy. Journal of Physical Chemistry Letters, 2022, 13, 711-717.	2.1	3
350	A π-extended triphenylamine based dopant-free hole-transporting material for perovskite solar cells <i>via</i> heteroatom substitution. Physical Chemistry Chemical Physics, 2022, 24, 4635-4643.	1.3	9
351	DFT study of electronic structure and mobility of pristine and fluorinated methylammonium lead halide perovskites (CH ₃ NH ₃ PbX ₃ , X = I, Br, Cl). International Journal of Energy Research, 2022, 46, 6889-6900.	2.2	5
352	How Ternary Cations and Binary Halogens Stabilize Trigonal FA _{1–<i>x</i>–<i>y</i>} MA _{<i>x</i>} Cs _{<i>y</i>} PbI _{3–<i>z</i> Perovskites: From a Single Crystal Perspective. Chemistry of Materials, 2022, 34, 1179-1190.}	⟨subb⊉Br <s< td=""><td>ubvai>z</td></s<>	ub v ai>z
353	Double Cascading Charge Transfer at Integrated Perovskite/Organic Bulk Heterojunctions for Extended Nearâ€Infrared Photoresponse and Enhanced Photocurrent. Small, 2022, 18, e2106083.	5.2	7
354	Decomposition of Organic Perovskite Precursors on MoO ₃ : Role of Halogen and Surface Defects. ACS Applied Materials & Interfaces, 2022, 14, 34208-34219.	4.0	9
355	Review on efficiency improvement effort of perovskite solar cell. Solar Energy, 2022, 233, 421-434.	2.9	74
356	Insight into the Enhanced Charge Transport in Quasi-2D Perovskite via Fluorination of Ammonium Cations for Photovoltaic Applications. ACS Applied Materials & Interfaces, 2022, 14, 7917-7925.	4.0	9
357	Electronic and Photovoltaic Properties of Superlattices Constructed by Organic–Inorganic Perovskites: a Theoretical Perspective. ACS Applied Energy Materials, 2022, 5, 2430-2441.	2.5	3
358	Electrochemical characterization of halide perovskites: Stability & doping. Materials Today Advances, 2022, 13, 100213.	2.5	5
359	Surface dipole affords high-performance carbon-based CsPbI2Br perovskite solar cells. Chemical Engineering Journal, 2022, 433, 134611.	6.6	24
360	Synergetic interfacial passivation, band alignment, and long-term stability with halide-optimized CsPbBr _{<i>x</i>} l _{3â²<i>x</i>} nanocrystals for high-efficiency MAPbl ₃ solar cells. Journal of Materials Chemistry C, 2022, 10, 5134-5140.	2.7	2
361	Photoelectrochemical energy storage materials: design principles and functional devices towards direct solar to electrochemical energy storage. Chemical Society Reviews, 2022, 51, 1511-1528.	18.7	113

#	ARTICLE	IF	CITATIONS
362	Preserving the stoichiometry of triple-cation perovskites by carrier-gas-free antisolvent spraying. Journal of Materials Chemistry A, 2022, 10, 19743-19749.	5.2	6
363	Optical emission from focused ion beam milled halide perovskite device crossâ€sections. Microscopy Research and Technique, 2022, 85, 2351-2355.	1.2	7
364	Revealing the strain-associated physical mechanisms impacting the performance and stability of perovskite solar cells. Joule, 2022, 6, 458-475.	11.7	64
365	Effect of Annealing in ITO Film Prepared at Various Argon-and-Oxygen-Mixture Ratios via Facing-Target Sputtering for Transparent Electrode of Perovskite Solar Cells. Coatings, 2022, 12, 203.	1.2	1
366	Antiseptic Povidone–Iodine Heals the Grain Boundary of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 8984-8991.	4.0	28
367	Two-dimensional material-based printed photonics: a review. 2D Materials, 2022, 9, 042003.	2.0	5
368	Achieve Better Performance of Inverted Perovskite Solar Cells by Using the Fluorinated Polymer as the Electron Transporting Layer. ACS Applied Energy Materials, 0, , .	2.5	2
369	Nanostructured Top Contact as an Alternative to Transparent Conductive Oxides in Tandem Perovskite/c-Si Solar Cells. Applied Sciences (Switzerland), 2022, 12, 1854.	1.3	0
370	Symmetrical Acceptor–Donor–Acceptor Molecule as a Versatile Defect Passivation Agent toward Efficient FA _{0.85} MA _{0.15} PbI ₃ Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	47
371	Luminescence behavior and temperature sensing properties of Sm3+-doped Cs4PbBr6 quantum dots encapsulated in borogermanate glass. Journal of Non-Crystalline Solids, 2022, 582, 121462.	1.5	6
372	Conformational Order of Alkyl Side Chain of Poly(3-alkylthiophene) Promotes Hole-Extraction Ability in Perovskite/Poly(3-alkylthiophene) Heterojunction. Journal of Physical Chemistry Letters, 2021, 12, 11817-11823.	2.1	8
373	SCAPS Simulation for Perovskite Solar Cell. Journal of Solar Energy Research Updates, 0, 8, 21-26.	0.0	7
374	Optimization of Active Antireflection Zno Films for P-Gaas-Based Heterojunction Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
375	Perovskite Solar Cells on Sn-Doped In2o3 Electrodes with Artificially Controlled (222) Preferred Orientation. SSRN Electronic Journal, 0, , .	0.4	0
376	Enhancing the lifetime of inverted perovskite solar cells using a new hydrophobic hole transport material. Energy Advances, 2022, 1, 312-320.	1.4	5
377	Simple benzothiadiazole derivatives as buried interface materials towards efficient and stable n–i–p perovskite solar cells. Journal of Materials Chemistry A, 0, , .	5.2	11
378	Sustainable development of perovskite solar cells: keeping a balance between toxicity and efficiency. Journal of Materials Chemistry A, 2022, 10, 8159-8171.	5.2	19
379	More Effective Perovskite Surface Passivation Strategy Via Optimized Functional Groups Enables Efficient P-I-N Perovskite Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0

#	ARTICLE	IF	CITATIONS
380	Anion Induced Bottom Surface Passivation for High Performance Perovskite Solar Cell. SSRN Electronic Journal, 0, , .	0.4	0
381	High-performance inorganic metal halide perovskite transistors. Nature Electronics, 2022, 5, 78-83.	13.1	121
382	Alkali Additives Enable Efficient Large Area (>55 cm ²) Slotâ€Đie Coated Perovskite Solar Modules. Advanced Functional Materials, 2022, 32, .	7.8	39
383	Rethinking the A cation in halide perovskites. Science, 2022, 375, eabj1186.	6.0	207
384	Halide Segregation in Mixed Halide Perovskites: Visualization and Mechanisms. Electronics (Switzerland), 2022, 11, 700.	1.8	7
385	Ultraviolet Photocatalytic Degradation of Perovskite Solar Cells: Progress, Challenges, and Strategies. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	16
386	Recent Progress on Perovskite Photodetectors for Narrowband Detection. Advanced Photonics Research, 2022, 3, .	1.7	21
388	Interfacial Energy Band Alignment Enables the Reduction of Potential Loss for Hole-Conductor-Free Printable Mesoscopic Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2022, 13, 2144-2149.	2.1	10
389	Internal Interactions between Mixed Bulky Organic Cations on Passivating Defects in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 11200-11210.	4.0	14
390	Highâ€Performance Perovskite Solar Cells via Simulation Interactive Technology. Solar Rrl, 2022, 6, .	3.1	4
391	Surface Treatment of Inorganic CsPbI3 Nanocrystals with Guanidinium lodide for Efficient Perovskite Light-Emitting Diodes with High Brightness. Nano-Micro Letters, 2022, 14, 69.	14.4	24
392	A Short Review on Surface onfined Monolayers of π onjugated Polymers for Photovoltaics. Solar Rrl, 0, , 2101086.	3.1	Ο
393	Single-atom sites on perovskite chips for record-high sensitivity and quantification in SERS. Science China Materials, 2022, 65, 1601-1614.	3.5	6
394	Combining Perovskites and Quantum Dots: Synthesis, Characterization, and Applications in Solar Cells, LEDs, and Photodetectors. Advanced Optical Materials, 2022, 10, .	3.6	23
395	Modular Perovskite Solar Cells with Cs0.05(FA0.85MA0.15)0.95Pb(10.85Br0.15)3 Light-Harvesting Layer and GrapheneÂElectrode. Journal of Electronic Materials, 2022, 51, 2381-2389.	1.0	4
396	Recent Advances on Tin Oxide Electron Transport Layer for High-Performance Perovskite Solar Cells. Ceramist, 2022, 25, 31-51.	0.0	0
397	Advanced Machine Learning Methods for Learning from Sparse Data in High-Dimensional Spaces: A Perspective on Uses in the Upstream of Development of Novel Energy Technologies. Physchem, 2022, 2, 72-95.	0.5	8
398	Interfacial Modification Engineering with Cs ₃ Cu ₂ I ₅ Nanocrystals for Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	4

#	Article	IF	CITATIONS
399	Path toward the Performance Upgrade of Lead-Free Perovskite Solar Cells Using Cu ₂ ZnSn _{1–<i>x</i>} Ge _{<i>x</i>} S ₄ as a Hole Transport Layer: A Theoretical Simulation Approach. Journal of Physical Chemistry C, 2022, 126, 5847-5862.	1.5	6
400	Inorganic CsPbBr ₃ Perovskite Nanocrystals as Interfacial Ion Reservoirs to Stabilize FAPbI ₃ Perovskite for Efficient Photovoltaics. Advanced Energy Materials, 2022, 12, .	10.2	22
401	Low-cost and stable SFX-based semiconductor materials in organic optoelectronics. , 2023, 2, 100-109.		2
402	Application of ultrathin TiO ₂ layers in solar energy conversion devices. Energy Science and Engineering, 2022, 10, 1614-1629.	1.9	19
403	A Selfâ€Formed Stable PbI ₂ /NiO _x Interface with Increased Ni ³⁺ Centers for Perovskite Photovoltaics. Chemistry - A European Journal, 2022, 28, e202200202.	1.7	4
404	Self-Powered and Flexible Triboelectric Sensors with Oblique Morphology towards Smart Swallowing Rehabilitation Monitoring System. Materials, 2022, 15, 2240.	1.3	3
405	Wideâ€Bandgap Organic–Inorganic Lead Halide Perovskite Solar Cells. Advanced Science, 2022, 9, e2105085.	5.6	60
406	Anthraceneâ€Bridged Sensitizers for Dyeâ€5ensitized Solar Cells with 37% Efficiency under Dim Light. Advanced Energy Materials, 2022, 12, .	10.2	21
407	Crystal Growth Regulation of 2D/3D Perovskite Films for Solar Cells with Both High Efficiency and Stability. Advanced Materials, 2022, 34, e2200705.	11.1	91
408	Surface Defect Engineering of Metal Halide Perovskites for Photovoltaic Applications. ACS Energy Letters, 2022, 7, 1230-1239.	8.8	46
409	Autonomous Reconstitution of Fractured Hybrid Perovskite Single Crystals. Advanced Materials, 2022, 34, e2109374.	11.1	11
410	Recent Developments on the Properties of Chalcogenide Thin Films. , 0, , .		4
411	Scalable and Blue Photoluminescence Emissions of (C4H9NH3)2PbBr4 2D Perovskite Fabricated by the Dip-Coating Method Using a Co-Solvent System. Crystals, 2022, 12, 418.	1.0	0
412	Systematic study of phase transformation, wide-to-narrow electronic band transition and optical properties of barium zirconium Oxynitrate: Ab initio calculations. Molecular Physics, 2022, 120, .	0.8	0
413	Flexible Perovskite Solar Cells: From Materials and Device Architectures to Applications. ACS Energy Letters, 2022, 7, 1412-1445.	8.8	54
414	Chemical Inductor. Journal of the American Chemical Society, 2022, 144, 5996-6009.	6.6	49
415	Impact of Cesium Concentration on Optoelectronic Properties of Metal Halide Perovskites. Materials, 2022, 15, 1936.	1.3	10
416	Nanophotonic-structured front contact for high-performance perovskite solar cells. Science China Materials, 2022, 65, 1727-1740.	3.5	5

#	Article	IF	CITATIONS
417	Weak magnetic field-dependent photoluminescence properties of lead bromide perovskites. Journal of Applied Physics, 2022, 131, .	1.1	2
418	Hysteresisâ€Free Planar Perovskite Solar Module with 19.1% Efficiency by Interfacial Defects Passivation. Solar Rrl, 2022, 6, .	3.1	9
419	Broad-Band-Enhanced Plasmonic Perovskite Solar Cells with Irregular Silver Nanomaterials. ACS Applied Materials & Interfaces, 2022, 14, 16269-16278.	4.0	16
420	Synergetic Effect on Enhanced Photovoltaic Performance of Spray-Coated Perovskite Solar Cells Enabled by Additive Doping and Antisolvent Additive Spraying Treatment. ACS Applied Energy Materials, 2022, 5, 4149-4158.	2.5	10
421	Controlling the Decomposition of Hybrid Perovskite by a Dithienopyrrole-Based Hole Transport Layer toward Thermostable Solar Cells. , 2022, 4, 600-608.		1
422	Physical Model for the Current–Voltage Hysteresis and Impedance of Halide Perovskite Memristors. ACS Energy Letters, 2022, 7, 1214-1222.	8.8	47
423	Self-Enhancement of Efficiency and Self-Attenuation of Hysteretic Behavior of Perovskite Solar Cells with Aging. Journal of Physical Chemistry Letters, 2022, 13, 2792-2799.	2.1	16
424	Interface Engineering for Efficient Raindrop Solar Cell. ACS Nano, 2022, 16, 5292-5302.	7.3	47
425	Sputtered WOx thin film as the electron transport layer for efficient perovskite solar cells. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	9
426	Sulfides as a new class of stable cost-effective materials compared to organic/inorganic hole transport materials for perovskite solar cells. Ceramics International, 2022, , .	2.3	4
427	Structural Evolution and Photoluminescence Properties of Twoâ€dimensional Lead Halide Perovskites. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	0.6	1
428	Advances in SnO ₂ for Efficient and Stable n–i–p Perovskite Solar Cells. Advanced Materials, 2022, 34, e2110438.	11.1	186
429	Near-Infrared Optical Response and Carrier Dynamics for High Photoconversion in Tellurene. Journal of Physical Chemistry C, 2022, 126, 6129-6134.	1.5	1
430	Solvent-engineered performance improvement of graphene quantum dot sensitized solar cells with nitrogen functionalized GQD photosensitizers. Solar Energy, 2022, 236, 17-25.	2.9	17
431	Modeling and numerical simulation of high efficiency perovskite solar cell with three active layers. Solar Energy, 2022, 236, 724-732.	2.9	21
432	Timeâ€Resolved Orientation and Phase Analysis of Lead Halide Perovskite Film Annealing Probed by In Situ GIWAXS. Advanced Optical Materials, 2022, 10, .	3.6	22
433	Perovskite Photovoltaics for Artificial Light Harvesting. Chemistry - A European Journal, 2022, 28, .	1.7	3
434	Ionic Liquidâ€Tuned Crystallization for Stable and Efficient Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	10

#	Article	IF	CITATIONS
435	Fabrication, characterization and simulation analysis of perovskite solar cells with dopant-free solution-processible C6PcH2 hole transporting material. Optical and Quantum Electronics, 2022, 54, 1.	1.5	0
436	The TiO ₂ films with sandwich-type polyoxometalates in dye sensitized solar cells with electron recombination decreasing and dye adsorption increasing. Journal of Coordination Chemistry, 0, , 1-15.	0.8	0
437	Theoretical study on the effect of electron transport layer parameters on the functionality of double-cation perovskite solar cells. Optik, 2022, 258, 168932.	1.4	7
438	Composition engineering to enhance the photovoltaic performance and to prolong the lifetime for silver bismuth iodide solar cell. Chemical Engineering Journal Advances, 2022, 10, 100275.	2.4	6
439	First-principles investigation of Rb2Tl(As/Bi)I6 for green technology. Chemical Physics Impact, 2022, 4, 100071.	1.7	2
440	Heating-insulating and semitransparent inorganic perovskite solar cells. Solar Energy Materials and Solar Cells, 2022, 240, 111683.	3.0	3
441	High-Efficiency and scalable Solution-Sheared perovskite solar cells using green solvents. Chemical Engineering Journal, 2022, 437, 135477.	6.6	10
442	Global instability index as a crystallographic stability descriptor of halide and chalcogenide perovskites. Journal of Energy Chemistry, 2022, 70, 1-8.	7.1	13
443	Modification of SnO2 electron transport Layer: Brilliant strategies to make perovskite solar cells stronger. Chemical Engineering Journal, 2022, 439, 135687.	6.6	40
444	Anion induced bottom surface passivation for high performance perovskite solar cell. Chemical Engineering Journal, 2022, 442, 135895.	6.6	5
445	Lightâ€Induced Synaptic Effects Controlled by Incorporation of Chargeâ€Trapping Layer into Hybrid Perovskite Memristor. Advanced Electronic Materials, 2022, 8, .	2.6	9
446	Cesium Copper Iodide Perovskite Nanoscale-Thick Films with Tunable Photoluminescence for White Light-Emitting Diodes. ACS Applied Nano Materials, 2022, 5, 917-924.	2.4	16
447	Interpretation of slow electroluminescence and open circuit voltage transient response in Cs-based perovskite solar cells. Journal of Applied Physics, 2021, 130, .	1.1	3
448	Highly Foldable Perovskite Solar Cells Using Embedded Polyimide/Silver Nanowires Conductive Substrates. Advanced Materials Interfaces, 2022, 9, .	1.9	12
449	Band alignment and carrier recombination roles on the open circuit voltage of ETLâ€passivated perovskite photovoltaics. International Journal of Energy Research, 2022, 46, 6022-6030.	2.2	2
450	Lead Leakage Preventable Fullereneâ€Porphyrin Dyad for Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	62
451	Mixed Dimensional Perovskites Heterostructure for Highly Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	23
452	Unveiling the Nature of Light-Triggered Hole Traps in Lead Halide Perovskites: A Study with Time-Dependent Density Functional Theory. Journal of Physical Chemistry Letters, 2021, 12, 12075-12083.	2.1	3

#	Article	IF	CITATIONS
453	Solar-to-Chemical Fuel Conversion via Metal Halide Perovskite Solar-Driven Electrocatalysis. Journal of Physical Chemistry Letters, 2022, 13, 25-41.	2.1	10
454	In Situ Stabilized CsPbl ₃ for Airâ€Fabricated Inverted Inorganic Perovskite Photovoltaics with Wide Humidity Operating Window. Advanced Functional Materials, 2022, 32, .	7.8	29
455	Foam-like 3D Graphene as a Charge Transport Modifier in Zinc Oxide Electron Transport Material in Perovskite Solar Cells. Photochem, 2021, 1, 523-536.	1.3	2
456	Suppressed J-V hysteresis in highly efficient inverted perovskite solar cells using small-molecule non-fullerene acceptor. , 2021, , .		0
457	Improved Performance of Perovskite Solar Cells by Suppressing the Energy-Level Shift of the PEDOT:PSS Hole Transport Layer. ACS Applied Energy Materials, 2021, 4, 14590-14598.	2.5	4
458	Perovskite Solar Cells Go Bifacial—Mutual Benefits for Efficiency and Durability. Advanced Materials, 2022, 34, e2106805.	11.1	31
459	β-Diketone Coordination Strategy for Highly Efficient and Stable Pb–Sn Mixed Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2021, 12, 11772-11778.	2.1	14
460	Stabilized tilted-octahedra halide perovskites inhibit local formation of performance-limiting phases. Science, 2021, 374, 1598-1605.	6.0	115
461	Recent Progress and Future Prospects on All-Organic Polymer Dielectrics for Energy Storage Capacitors. Chemical Reviews, 2022, 122, 3820-3878.	23.0	240
462	Matching Charge Extraction Contact for Infrared PbS Colloidal Quantum Dot Solar Cells. Small, 2022, 18, e2105495.	5.2	20
462 463	Matching Charge Extraction Contact for Infrared PbS Colloidal Quantum Dot Solar Cells. Small, 2022, 18, e2105495. Stable Formamidiniumâ€Based Centimeter Long Twoâ€Dimensional Lead Halide Perovskite Singleâ€Crystal for Longâ€Live Optoelectronic Applications. Advanced Functional Materials, 0, , 2112277.	5.2 7.8	20 8
462 463 464	Matching Charge Extraction Contact for Infrared PbS Colloidal Quantum Dot Solar Cells. Small, 2022, 18, e2105495. Stable Formamidiniumâ€Based Centimeter Long Twoâ€Dimensional Lead Halide Perovskite Singleâ€Crystal for Longâ€Live Optoelectronic Applications. Advanced Functional Materials, 0, , 2112277. An Ensemble Learning Platform for the Large-Scale Exploration of New Double Perovskites. ACS Applied Materials & amp; Interfaces, 2022, 14, 717-725.	5.2 7.8 4.0	20 8 16
462 463 464 465	Matching Charge Extraction Contact for Infrared PbS Colloidal Quantum Dot Solar Cells. Small, 2022, 18, e2105495. Stable Formamidiniumâ€Based Centimeter Long Twoâ€Dimensional Lead Halide Perovskite Singleâ€Crystal for Longâ€Live Optoelectronic Applications. Advanced Functional Materials, 0, , 2112277. An Ensemble Learning Platform for the Large-Scale Exploration of New Double Perovskites. ACS Applied Materials & amp; Interfaces, 2022, 14, 717-725. Composition Engineering to Enhance the Photovoltaic Performance and to Prolong the Lifetime for Silver Bismuth Iodide Solar Cell. SSRN Electronic Journal, 0, , .	5.27.84.00.4	20 8 16 0
462 463 464 465	Matching Charge Extraction Contact for Infrared PbS Colloidal Quantum Dot Solar Cells. Small, Stable Formamidiniumâ€Based Centimeter Long Twoâ€Dimensional Lead Halide Perovskite Singleâ€Crystal for Longâ€Live Optoelectronic Applications. Advanced Functional Materials, 0, , 2112277. An Ensemble Learning Platform for the Large-Scale Exploration of New Double Perovskites. ACS Applied Materials & amp; Interfaces, 2022, 14, 717-725. Composition Engineering to Enhance the Photovoltaic Performance and to Prolong the Lifetime for silver Bismuth Iodide Solar Cell. SSRN Electronic Journal, 0, , . Aziridinium cation templating 3D lead halide hybrid perovskites. Chemical Communications, 2022, 58, 5745-5748.	 5.2 7.8 4.0 0.4 2.2 	20 8 16 0
 462 463 464 465 466 467 	Matching Charge Extraction Contact for Infrared PbS Colloidal Quantum Dot Solar Cells. Small, 2022, 18, e2105495.Stable Formamidiniumâ€Based Centimeter Long Twoâ€Dimensional Lead Halide Perovskite Singleâ€Crystal for Longâ€Live Optoelectronic Applications. Advanced Functional Materials, 0, , 2112277.An Ensemble Learning Platform for the Large-Scale Exploration of New Double Perovskites. ACS Applied Materials & amp; Interfaces, 2022, 14, 717-725.Composition Engineering to Enhance the Photovoltaic Performance and to Prolong the Lifetime for Silver Bismuth Iodide Solar Cell. SSRN Electronic Journal, 0, , .Aziridinium cation templating 3D lead halide hybrid perovskites. Chemical Communications, 2022, 58, 5745-5748.Tb ^{3+Tb^{3+Tb^{-Doped CsPbCl₂Br₁ Nanocrystal Glasses for High-Performance Silicon Photodetectors. ACS Applied Nano Materials, 2022, 5, 6447-6454.}}}	 5.2 7.8 4.0 0.4 2.2 2.4 	 20 8 16 0 24 8
 462 463 464 465 466 467 468 	Matching Charge Extraction Contact for Infrared PbS Colloidal Quantum Dot Solar Cells. Small, 2022, 18, e2105495. Stable Formamidiniumâ€Based Centimeter Long Twoâ€Dimensional Lead Halide Perovskite Singleâ€Crystal for Longâ€Live Optoelectronic Applications. Advanced Functional Materials, 0, , 2112277. An Ensemble Learning Platform for the Large-Scale Exploration of New Double Perovskites. ACS Applied Materials & amp; Interfaces, 2022, 14, 717-725. Composition Engineering to Enhance the Photovoltaic Performance and to Prolong the Lifetime for Silver Bismuth Iodide Solar Cell. SSRN Electronic Journal, 0, , . Aziridinium cation templating 3D lead halide hybrid perovskites. Chemical Communications, 2022, 58, 5745-5748. Tb ³⁺ -Doped CsPbCl ₂ Br ₁ Nanocrystal Glasses for High-Performance self-powered UV photodetector based on Cul/CsCu2l3/GaN heterojunction. Chemical Engineering Journal, 2022, 450, 136364.	 5.2 7.8 4.0 0.4 2.2 2.4 6.6 	20 8 16 0 24 8
 462 463 464 465 466 467 468 469 	Matching Charge Extraction Contact for Infrared PbS Colloidal Quantum Dot Solar Cells. Small, 2022, 18, e2105495.Stable Formamidiniumã&Based Centimeter Long Twoâ&Dimensional Lead Halide Perovskite Singleã&Crystal for Longã&Live Optoelectronic Applications. Advanced Functional Materials, 0, , 2112277.An Ensemble Learning Platform for the Large-Scale Exploration of New Double Perovskites. ACS Applied Materials & amp; Interfaces, 2022, 14, 717-725.Composition Engineering to Enhance the Photovoltaic Performance and to Prolong the Lifetime for Silver Bismuth Iodide Solar Cell. SSRN Electronic Journal, 0, , .Aziridinium cation templating 3D lead halide hybrid perovskites. Chemical Communications, 2022, 58, 5745-5748.Tb ³⁺ -Doped CsPbCl ₂ Br ₁ Nanocrystal Glasses for High-Performance self-powered UV photodetector based on Cul/CsCu2I3/GaN heterojunction. Chemical Engineering Journal, 2022, 450, 136364.Agã@"Bi Charge Redistribution Creates Deep Traps in Defective Cs ₂ AgBiBr ₆ : Machine Learning Analysis of Density Functional Theory. Journal of Physical Chemistry Letters, 2022, 13, 3645-3651.	 5.2 7.8 4.0 0.4 2.2 2.4 6.6 2.1 	 20 8 16 0 24 8 22 18

#	Article	IF	CITATIONS
471	Influence of the Halide Ion on the A-Site Dynamics in FAPb <i>X</i> ₃ (<i>X</i> = Br and Cl). Journal of Physical Chemistry C, 2022, 126, 7158-7168.	1.5	6
472	Molecular engineering of starâ€shaped indoline hole transport materials: The influence of planarity on the hole extraction and transport processes. Chemistry - A European Journal, 2022, , .	1.7	1
473	Hot-substrate assisted deposition for Cs-rich α-Cs1-xFAxPbI2Br (0Ââ‰ÂxÂâ‰Â0.4) films. Solar Energy, 2022, 23 126-131.	³⁸ 2.9	1
474	Shifting to Transparent/Hazy Properties: The Case of Alginate/Network Cellulose Allâ€Polysaccharide Composite Films. Macromolecular Rapid Communications, 2022, 43, e2200172.	2.0	7
475	A nanofibrillar conjugated polymer film as an interface layer for high-performance CsPblBr ₂ solar cells with efficiency exceeding 11%. Sustainable Energy and Fuels, 2022, 6, 2692-2699.	2.5	4
476	Compositional engineering of doped zero-dimensional zinc halide blue emitters for efficient X-ray scintillation. Inorganic Chemistry Frontiers, 2022, 9, 2987-2996.	3.0	16
477	Combinatorial Exploration of Monovalent Metals (M, M′) in Alkali, 11th-, and 13th-Group Elements toward (M/M′)–(Bi/Sb)–I Solar Cells. ACS Applied Energy Materials, 2022, 5, 6291-6301.	2.5	1
478	Recent review on electron transport layers in perovskite solar cells. International Journal of Energy Research, 2022, 46, 21441-21451.	2.2	24
479	Rashba and Dresselhaus effects in two-dimensional Pb-I-based perovskites. Physical Review B, 2022, 105, .	1.1	7
480	Polariton condensates for classical and quantum computing. Nature Reviews Physics, 2022, 4, 435-451.	11.9	51
481	Microscopic Interfacial Charge Transfer at Perovskite/Hole Transport Layer Interfaces Clarified Using Pattern-Illumination Time-Resolved Phase Microscopy. Journal of Physical Chemistry C, 2022, 126, 7548-7555.	1.5	1
482	Rational selection of the polymeric structure for interface engineering of perovskite solar cells. Joule, 2022, 6, 1032-1048.	11.7	72
483	Enabled Uniform Zn Stripping/Plating by Natural Halloysite Nanotube Coating with Opposite Charge for Aqueous Zn-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 5838-5846.	3.2	13
484	Perovskite Singleâ€Crystal Solar Cells: Advances and Challenges. Solar Rrl, 2022, 6, .	3.1	19
485	Constructing Efficient Hole-Transporting Materials by Tuning Fluorine Substitution for Inverted Perovskite Solar Cells with Efficiency Exceeding 20%. ACS Applied Energy Materials, 2022, 5, 5901-5908.	2.5	15
486	Unraveling the irreversible transformation by nucleophilic substitution: A hint for fully transparent perovskite. EcoMat, 2022, 4, .	6.8	9
487	Pseudohalide-Assisted Growth of Oriented Large Grains for High-Performance and Stable 2D Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 1842-1849.	8.8	29
488	Enhanced Efficiency of Semitransparent Perovskite Solar Cells via Double-Sided Sandwich Evaporation Technique for Four Terminal Perovskite-Silicon Tandem Application. Nanomaterials, 2022, 12, 1569.	1.9	6

#	Article	IF	Citations
489	Time-resolved vibrational-pump visible-probe spectroscopy for thermal conductivity measurement of metal-halide perovskites. Review of Scientific Instruments, 2022, 93, .	0.6	5
490	Strategies for highâ€performance perovskite solar cells from materials, film engineering to carrier dynamics and photon management. InformaÄnÃ-Materiály, 2022, 4, .	8.5	27
491	NiO _x Nanocrystals with Tunable Size and Energy Levels for Efficient and UV Stable Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	32
492	Recent Progress in Ionic Liquids for Stability Engineering of Perovskite Solar Cells. Small Structures, 2022, 3, .	6.9	30
493	Efficiency improvement of inverted perovskite solar cells enabled by PTAA/MoS ₂ double hole transporters. Nanotechnology, 2022, 33, 335202.	1.3	4
494	Multifunctional Organic Additive for Improving the Open Circuit Voltage of Perovskite Solar Cells. Solar Rrl, 0, , .	3.1	5
495	Improving the Stability and Efficiency of Perovskite Solar Cells by a Bidentate Anilinium Salt. Jacs Au, 2022, 2, 1306-1312.	3.6	11
496	A Doped Hole Transport Layer Qualified for 100°Câ€Tolerant Perovskite Solar Cells. Advanced Optical Materials, 0, , 2200515.	3.6	0
497	Photocatalytic degradation of lomefloxacin antibiotics using hydrothermally synthesized magnesium titanate under visible light-driven energy sources. Environmental Science and Pollution Research, 2022, 29, 67969-67980.	2.7	11
498	Flexible perovskite solar cells: Material selection and structure design. Applied Physics Reviews, 2022, 9, .	5.5	19
499	Active phase stabilization and photovoltaic performance improvement in mixed-cation formamidinium cesium lead iodide via dimensional engineering with 5-ammonium valeric acid bromide. Sustainable Materials and Technologies, 2022, 32, e00438.	1.7	2
500	Study of DMSO concentration on the optical and structural properties of perovskite CH3NH3PbI3 and its use in solar cells. Journal of Solid State Chemistry, 2022, 312, 123158.	1.4	6
501	Charge-selective-contact-dependent halide phase segregation in CsPbIBr2 perovskite solar cells and its correlation to device degradation. Applied Surface Science, 2022, 595, 153544.	3.1	4
502	Ultrafast Growth of High-Quality Cs _{0.14} FA _{0.86} Pb(Br _{<i>x</i>} I _{1–<i>x</i>}) ₃ Thin Films Achieved Using Super-Close-Space Sublimation. ACS Applied Energy Materials, 2022, 5, 5797-5803	2.5	9
503	Photoinduced Cross Linkable Polymerization of Flexible Perovskite Solar Cells and Modules by Incorporating Benzyl Acrylate. Advanced Functional Materials, 2022, 32, .	7.8	32
504	Microâ€Nano Structure Functionalized Perovskite Optoelectronics: From Structure Functionalities to Device Applications. Advanced Functional Materials, 2022, 32, .	7.8	25
505	Suppression of Coffeeâ€Ring Effect in Airâ€Processed Inkjetâ€Printed Perovskite Layer toward the Fabrication of Efficient Large‧ized Allâ€Printed Photovoltaics: A Perovskite Precursor Ink Concentration Regulation Strategy. Solar Rrl, 2022, 6, .	3.1	9
506	Highly Crystalline Graphene as the Atomic 2D Blanket of a Perovskite Absorber for Enhanced Photovoltaic Performance. ACS Applied Materials & amp; Interfaces, 2022, 14, 24864-24874.	4.0	3

#	Article	IF	CITATIONS
507	Ionic Dopant-Free Polymer Alloy Hole Transport Materials for High-Performance Perovskite Solar Cells. Journal of the American Chemical Society, 2022, 144, 9500-9509.	6.6	85
508	Porous organic polymers in solar cells. Chemical Society Reviews, 2022, 51, 4465-4483.	18.7	21
509	Tin-based halide perovskite materials: properties and applications. Chemical Science, 2022, 13, 6766-6781.	3.7	31
510	Impact of processing conditions on the film formation of lead-free halide double perovskite Cs ₂ AgBiBr ₆ . Journal of Materials Chemistry A, 2022, 10, 19868-19880.	5.2	12
511	Exploration of charge transport materials to improve the radiation tolerance of lead halide perovskite solar cells. Materials Advances, 2022, 3, 4861-4869.	2.6	4
512	Electronic structure and interfacial features of triphenylamine- and phenothiazine-based hole transport materials for methylammonium lead iodide perovskite solar cells. Physical Chemistry Chemical Physics, 2022, 24, 14993-15002.	1.3	4
513	Ligands Mediate Anion Exchange between Colloidal Lead-Halide Perovskite Nanocrystals. Nano Letters, 2022, 22, 4340-4346.	4.5	29
514	Recent Advances in the Design of Multiâ€5ubstituted Carbazoles for Optoelectronics: Synthesis and Structureâ€Property Outlook. ChemPhotoChem, 2022, 6, .	1.5	19
515	Perovskite modifiers with porphyrin/phthalocyanine complexes for efficient photovoltaics. Journal of Coordination Chemistry, 2022, 75, 1494-1519.	0.8	2
516	Reconfiguring perovskite interface via R4NBr addition reaction toward efficient and stable FAPbI3-based solar cells. Science China Chemistry, 2022, 65, 1185-1195.	4.2	5
517	Photovoltaic performance of bifacial perovskite/c-Si tandem solar cells. Journal of Power Sources, 2022, 540, 231622.	4.0	3
518	Improving the Performance of 2d Perovskite Solar Cells by Carrier Trappings and Minifying the Grain Boundaries. SSRN Electronic Journal, 0, , .	0.4	0
519	Experimental Investigation on Photothermal Conversion Properties of Collagen Solution-Based Carbon Black Nanofluid. SSRN Electronic Journal, 0, , .	0.4	0
520	Tunable Photovoltaics: Adapting Solar Cell Technologies to Versatile Applications. Advanced Energy Materials, 2022, 12, .	10.2	27
521	Downconversion Materials for Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	18
522	Toward Efficient Perovskite Solar Cells: Progress, Strategies, and Perspectives. ACS Energy Letters, 2022, 7, 2084-2091.	8.8	68
523	A Thiophene Based Dopant-Free Hole-Transport Polymer for Efficient and Stable Perovskite Solar Cells. Macromolecular Research, 2022, 30, 391-396.	1.0	5
524	Two-dimensional material inks. Nature Reviews Materials, 2022, 7, 717-735.	23.3	71

#	Article	IF	CITATIONS
525	An Innovative Anode Interface Combination for Perovskite Solar Cells with Improved Efficiency, Stability, and Reproducibility. Solar Rrl, 2022, 6, .	3.1	3
526	Solution-processed perovskite crystals for electronics: Moving forward. Matter, 2022, 5, 1700-1733.	5.0	3
527	Multiple-Route Exciton Recombination Dynamics and Improved Stability of Perovskite Quantum Dots by Plasmonic Photonic Crystal. Journal of Physical Chemistry Letters, 2022, 13, 5040-5048.	2.1	4
528	Postsynthesis Transformation of Halide Perovskite Nanocrystals. ACS Energy Letters, 2022, 7, 2136-2155.	8.8	18
529	A-site cation effect on optical phonon modes and thermal stability in lead-based perovskite bromide single crystals using Raman spectroscopy. Journal of the Korean Physical Society, 2022, 81, 230-240.	0.3	7
530	Lead-Free Double Perovskite Cs ₂ NaErCl ₆ : Li ⁺ as High-Stability Anodes for Li-Ion Batteries. Journal of Physical Chemistry Letters, 2022, 13, 4981-4987.	2.1	6
531	Large area bar coated TiO2 electron transport layers for perovskite solar cells with excellent performance homogeneity. Solar Energy, 2022, 240, 258-268.	2.9	13
532	Understanding the p-doping of spiroOMeTAD by tris(pentafluorophenyl)borane. Electrochimica Acta, 2022, 424, 140602.	2.6	9
533	Screen-printed contacts for crystalline silicon solar cells: an overview. Emerging Materials Research, 2022, 11, 284-302.	0.4	1
534	Mixed dimensionality of 2D/3D heterojunctions for improving charge transport and long-term stability in high-efficiency 1.63 eV bandgap perovskite solar cells. Materials Advances, 2022, 3, 5786-5795.	2.6	1
535	High performance resistive memory device based on highly stable layered CsPb2Br5 perovskite polymer nanocomposite. Journal of Alloys and Compounds, 2022, 921, 166014.	2.8	5
536	Potassium oleate as an effective interface modifier for defect passivation in planar perovskite solar cells. Functional Materials Letters, 0, , .	0.7	1
537	Sub-100-picosecond time resolution from undoped and Li-doped two-dimensional perovskite scintillators. Applied Physics Letters, 2022, 120, .	1.5	8
541	Photoelectric Properties of Planar and Mesoporous Structured Perovskite Solar Cells. Materials, 2022, 15, 4300.	1.3	7
542	Grain Boundary Chemical Anchoring via Bidirectional Active Site Additive Enables Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2022, 9, .	1.9	8
543	Effect of Optical–Electrical–Thermal Coupling on the Performance of High-Concentration Multijunction Solar Cells. Applied Sciences (Switzerland), 2022, 12, 5888.	1.3	2
544	Molecular Doping Enabling Mobility Boosting of 2D Sn ²⁺ â€Based Perovskites. Advanced Functional Materials, 2022, 32, .	7.8	18
545	Photonic-Structured Perovskite Solar Cells: Detailed Optoelectronic Analysis. ACS Photonics, 2022, 9, 2408-2421.	3.2	9

#	Article	IF	CITATIONS
546	Highly Efficient and Stable 2D Dion Jacobson/3D Perovskite Heterojunction Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 29744-29753.	4.0	17
547	Lead-less perovskite alloy nanowire photodetector with high performance. Colloids and Interface Science Communications, 2022, 49, 100638.	2.0	4
548	Construction of multilevel network structured carbon nanofiber counter electrode and back interface engineering in all inorganic HTL–free perovskite solar cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129420.	2.3	3
549	Recent Progress in Mixed Aâ€Site Cation Halide Perovskite Thinâ€Films and Nanocrystals for Solar Cells and Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	3.6	47
550	Lattice Dynamics and Spin-Phonon Coupling in the Noncollinear Antiferromagnetic Antiperovskite Mn3nin. SSRN Electronic Journal, 0, , .	0.4	0
551	Oxidative polymerization of triarylamines: a promising route to low-cost hole transport materials for efficient perovskite solar cells. Sustainable Energy and Fuels, 2022, 6, 3485-3489.	2.5	2
552	Bi ³⁺ and Sm ³⁺ co-doped Cs ₂ AgInCl ₆ perovskite microcrystals with co-enhancement of fluorescence emission. New Journal of Chemistry, 2022, 46, 15192-15199.	1.4	8
553	Dibenzo heterocyclic-terminated spiro-type hole transporting materials for perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 10988-10994.	2.7	10
554	A Realistic Model of Temperature Dependent Carrier Diffusion Constant in Mapbi3 Films. SSRN Electronic Journal, 0, , .	0.4	0
555	Physical mechanism of perovskite solar cell based on double electron transport layer. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 208802.	0.2	1
556	Enhanced Charge Transport <i>via</i> Mixed-Dimensional Heterostructures in 2D–3D Perovskites and Their Relevance to Solar Cells. ACS Applied Energy Materials, 2022, 5, 7965-7976.	2.5	7
557	3D and 2D Metal Halide Perovskites for Blue Light-Emitting Diodes. Materials, 2022, 15, 4571.	1.3	7
558	PEDOT:PSS/CuCl Composite Hole Transporting Layer for Enhancing the Performance of 2D Ruddlesden–Popper Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2022, 13, 6101-6109.	2.1	11
559	Rapid and Large-Scale Preparation of Stable and Efficient White Light Emissive Perovskite Microcrystals Using Ionic Liquids. Journal of Physical Chemistry Letters, 2022, 13, 6048-6056.	2.1	11
560	Organic Holeâ€Transport Layers for Efficient, Stable, and Scalable Inverted Perovskite Solar Cells. Advanced Materials, 2022, 34, .	11.1	107
561	Passivating Lead Halide Perovskites Using Pyridinium Salts with Superhalogen Atoms. Journal of Physical Chemistry Letters, 2022, 13, 6074-6078.	2.1	3
562	The Rise of Colloidal Lead Halide Perovskite Quantum Dot Solar Cells. Accounts of Materials Research, 2022, 3, 866-878.	5.9	19
563	Modeling bismuth insertion in 1D hybrid lead halide TMSO(Pb _x Bi _y) Tj ETQq1 1 0.784	4314 rgBT 1.3	/Oyerlock 10

#	Article	IF	CITATIONS
564	Oxide/Halide/Oxide Architecture for High Performance Semiâ€Transparent Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	11
565	Versatile <scp>azaâ€BODIPY</scp> â€based <scp>lowâ€bandgap</scp> conjugated small molecule for light harvesting and <scp>nearâ€infrared</scp> photodetection. InformaÄnÃ-Materiály, 2022, 4, .	8.5	7
566	Interfacial Dipole poly(2-ethyl-2-oxazoline) Modification Triggers Simultaneous Band Alignment and Passivation for Air-Stable Perovskite Solar Cells. Polymers, 2022, 14, 2748.	2.0	2
567	Enhancing the Hot Carrier Injection of Perovskite Solar Cells by Incorporating a Molecular Dipole Interlayer. Advanced Functional Materials, 2022, 32, .	7.8	38
568	Chemical bond conversion directly drives power generation on the surface of graphdiyne. Matter, 2022, 5, 2933-2945.	5.0	10
569	Metal nanowires for transparent conductive electrodes in flexible chromatic devices: a review. Environmental Chemistry Letters, 2022, 20, 3005-3037.	8.3	14
570	More effective perovskite surface passivation strategy via optimized functional groups enables efficient p-i-n perovskite solar cells. Applied Surface Science, 2022, 602, 154248.	3.1	5
571	Customizing a coordinative crab molecule BCPâ€3N with multifunctionality for highâ€performance inverted perovskite solar cells. Solar Rrl, 0, , .	3.1	1
572	Temperature-Dependent Phase Stable Hybrid Halide Perovskite Films by Chemical Vapor Deposition. ACS Applied Electronic Materials, 2022, 4, 4258-4264.	2.0	3
573	Inductive and Capacitive Hysteresis of Halide Perovskite Solar Cells and Memristors Under Illumination. Frontiers in Energy Research, 0, 10, .	1.2	21
574	Surface passivation boosted performances of perovskite solar cells assembled under ambient conditions. Optical Materials, 2022, 131, 112746.	1.7	12
575	Efficiency improvement of perovskite solar cell utilizing cystamine dihydrochloride for interface modification. Materials Research Bulletin, 2022, 155, 111949.	2.7	5
576	Identifying dominant recombination mechanisms in spiro-based conventional perovskite solar cells: Roles of interface and bulk recombination. Energy Reports, 2022, 8, 7957-7963.	2.5	5
577	Probing Strain-Induced Effects on Performance of Low-Dimensional Hybrid Perovskites for Solar Energy Harvesting. ACS Applied Materials & Interfaces, 2022, 14, 34603-34611.	4.0	3
578	Efficient Idealâ€Bandgap Tin–Lead Alloyed Inorganic Perovskite Solar Cells Enabled by Structural Dimension Engineering. Advanced Optical Materials, 2022, 10, .	3.6	3
579	A Conductive Molecular Semiconductor Composite with Over 160°C Glass Transition Temperature for Heatâ€Resistant Perovskite Solar Cells. Advanced Electronic Materials, 0, , 2200425.	2.6	2
580	Optimization of active antireflection ZnO films for p-GaAs-based heterojunction solar cells. Journal of Alloys and Compounds, 2022, , 166531.	2.8	0
581	Oxidation of Spiro-OMeTAD in High-Efficiency Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 34303-34327.	4.0	34

#	Article	IF	CITATIONS
582	The effects of organic cation rotation in hybrid Organic-Inorganic Perovskites: A critical review. Materials and Design, 2022, 221, 110951.	3.3	10
583	Impact of Hole Transport Layers in Inorganic Lead-Free B-Î ³ -CsSnI3 Perovskite Solar Cells: A Numerical Analysis. , 0, , .		3
584	Perovskite solar cells: recent progress and strategies developed for minimizing interfacial recombination. Frontiers of Materials Science, 2022, 16, .	1.1	3
585	Multistrategy Preparation of Efficient and Stable Environment-Friendly Lead-Based Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 35513-35521.	4.0	9
586	Unraveling the Antisolvent Bathing Effect on CsPbI ₃ Crystallization under Ambient Conditions. Advanced Functional Materials, 2022, 32, .	7.8	6
587	Nanoscale Structural Heterogeneity and Efficient Intergrain Charge Diffusion in a Series of Mixed MA/FA Halide Perovskite Films. ACS Energy Letters, 2022, 7, 2443-2449.	8.8	5
588	Redâ€Emitting Perovskite Variant Cs ₂ PtCl ₆ Phosphor: Material Design, Luminous Mechanism, and Application in Highâ€Colorâ€Rendering White Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	3.6	15
589	Rudorffites and Beyond: Perovskiteâ€Inspired Silver/Copper Pnictohalides for Nextâ€Generation Environmentally Friendly Photovoltaics and Optoelectronics. Advanced Functional Materials, 2022, 32, .	7.8	23
590	Perovskite Solar Cells: A Review of the Recent Advances. Coatings, 2022, 12, 1089.	1.2	49
591	Breaking and Connecting: Highly Hazy and Transparent Regenerated Networked-Nanofibrous Cellulose Films via Combination of Hydrolysis and Crosslinking. Nanomaterials, 2022, 12, 2729.	1.9	7
592	Management of Donor and Acceptor Building Blocks in Dopantâ€Free Polymer Hole Transport Materials for Highâ€Performance Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	39
593	Stabilization and Fluorescence Enhancement of CsPbX ₃ (X = Cl, Br, I) Perovskite Nanocrystals with Tungstosilicic Acid. Journal of Physical Chemistry C, 2022, 126, 13032-13042.	1.5	2
594	Rising of halide perovskite epitaxial structures. Nature Materials, 2022, 21, 1000-1002.	13.3	3
595	Perovskite nanocrystal-embedded glasses for photonic applications. Journal of the Korean Ceramic Society, 2022, 59, 749-762.	1.1	7
596	Life cycle assessment of inkjet printed perovskite solar cells. Journal of Cleaner Production, 2022, 373, 133665.	4.6	14
597	Electrochemically Deposited <scp>CZTSSe</scp> Thin Films for Monolithic Perovskite Tandem Solar Cells with Efficiencies Over 17%. Energy and Environmental Materials, 2024, 7, .	7.3	10
598	Solutionâ€Processing of CsPbCl _{<i>x</i>} Br _{3â^' <i>x</i>} Perovskite Micro/Nanostructure Nearâ€Ultraviolet Photodetectors with High Performance. Advanced Optical Materials, 0, , 2201270.	3.6	4
599	Transition from Capacitive to Inductive Hysteresis: A Neuron-Style Model to Correlate <i>I</i> – <i>V</i> Curves to Impedances of Metal Halide Perovskites. Journal of Physical Chemistry C, 2022, 126, 13560-13578.	1.5	32

#	Article	IF	CITATIONS
600	Nanostructured αâ€Fe ₂ O ₃ Photoelectrodes with Transparent and Conducting Sbâ€Doped SnO ₂ Films Deposited by Atomic Layer Deposition. Advanced Materials Interfaces, 0, , 2201020.	1.9	1
601	Ion-Assisted Ligand Exchange for Efficient and Stable Inverted FAPbI ₃ Quantum Dot Solar Cells. ACS Applied Energy Materials, 2022, 5, 9858-9869.	2.5	9
602	High-Efficiency Photo-Thermo-Electric System with Waste Heat Utilization and Energy Storage. ACS Applied Materials & Interfaces, 2022, 14, 40437-40446.	4.0	9
603	Ultrathin Pdâ€based Perforated Nanosheets for Fuel Cells Electrocatalysis. ChemElectroChem, 0, , .	1.7	5
604	Attitude Determination in Space with Ambient Light Sensors using Machine Learning for Solar Cell Characterization. Solar Rrl, 2022, 6, .	3.1	2
605	Spray Pyrolysis Deposition of CuCrO ₂ Films as Promising Inorganic Hole Transport Layers for Highly Efficient Perovskite Solar Cells. Energy Technology, 0, , 2200518.	1.8	1
606	Study of Lead-Free Perovskite Photoelectric Devices with TiO2 as a Buffer Layer. Sustainability, 2022, 14, 10043.	1.6	0
607	Management of Donor and Acceptor Building Blocks in Dopantâ€Free Polymer Hole Transport Materials for Highâ€Performance Perovskite Solar Cells. Angewandte Chemie, 2022, 134, .	1.6	1
608	Metal Halide Perovskite Nanowires: Synthesis, Integration, Properties, and Applications in Optoelectronics. Advanced Energy Materials, 2023, 13, .	10.2	18
609	Highâ€Performance Nonfused Ring Electron Acceptors with Vâ€Shaped Side Chains. Small, 2022, 18, .	5.2	8
610	Over 19.2% Efficiency of Organic Solar Cells Enabled by Precisely Tuning the Charge Transfer State Via Donor Alloy Strategy. Advanced Science, 2022, 9, .	5.6	93
611	Releasable Water Chargeâ€Trapping and Waterâ€Resistant Photodetection using 1D Perovskitoid Hydrate Single Crystal. Advanced Materials, 2022, 34, .	11.1	8
612	Tryptaminium Iodide as an Additive of Isopropanol Green Antisolvent for Efficient and Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 9520-9529.	2.5	9
613	Self-rechargeable energizers for sustainability. EScience, 2022, 2, 347-364.	25.0	17
614	Effective Ion Mobility and Longâ€Term Dark Current of Metal Halide Perovskites with Different Crystallinities and Compositions. Advanced Photonics Research, 0, , 2200136.	1.7	3
615	Design of a Photocatalytic [2+2] Cycloaddition Reaction Using Redoxâ€Tag Strategy. Chemistry - A European Journal, 2022, 28, .	1.7	5
616	Efficient Perovskite Solar Cells with a Cul-Modified Polymer Hole-Transport Layer. ACS Applied Energy Materials, 2022, 5, 11034-11041.	2.5	5
617	Bromide Incorporation Enhances Vertical Orientation of Triple Organic Cation Tinâ€Halide Perovskites for Highâ€Performance Leadâ€Free Solar Cells. Solar Rrl, 2022, 6, .	3.1	7

	Сіт	CITATION REPORT	
#	ARTICLE Role of Moisture and Oxygen in Defect Management and Orderly Oxidation Boosting Carbonâ€Based CsPbl ₂ 8r Solar Cells to a New Record Efficiency, Advanced Materials, 2022, 34	IF 11.1	CITATIONS
619	Crystallization and Defect Regulation in Sn–Pb Perovskite Solar Cells via Optimized Antiâ€Solvent Passivation Strategy. Solar Rrl, 2022, 6, .	3.1	3
620	National Policies, Recent Research Hotspots, and Application of Sustainable Energy: Case of China, USA, and European Countries. Sustainability, 2022, 14, 10014.	1.6	2
621	Đ~ŇŇĐ»ĐμĐƊ¾Đ²Đ°Đ½Đ,Đμ ŇŇ,Ň€ŇƒĐºŇ,ŇƒŇ€Đ½Ň‹Ň Đ, Đ¾Đ;Ň,Đ,҇ĐμŇĐºĐ,Ň ŇĐ²Đ¾Đ¹Ňł	Ñ,в кремÐ1⁄2	ÐçеÐ2Ð3
622	Peptide Materials in Dye Sensitized Solar Cells. Energies, 2022, 15, 5632.	1.6	2
623	Efficiency enhancement of Cs0.1(CH3NH3)0.9PbI3 perovskite solar cell by surface passivation using iso-butyl ammonium iodide. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 1963-1970.	2.4	3
624	Multifunctional Cross-Linked Hole Transporting Interfacial Layer for Efficient and Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 10742-10750.	2.5	4
625	Experimental investigation on photothermal conversion properties of collagen solution-based carbon black nanofluid. Case Studies in Thermal Engineering, 2022, 38, 102371.	2.8	6
626	Improving the performance of 2D perovskite solar cells by carrier trappings and minifying the grain boundaries. Nano Energy, 2022, 102, 107673.	8.2	9
627	Lattice dynamics and spina€ phonon coupling in the noncollinear antiferromagnetic antiperovskite Mn <mml:math altimg="si49.svg" d1e1524"="" display="inline'
id=" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow /><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:math> NiN. Journal of Magnet	1.0 tism	8
628	The influence of the conduction band engineering on the perovskite solar cell performance. Results in Optics, 2022, 9, 100291.	0.9	6
629	lodide and charge migration at defective surfaces of methylammonium lead triiodide perovskites: The role of hydrogen bonding. Applied Surface Science, 2022, 604, 154501.	3.1	2
630	Fabrication and Modification Strategies of Metal Halide Perovskite Absorbers. Journal of Renewable Materials, 2023, 11, 61-77.	1.1	1
631	Polaron mobility modulation by bandgap engineering in black phase α-FAPbI3. Journal of Energy Chemistry, 2023, 76, 175-180.	7.1	7
632	Investigation of the Structural and Optical Properties of Silicon-Perovskite Structures with a Black Silicon Layer. Journal of Contemporary Physics, 2022, 57, 274-279.	0.1	15
633	Low-cost star-shaped hole-transporting materials with isotropic properties and its application in perovskite solar cells. Dyes and Pigments, 2022, 207, 110695.	2.0	6
634	Adaption of MAPbI3 perovskite with copper phthalocyanine inorganic hole transport layer via nitrosonium tetrafluoroborate additive to enhance performance and stability of perovskite solar cells. Optical Materials, 2022, 133, 112901.	1.7	34
635	Passivation of surface defects in FAPbI3 perovskite by methimazole molecule: A first-principles investigation. Applied Surface Science, 2022, 605, 154829.	3.1	3

#	Article	IF	CITATIONS
636	Engineering of window layer cadmium sulphide and zinc sulphide thin films for solar cell applications. Results in Engineering, 2022, 16, 100622.	2.2	14
637	A realistic model of temperature dependent carrier diffusion constant in MAPbI3 films. Applied Surface Science, 2022, 606, 154908.	3.1	3
638	Structural evolution, dielectric relaxation, and charge transport characteristics of formamidinium lead iodide (FAPbI3) perovskite. Materials Research Bulletin, 2023, 157, 112012.	2.7	11
639	Graphene induced structure and doping level tuning of evaporated CsPbBr3 on different substrates. Chemical Engineering Journal, 2023, 452, 139243.	6.6	1
640	Hybrid organic–inorganic perovskites as microwave radiation switches. Materials Advances, 2022, 3, 8260-8266.	2.6	1
641	Constructing a bifunctional MoO ₂ /Co heterojunction for efficient electrocatalytic hydrogen evolution and hydrazine oxidation. Journal of Materials Chemistry A, 2022, 10, 17297-17306.	5.2	16
642	Nanocrystalline metal oxide-based hybrids for third-generation solar cell technologies. , 2022, , 263-286.		2
643	Inhibiting the decomposition of methylammonium using cations with low deprotonation energy. Journal of Materials Chemistry A, 2022, 10, 22742-22749.	5.2	3
644	Metal oxide charge transporting layers for stable high-performance perovskite solar cells. CrystEngComm, 2022, 24, 7229-7249.	1.3	2
645	Strain effects on halide perovskite solar cells. Chemical Society Reviews, 2022, 51, 7509-7530.	18.7	89
646	A new organic–inorganic hybrid perovskite ferroelectric [ClCH ₂ CH ₂ N(CH ₃) ₃][PbBr ₃] and Its PVDF matrix-assisted highly-oriented flexible ferroelectric films. New Journal of Chemistry, 2022, 46, 19391-19400.	1.4	3
647	Two-dimensional SnS ₂ nanosheets as electron transport and interfacial layers enable efficient perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 12392-12401.	2.7	14
648	Improving perovskite solar cell performance utilizing cystamine dihydrochloride for passivating defects. Materials Science in Semiconductor Processing, 2023, 153, 107129.	1.9	1
649	Fontes de energias renováveis: pesquisas, tendências e perspectivas sobre as práticas sustentáveis. Research, Society and Development, 2022, 11, e468111133893.	0.0	2
650	What Happens at Surfaces and Grain Boundaries of Halide Perovskites: Insights from Reactive Molecular Dynamics Simulations of CsPbI ₃ . ACS Applied Materials & Interfaces, 2022, 14, 40841-40850.	4.0	19
651	First-Principles Study of Cu-Based Inorganic Hole Transport Materials for Solar Cell Applications. Materials, 2022, 15, 5703.	1.3	1
652	Pd-Nanoparticles Embedded Metal–Organic Framework-Derived Hierarchical Porous Carbon Nanosheets as Efficient Electrocatalysts for Carbon Monoxide Oxidation in Different Electrolytes. Langmuir, 2022, 38, 11109-11120.	1.6	20
653	Accurately Determining the Phase Transition Temperature of CsPbl ₃ via Random-Phase Approximation Calculations and Phase-Transferable Machine Learning Potentials. Chemistry of Materials, 2022, 34, 8561-8576.	3.2	8

#	Article	IF	CITATIONS
654	Role of A‣ite Composition in Charge Transport in Lead Iodide Perovskites. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	3
655	Performance Regulation of Perovskite Solar Cells via Bifacial Modification by F4-TCNQ and PFN-Br. Journal of Physical Chemistry C, 2022, 126, 15128-15134.	1.5	2
656	Mitigating Potential Lead Leakage Risk of Perovskite Solar Cells by Device Architecture Engineering from Exterior to Interior. ACS Energy Letters, 2022, 7, 3618-3636.	8.8	13
657	Stabilization of Perovskite Solar Cells: Recent Developments and Future Perspectives. Advanced Materials, 2022, 34, .	11.1	67
658	Thermal, Physical, and Optical Properties of the Solution and Melt Synthesized Single Crystal CsPbBr3 Halide Perovskite. Chemosensors, 2022, 10, 369.	1.8	3
659	Color Implementation of High-Efficiency Perovskite Solar Cells by Using Transparent Multilayered Electrodes. ACS Applied Energy Materials, 2022, 5, 12151-12157.	2.5	2
660	Polar Species for Effective Dielectric Regulation to Achieve Highâ€Performance CsPbI ₃ Solar Cells. Advanced Materials, 2022, 34, .	11.1	27
661	F-doping-Enhanced Carrier Transport in the SnO ₂ /Perovskite Interface for High-Performance Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 42093-42101.	4.0	19
662	Improved Absorber Phase Stability, Performance, and Lifetime in Inorganic Perovskite Solar Cells with Alkyltrimethoxysilane Strain-Release Layers at the Perovskite/TiO ₂ Interface. ACS Energy Letters, 2022, 7, 3531-3538.	8.8	17
663	Effect of structural site disorder on the optical properties of Ag6+x(P1â^'xGex)S5I solid solutions. Journal of Materials Science: Materials in Electronics, 2022, 33, 21874-21889.	1.1	4
664	White Light-Emitting Diodes Based on One-Dimensional Organic–Inorganic Hybrid Metal Chloride with Dual Emission. Inorganic Chemistry, 2022, 61, 15475-15483.	1.9	8
665	Steady-state optoelectronic measurements of halide perovskites on a selective contact: a path to in-depth comprehension of their photovoltaic activity. Journal Physics D: Applied Physics, 2022, 55, 455107.	1.3	0
666	Electric Power and Current Collection in Semiconductor Devices with Suppressed Electron–Hole Recombination. ACS Energy Letters, 2022, 7, 3557-3563.	8.8	3
667	Recent Advances in the Research of Photoâ€Assisted Lithiumâ€Based Rechargeable Batteries. Chemistry - A European Journal, 2022, 28, .	1.7	9
668	Hole-Transporting Vanadium-Containing Oxide (V ₂ O _{5–<i>x</i>}) Interlayers Enhance Stability of α-FAPbI ₃ -Based Perovskite Solar Cells (â^1⁄423%). ACS Applied Materials & Interfaces, 2022, 14, 42007-42017.	4.0	9
669	Bridgman Growth and Intrinsic Luminescence of Pure Cs2ZnCl4 Single Crystal. Journal of Electronic Materials, 2022, 51, 6512-6517.	1.0	1
670	Improvement of CZTSSe film quality and superstrate solar cell performance through optimized post-deposition annealing. Scientific Reports, 2022, 12, .	1.6	10
671	Suppression of Phase Transitions in Perovskite Thin Films through Cryogenic Electron Beam Irradiation. Nano Letters, 2022, 22, 7449-7456.	4.5	0

		CITATION RE	PORT	
#	Article		IF	Citations
672	Narrow Bandgap Inorganic Ferroelectric Thin Film Materials. Advanced Materials Interfac	ces, 2022, 9, .	1.9	8
673	Perovskites: Emergence of highly efficient thirdâ€generation solar cells. International Joe Energy Research, 2022, 46, 21856-21883.	urnal of	2.2	13
674	Fabrication of Crystalline Si Thin Films for Photovoltaics. Physica Status Solidi - Rapid Re Letters, 2022, 16, .	search	1.2	2
675	Fabrication of Discontinuous Dendritic CH ₃ NH ₃ PbBr _{ Perovskite Microdisk Arrays for Microlasers. Advanced Optical Materials, 0, , 2201519.}	·3	3.6	1
676	Presynthetic Redox Gated Metal-to-Insulator Transition and Photothermoelectric Proper Tetrathiafulvalene-Tetrathiolate Coordination Polymers. Journal of the American Chemic 2022, 144, 19026-19037.	ties in Nickel al Society,	6.6	9
677	Effect of BFO layer position on energy storage properties of STO/BFO thin films. Journal Science: Materials in Electronics, 0, , .	of Materials	1.1	0
678	Defect Passivation by a Sulfurâ€Containing Lewis Base for Efficient Printable Mesoscopi Solar Cells. Solar Rrl, 2022, 6, .	c Perovskite	3.1	5
679	A hurdle in commercializing the perovskite/Si tandem solar cell: Potential-induced degra Matter, 2022, 5, 3091-3093.	dation.	5.0	1
680	Competing Energy Transfer in Two-Dimensional Mn ²⁺ -Doped BDACdBr <su Layered Perovskites with Near-Unity Photoluminescence Quantum Yield. ACS Applied M Interfaces, 2022, 14, 45725-45733.</su 	ıb>4 Hybrid aterials &	4.0	13
681	Local Impedance Measurement by Direct Detection of Oscillating Electrostatic Potentia Probe Force Microscopy. Journal of Physical Chemistry C, 2022, 126, 17627-17634.	l Using Kelvin	1.5	3
682	Dopantâ€Free Bithiopheneâ€Imideâ€Based Polymeric Holeâ€Transporting Materials for Perovskite Solar Cells. Advanced Materials, 2022, 34, .	Efficient and Stable	11.1	37
683	Defect Passivation by a Donor–Acceptor–Donorâ€Structured Small Molecule via Bi for Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2022, 6, .	dentate Anchoring	3.1	4
684	Additive-assisted defect passivation of perovskite with metformin hydrochloride: towarc high-performance p-i-n perovskite solar cells. JPhys Energy, 0, , .	1	2.3	0
685	Vacuumâ€Processed Perovskite Solar Cells: Materials and Methods. Solar Rrl, 2022, 6, .		3.1	0
686	Tuning Halide Composition Allows Low Dark Current Perovskite Photodetectors With H Detectivity. Advanced Optical Materials, 2022, 10, .	igh Specific	3.6	9
687	Toward Stable and Efficient Solar Cells with Electropolymerized Films. ACS Sustainable Engineering, 2022, 10, 13555-13567.	Chemistry and	3.2	4
688	Strain regulating mechanical stability and photoelectric properties of CH3NH3PbI3 cont asymmetric CH3NH3 cations. Materials Today Communications, 2022, 33, 104527.	aining the	0.9	1
689	Vertically oriented 2D layered perovskite-based resistive random access memory (ReRAN arrays. Current Applied Physics, 2022, 44, 46-54.	Л) crossbar	1.1	1

#	Article	IF	CITATIONS
690	In-situ surface patch-passivation via phosphorus oxygen bond for efficient PbS colloidal quantum dot infrared solar cells. Solar Energy Materials and Solar Cells, 2022, 248, 112040.	3.0	2
691	Organic–Inorganic Hybrid Devices—Perovskite-Based Devices. , 2022, , 283-307.		0
692	A layered hybrid rare-earth double perovskite with two continuous reversible phase transitions induced by unusual two driving gears of fan-like rotation movements. CrystEngComm, 2022, 24, 8496-8502.	1.3	1
693	Blade Coating Highâ€Quality Formamidinium–Cesium Lead Halide Perovskites with Green Solvent for Efficient and Stable Solar Cells. Solar Rrl, 2022, 6, .	3.1	3
694	Fabrication and characterization of air-stable, highly efficient all-inorganic CsPbBr ₃ perovskite solar cell. Physica Scripta, 2022, 97, 115816.	1.2	2
695	Degradation Analysis of Triple-Cation Perovskite Solar Cells by Electrochemical Impedance Spectroscopy. ACS Applied Energy Materials, 2022, 5, 12545-12552.	2.5	4
696	Modified Hagfeldt Donor for Organic Dyes That Are Compatible with Copper Electrolytes in Efficient Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2022, 5, 13544-13553.	2.5	2
697	Chemiâ€Mechanically Peeling the Unstable Surface States of αâ€FAPbI ₃ . Small, 2022, 18, .	5.2	6
698	Proton Transport in the Gadolinium-Doped Layered Perovskite BaLaInO4. Materials, 2022, 15, 7351.	1.3	4
699	One-Dimensional Highly-Confined CsPbBr ₃ Nanorods with Enhanced Stability: Synthesis and Spectroscopy. Nano Letters, 2022, 22, 8355-8362.	4.5	9
700	Understanding the Effect of Intrinsic Defects in Lead-Free Vacancy-Ordered Double Perovskites Cs ₂ PdBr ₆ . Journal of Physical Chemistry C, 2022, 126, 17875-17884.	1.5	6
701	An Anthradithiophene Donor Polymer for Organic Solar Cells with a Good Balance between Efficiency and Synthetic Accessibility. Solar Rrl, 2022, 6, .	3.1	9
702	Honeycombâ€Type TiO ₂ Films Toward a High Tolerance to Optical Paths for Perovskite Solar Cells. ChemSusChem, 2023, 16, .	3.6	6
703	Air-processed hole-conductor–free and printable infrared light responded carbon-based perovskite solar cells using up-conversion NaYF4:Yb3+, Er3+ nanoparticles. Ceramics International, 2023, 49, 6974-6983.	2.3	1
704	Constructing Microcavity for Perovskite Laser Power Converter: A Theoretical Study. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	0.8	4
705	Electronic thygmonasty model in Mimosa pudica biomimetic robot. Bioinspiration and Biomimetics, 0, , ·	1.5	0
706	Multifunctional Passivator Trifluoroacetamidine for Improving the Performance of Allâ€Inorganic CsPbI ₃ Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	3
707	Machine Learningâ€Assisted Microfluidic Synthesis of Perovskite Quantum Dots. Advanced Photonics Research, 2023, 4, .	1.7	5

#	Article	IF	CITATIONS
708	Opportunities and Challenges for Perovskite Solar Cells Based on Vacuum Thermal Evaporation. Advanced Materials Technologies, 2023, 8, .	3.0	10
709	Metal-organic frameworks with mixed-ligands strategy as heterogeneous nucleation center to assist crystallization for efficient and stable perovskite solar cells. Journal of Energy Chemistry, 2023, 77, 1-10.	7.1	16
710	Predicting the device performance of the perovskite solar cells from the experimental parameters through machine learning of existing experimental results. Journal of Energy Chemistry, 2023, 77, 200-208.	7.1	21
711	Refining Perovskite Heterojunctions for Effective Lightâ€Emitting Solar Cells. Advanced Materials, 2023, 35, .	11.1	4
712	Block Copolymer Selfâ€Assembly Directed Synthesis of Porous Materials with Ordered Bicontinuous Structures and Their Potential Applications. Advanced Materials, 2023, 35, .	11.1	30
713	Perovskite solar cells on Sn-doped In2O3 electrodes with artificially controlled (222) preferred orientation. Journal of Power Sources, 2022, 551, 232198.	4.0	3
714	Self-healing 2D/3D perovskite for efficient and stable p-i-n perovskite solar cells. Chemosphere, 2023, 311, 136893.	4.2	2
715	Nanoscience and Nanotechnologies for Photovoltaics. , 2022, , 1-37.		0
716	Stable organic lead iodides with three-dimensional crystallographic and electronic structures showing high photoresponse. Inorganic Chemistry Frontiers, 2022, 9, 6404-6411.	3.0	8
717	Regulation strategy of white emission from organic–inorganic hybrid metal halide perovskites. Inorganic Chemistry Frontiers, 2022, 10, 13-36.	3.0	18
718	Flexible and stretchable transparent conductive graphene-based electrodes for emerging wearable electronics. Carbon, 2023, 202, 495-527.	5.4	54
719	Vertical distribution of PbI2 nanosheets for robust air-processed perovskite solar cells. Chemical Engineering Journal, 2023, 454, 140163.	6.6	11
720	Electronic structure modification of polymeric PEDOT:PSS electrodes using the nonionic surfactant Brij C10 additive for significant sheet resistance reduction. Applied Surface Science, 2023, 610, 155609.	3.1	4
721	Cuttingâ€Edge Studies Toward Commercialization of Large Area Solutionâ€Processed Perovskite Solar Cells. Advanced Materials Technologies, 2023, 8, .	3.0	4
722	Cesium Lead Bromide Nanocrystals: Synthesis, Modification, and Application to O2 Sensing. Sensors, 2022, 22, 8853.	2.1	0
723	Enhancement of CsPbI3 perovskite solar cells with dual functional passivator 4-Fluoro-3-phenoxybenzaldehyde. Surfaces and Interfaces, 2022, 35, 102477.	1.5	5
724	In-Depth Insight into the Effect of Hydrophilic-Hydrophobic Group Designing in Amidinium Salts for Perovskite Precursor Solution on Their Photovoltaic Performance. Nanomaterials, 2022, 12, 3881.	1.9	0
725	Synthesis of porous Mn2O3 architecture for supercapacitor electrode application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 658, 130532.	2.3	7

#	Article	IF	CITATIONS
726	Solvent Engineering of Ionic Liquids for Stable and Efficient Perovskite Solar Cells. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	4
727	Enhanced light management and optimization of perovskite solar cells incorporating wavelength dependent reflectance modeling. Heliyon, 2022, 8, e11380.	1.4	12
728	An electronic synaptic memory device based on four-cation mixed halide perovskite. Discover Materials, 2022, 2, .	1.0	5
729	Molecular Configuration Engineering in Holeâ€Transporting Materials toward Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials, 2023, 33, .	7.8	10
730	Disentangling Xâ€Ray and Sunlight Irradiation Effects Under a Controllable Atmosphere in Metal Halide Perovskites. Solar Rrl, 2023, 7, .	3.1	3
731	Hybrid thermoelectric-photovoltaic solar harvesters: technological and economic issues. Japanese Journal of Applied Physics, 2023, 62, SD0801.	0.8	2
732	Anomalous Hall conductivity control in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>Mn</mml:mi>antiperovskite by epitaxial strain along the kagome plane. Physical Review B, 2022, 106, .</mml:mrow></mml:msub></mml:math 	m tlo1 w> <m< td=""><td>mr:mn>3</td></m<>	m r :mn>3
733	Regulation of the photovoltaic performance of TiO ₂ @MAPbI ₃ core–shell nanowire arrays. International Journal of Materials Research, 2022, .	0.1	1
734	Ruddlesden–Popper Perovskite Nanocrystals Stabilized in Mesoporous Silica with Efficient Carrier Dynamics for Flexible Xâ€Ray Scintillator. Advanced Functional Materials, 2023, 33, .	7.8	12
735	Energy transfer in supramolecular calix[4]arene—Perylene bisimide dye light harvesting building blocks: Resolving loss processes with simultaneous target analysis. Journal of Photochemistry and Photobiology, 2022, 12, 100154.	1.1	4
736	Enhanced photovoltaic performance of perovskite solar cells modified with plasmonic Cu1.44Te nanocrystals. Optik, 2022, 271, 170229.	1.4	2
738	Photoelectrochemical hydrogen evolution from biomass conversion using perovskite solar cells. Chem Catalysis, 2022, 2, 2837-2839.	2.9	1
739	Suppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cations. Nature Materials, 2022, 21, 1396-1402.	13.3	74
740	Anisotropy growth of perovskite crystal induced by layered double hydroxide for efficiency enhancement of solar cell. Electrochimica Acta, 2023, 438, 141586.	2.6	1
741	Effects of Cl/Br substitution of antimony octahedra on photoluminescence and a new engineering strategy for performance optimization. Materials Today Chemistry, 2023, 27, 101275.	1.7	0
742	Amorphous antimony sulfide nanoparticles construct multi-contact electron transport layers for efficient carbon-based all-inorganic CsPbI2Br perovskite solar cells. Chemical Engineering Journal, 2023, 455, 140871.	6.6	1
743	Low turn-on voltage CsPbBr3 perovskite light-emitting diodes with regrowth crystal MAPbBr3 hole transport layer. Journal of Materials Research and Technology, 2023, 22, 375-381.	2.6	3
744	Interfacial energy band engineered CsPbBr ₃ /NiFe-LDH heterostructure catalysts with tunable visible light driven photocatalytic CO ₂ reduction capability. Catalysis Science and Technology, 2023, 13, 1154-1163.	2.1	7

#	Article	IF	CITATIONS
745	The race between complicated multiple cation/anion compositions and stabilization of FAPbI ₃ for halide perovskite solar cells. Journal of Materials Chemistry C, 2023, 11, 2449-2468.	2.7	3
746	Three-dimensional narrow-bandgap perovskite semiconductor ferroelectric methylphosphonium tin triiodide for potential photovoltaic application. Chemical Communications, 2023, 59, 920-923.	2.2	8
747	Grain boundary sliding and distortion on a nanosecond timescale induce trap states in CsPbBr ₃ : <i>ab initio</i> investigation with machine learning force field. Nanoscale, 2022, 15, 285-293.	2.8	14
748	Impact of diethylene glycol chains on indolo [3,2-b]indole based small molecule as dopant-free hole transporting materials for efficient and stable inverted perovskite solar cells. Organic Electronics, 2023, 113, 106719.	1.4	1
749	A review of the synthesis, fabrication, and recent advances in mixed dimensional heterostructures for optoelectronic devices applications. Applied Materials Today, 2023, 30, 101717.	2.3	6
750	Enhanced cycling performance of surface-amorphized Co3S4 as robust cathode for supercapacitors. Journal of Energy Storage, 2023, 58, 106322.	3.9	6
751	Ultrarapid crystallization of low-dimensional perovskite with excellent stability for future high-throughput fabrication. Journal of Power Sources, 2023, 556, 232475.	4.0	3
752	Efficient photosensitized singlet oxygen generation in two-dimensional perovskite nanosheets via energy transfer. Applied Surface Science, 2023, 613, 155991.	3.1	4
753	Universal surface tailoring of perovskite nanocrystals <i>via</i> organic pseudohalide ligands applicable to green and blue light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 18226-18233.	2.7	0
754	Accelerated discovery of defect tolerant organo-halide perovskites. Journal of Materials Chemistry C, 2022, 10, 18385-18392.	2.7	1
755	Could the Quantum Internet Be Comprised of Molecular Spins with Tunable Optical Interfaces?. Journal of the American Chemical Society, 2022, 144, 21810-21825.	6.6	15
756	Orotic Acid as a Bifunctional Additive for Regulating Crystallization and Passivating Defects toward High-Performance Formamidinium–Cesium Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 53808-53818.	4.0	3
757	Recent Progress Toward Commercialization of Flexible Perovskite Solar Cells: From Materials and Structures to Mechanical Stabilities. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	10
758	Enhancement in Device Performance of Perovskite Solar Cells via Annealing of PCBM Electron Transport Layer. Applied Science and Convergence Technology, 2022, 31, 167-170.	0.3	2
759	In-depth understanding the effect of electron-withdrawing/-donating groups on the interfacial carrier dynamics in naphthalimide-treated perovskite solar cells. Journal of Energy Chemistry, 2023, 77, 514-520.	7.1	9
760	Hot-Injection Synthesis Protocol for Green-Emitting Cesium Lead Bromide Perovskite Nanocrystals. ACS Nano, 2022, 16, 19618-19625.	7.3	27
761	Pivotal Role of A-Site Cations in Tailoring the Band-Edge States, Optical Properties, and Stability of 0D Hybrid Indium Chlorides. Chemistry of Materials, 2022, 34, 10928-10939.	3.2	4
762	Polymer/Fullerene Nanocomposite for Optoelectronics—Moving toward Green Technology. Journal of Composites Science, 2022, 6, 393.	1.4	7

	CITATION	Report	
#	Article	IF	CITATIONS
763	Air Annealing Facilitates Crystallization Reconstruction of Quasiâ€2D Perovskite. Solar Rrl, 2023, 7, .	3.1	2
764	Triboelectric nanogenerators for smart agriculture. InformaÄnÃ-Materiály, 2023, 5, .	8.5	12
765	Modulating Residual Lead Iodide via Functionalized Buried Interface for Efficient and Stable Perovskite Solar Cells. ACS Energy Letters, 2023, 8, 666-676.	8.8	34
766	Planar Perovskite Solar Cells Using Perovskite CsPbI3 Quantum Dots as Efficient Hole Transporting Layers. Materials, 2022, 15, 8902.	1.3	2
767	Investigating the properties of tin-oxide thin film developed by sputtering process for perovskite solar cells. Materials for Renewable and Sustainable Energy, 2023, 12, 31-37.	1.5	5
768	Cinnamate-Functionalized Cellulose Nanocrystals as Interfacial Layers for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2023, 15, 1348-1357.	4.0	3
769	Strain Relaxation for Perovskite Lattice Reconfiguration. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	7
770	Over 24% Efficient Poly(vinylidene fluoride) (PVDF)â€Coordinated Perovskite Solar Cells with a Photovoltage up to 1.22ÂV. Advanced Functional Materials, 2023, 33, .	7.8	32
771	A Core@Dual–Shell Nanostructured SnO ₂ to Modulate the Buried Interfaces Toward Stable Perovskite Solar Cells With Minimized Energy Losses. Advanced Energy Materials, 2023, 13, .	10.2	14
772	Crystalline Phases Regulate Electronic Trap States at Defective Surfaces of Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2022, 13, 11473-11480.	2.1	1
773	Machine learning assisted synthetic acceleration of Ruddlesden-Popper and Dion-Jacobson 2D lead halide perovskites. Acta Materialia, 2023, 245, 118638.	3.8	14
774	Fluorineâ€Containing Passivation Layer via Surface Chelation for Inorganic Perovskite Solar Cells. Angewandte Chemie, 2023, 135, .	1.6	8
775	Synergistic Surface Modification of Tin–Lead Perovskite Solar Cells. Advanced Materials, 2023, 35, .	11.1	22
776	Recent progress in perovskite solar cells: material science. Science China Chemistry, 2023, 66, 10-64.	4.2	53
777	First-principles study of properties of X3Sb2Au3 (X = K, Rb) ternary compounds for photovoltaic applications. Indian Journal of Physics, 2023, 97, 2355-2362.	0.9	1
778	Inorganic lead-based halide perovskites: From fundamental properties to photovoltaic applications. Materials Today, 2022, 61, 191-217.	8.3	25
779	Fluorineâ€Containing Passivation Layer via Surface Chelation for Inorganic Perovskite Solar Cells. Angewandte Chemie - International Edition, 2023, 62, .	7.2	46
780	Picoperovskites: The Smallest Conceivable Isolated Halide Perovskite Structures Formed within Carbon Nanotubes. Advanced Materials, 2023, 35, .	11.1	13

#	Article	IF	CITATIONS
781	Inhomogeneous Defect Distribution in Mixed-Polytype Metal Halide Perovskites. ACS Energy Letters, 2023, 8, 356-360.	8.8	5
782	Efficient Inverted Perovskite Solar Cells via Improved Sequential Deposition. Advanced Materials, 2023, 35, .	11.1	15
783	Interfacial contact management in HTLâ€free perovskite solar cells with carbon top electrode. Physica Status Solidi (A) Applications and Materials Science, 0, , .	0.8	0
784	Solar Solutions for the Future. , 0, , .		0
785	THz Response of Charge Carriers in Nanoparticles: Microscopic Master Equations Reveal an Unexplored Equilibration Current and Nonlinear Mobility Regimes. Advanced Photonics Research, 2023, 4, .	1.7	2
786	Performance and Stability Improvement of Inverted Perovskite Solar Cells by Interface Modification of Charge Transport Layers Using an Azulene–Pyridine Molecule. Energy Technology, 2023, 11, .	1.8	3
787	Hybrid perovskites under pressure: Present and future directions. Journal of Applied Physics, 2022, 132,	1.1	4
788	In-situ structural degradation study of quadruple-cation perovskite solar cells with nanostructured charge transfer layer. Ceramics International, 2023, 49, 24475-24486.	2.3	1
789	Wellâ€Defined Fullerene Bisadducts Enable Highâ€Performance Tinâ€Based Perovskite Solar Cells. Advanced Materials, 2023, 35, .	11.1	16
790	Metal Halide Perovskite Alloy: Fundamental, Optoelectronic Properties and Applications. Advanced Photonics Research, 2023, 4, .	1.7	4
791	Sustainable and environmentally viable perovskite solar cells. EcoMat, 2023, 5, .	6.8	9
792	Effect of regio-specific arylamine substitution on novel π-extended zinc salophen complexes: density functional and time-dependent density functional study on DSSC applications. RSC Advances, 2023, 13, 2501-2513.	1.7	2
793	Stability and efficiency improvement of perovskite solar cells by surface hydroxyl defect passivation of SnO ₂ layer with 4-fluorothiophenol. Journal of Materials Chemistry A, 2023, 11, 3673-3681.	5.2	10
794	Universal scaling laws for charge-carrier interactions with quantum confinement in lead-halide perovskites. Nature Communications, 2023, 14, .	5.8	22
795	Critical Evaluation of the Photovoltaic Performance of (AgI) _{<i>x</i>} (Bil ₃) _{<i>y</i>} Thin Films from the Viewpoint of Ultrafast Spectroscopy and Photocurrent Experiments. Journal of Physical Chemistry C, 2023, 127, 1487-1498.	1.5	5
796	Rational Selection of the Lewis Base Molecules Targeted for Lead-Based Defects of Perovskite Solar Cells: The Synergetic Co-passivation of Carbonyl and Carboxyl Groups. Journal of Physical Chemistry Letters, 2023, 14, 653-662.	2.1	7
797	Anionic ligand-induced chirality in perovskite nanoplatelets. Chemical Communications, 2023, 59, 1485-1488.	2.2	3
798	Photovoltaic Materials as Heterogeneous Photocatalysts: A Golden Opportunity for Sustainable Organic Syntheses. Solar Rrl, 2023, 7, .	3.1	4

			2
#	ARTICLE	IF	CITATIONS
799	Robust CsPbI3 Perovskite toward Red Light-Emitting Devices. Dalton Transactions, 0, , .	1.6	1
800	A machine learning $q\hat{a}\in RASPR$ approach for efficient predictions of the specific surface area of perovskites**. Molecular Informatics, 2023, 42, .	1.4	12
801	A Theoretical Investigation of Transport Layerâ€Free Homojunction Perovskite Solar Cells via a Detailed Photoelectric Simulation. Advanced Energy Materials, 2023, 13, .	10.2	7
802	Nanoarchitectonics in fully printed perovskite solar cells with carbon-based electrodes. Nanoscale, 2023, 15, 3130-3134.	2.8	3
803	The Role of Organic Compounds in Dye-Sensitized and Perovskite Solar Cells. Energies, 2023, 16, 573.	1.6	1
804	Exploring the Links between Photoluminescence and Microstructure in Cs ₂ InBr ₅ ·H ₂ O Samples Doped with Pb ²⁺ . Chemistry of Materials, 2023, 35, 482-489.	3.2	2
805	A halide perovskite/lead sulfide heterostructure with enhanced photoelectrochemical performance for the sensing of alkaline phosphatase (ALP). Chemical Communications, 2023, 59, 1361-1364.	2.2	6
806	Ion Migration Induced Unusual Charge Transport in Tin Halide Perovskites. ACS Energy Letters, 2023, 8, 957-962.	8.8	12
807	Designing and Theoretical Study of Dibenzocarbazole Derivatives Based Hole Transport Materials: Application for Perovskite Solar Cells. Journal of Fluorescence, 2023, 33, 1201-1216.	1.3	3
808	Stability challenges for the commercialization of perovskite–silicon tandem solar cells. Nature Reviews Materials, 2023, 8, 261-281.	23.3	77
809	Stable and environmentally friendly perovskite solar cells induced by grain boundary engineering with self-assembled hydrogen-bonded porous frameworks. Nano Energy, 2023, 108, 108217.	8.2	13
810	Young's interference experiment using self-aligned liquid crystal optical control devices. Liquid Crystals, 2023, 50, 691-699.	0.9	5
811	Hydrogen generation ability of B-site substituted two-dimensional Can-1Tin-3Nb3O3n+1â^' perovskite nanosheets in photoelectrochemical cell. Surfaces and Interfaces, 2023, 36, 102623.	1.5	1
812	Lead, tin, bismuth or organics: Assessment of potential environmental and human health hazards originating from mature perovskite PV technology. Solar Energy Materials and Solar Cells, 2023, 252, 112177.	3.0	4
813	Integrating Tetrahydrofurfuryl Methacrylate onto Perovskite Surface for High Stability Perovskite Solar Cells. , 2022, , .		0
814	Transparency against efficiency in uni/bifacial mesostructured-based solar cells for self-powered sensing applications. Analog Integrated Circuits and Signal Processing, 2023, 114, 217-227.	0.9	3
815	Binary Microcrystal Additives Enabled Antisolventâ€Free Perovskite Solar Cells with High Efficiency and Stability. Advanced Energy Materials, 2023, 13, .	10.2	12
816	Triazine: An Important Building Block of Organic Materials for Solar Cell Application. Molecules, 2023, 28, 257.	1.7	3

#	Article	IF	CITATIONS
817	Recent Advances and Challenges toward Efficient Perovskite/Organic Integrated Solar Cells. Energies, 2023, 16, 266.	1.6	6
818	Self-assembled molecules as selective contacts in CsPbBr ₃ nanocrystal light emitting diodes. Journal of Materials Chemistry C, 2023, 11, 3788-3795.	2.7	4
819	Potential of AMnO ₃ (A=Ca, Sr, Ba, La) as Active Layer in Inorganic Perovskite Solar Cells. ChemPhysChem, 2023, 24, .	1.0	2
820	Molecular engineering for sensitive, fast and stable quasi-two-dimensional perovskite photodetectors. Journal of Materials Chemistry C, 2023, 11, 3314-3324.	2.7	6
821	Atomic layer deposition of SnO ₂ using hydrogen peroxide improves the efficiency and stability of perovskite solar cells. Nanoscale, 2023, 15, 5044-5052.	2.8	14
822	Metal–Organic Framework Optical Thermometer Based on Cr ³⁺ Ion Luminescence. ACS Applied Materials & Interfaces, 2023, 15, 7074-7082.	4.0	10
823	Surface Passivation of Lead Halide Perovskite Solar Cells by a Bifacial Donorâ^ï€â€"Donor Molecule. ACS Applied Materials & Interfaces, 2023, 15, 6708-6715.	4.0	4
824	Depthâ€Dependent Postâ€Treatment for Reducing Voltage Loss in Printable Mesoscopic Perovskite Solar Cells. Advanced Science, 2023, 10, .	5.6	10
825	A Review of Recent Development of Wearable Triboelectric Nanogenerators Aiming at Human Clothing for Energy Conversion. Polymers, 2023, 15, 508.	2.0	10
826	Forming a composite electron blocking layer to enhance the performance of carbon-based CsPbl ₃ perovskite solar cells. Materials Chemistry Frontiers, 2023, 7, 1617-1623.	3.2	3
827	Spectral Splitting as a Route to Promote Total Efficiency of Hybrid Photovoltaic Thermal with a Halide Perovskite Cell. Solar Rrl, 0, , 2201072.	3.1	1
828	Intrinsic Instability of Perovskite Solar Cells: The Role of a Hole-Blocking Layer. Crystals, 2023, 13, 185.	1.0	2
829	Dragon Mimic Shape Facilitate Ultrahighâ€Performance Flexible Allâ€Perovskite Tandem Solar Cells. Solar Rrl, 2023, 7, .	3.1	1
830	Exploration of the Effect of Fluoridation on the Doping-Free Linear Dibenzothiophene-Based Hole-Transport Material Applied for Inverted Perovskite Solar Cells. ACS Applied Energy Materials, 2023, 6, 1274-1282.	2.5	1
831	p—π Conjugated Polyelectrolytes Toward Universal Electrode Interlayer Materials for Diverse Optoelectronic Devices. Advanced Functional Materials, 2023, 33, .	7.8	7
832	Perovskite and organic bulk heterojunction integrated solar cells: a mini review. Journal of the Korean Physical Society, 2023, 82, 229-235.	0.3	Ο
833	Tuning the Photoelectric Properties of Perovskite Materials Using Mg/Ge/Si and Br Double-Doped to FASnl ₃ . Journal of Physical Chemistry C, 2023, 127, 2215-2222.	1.5	6
834	A study on theoretical models for investigating time-resolved photoluminescence in halide perovskites. Physical Chemistry Chemical Physics, 2023, 25, 7574-7588.	1.3	6

#	Article	IF	CITATIONS
835	Modulation of the Excitation States in All-Inorganic Halide Perovskites via Sb ³⁺ and Bi ³⁺ Codoping. Journal of Physical Chemistry Letters, 2023, 14, 1022-1028.	2.1	5
836	Challenges in the development of metal-halide perovskite single crystal solar cells. Journal of Materials Chemistry A, 2023, 11, 3822-3848.	5.2	3
837	IR Spectroscopic Degradation Study of Thin Organometal Halide Perovskite Films. Molecules, 2023, 28, 1288.	1.7	8
838	Defect control for high-efficiency all-inorganic CsPbBr3 perovskite solar cells via hydrophobic polymer interface passivation. Journal of Alloys and Compounds, 2023, 942, 169084.	2.8	7
839	Hydrothermal synthesis of stable lead-free Cs ₄ MnBi ₂ Cl ₁₂ perovskite single crystals for efficient photocatalytic degradation of organic pollutants. Journal of Materials Chemistry C, 2023, 11, 3715-3725.	2.7	13
840	Thermally stable inverted perovskite solar cells using an electropolymerized Zn-porphyrin film as a dopant-free hole-transporting layer. Journal of Materials Chemistry A, 2023, 11, 7085-7093.	5.2	6
841	Phase evolution and fluorescence stability of CsPb ₂ Br ₅ microwires and their application in stable and sensitive photodetectors. Journal of Materials Chemistry C, 2023, 11, 6046-6056.	2.7	4
842	Quantum dots as photon down-conversion materials. , 2023, , 247-264.		1
843	Effects of drying time on the formation of merged and soft MAPbl ₃ grains and their photovoltaic responses. Nanoscale Advances, 2023, 5, 2190-2198.	2.2	6
844	Additive engineering with sodium azide material for efficient carbon-based perovskite solar cells. New Journal of Chemistry, 2023, 47, 7765-7773.	1.4	2
845	Distinct Reaction Route toward High Photovoltaic Performance: Perovskite Salts versus Crystals. ACS Applied Energy Materials, 2023, 6, 2247-2256.	2.5	3
846	Efficient Allâ€Perovskite White Lightâ€Emitting Diodes Made of In Situ Grown Perovskiteâ€Mesoporous Silica Nanocomposites. Advanced Functional Materials, 2023, 33, .	7.8	15
847	Constructing Additives Synergy Strategy to Doctorâ€Blade Efficient CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cells under a Wide Range of Humidity from 45% to 82%. Small, 2023, 19, .	5.2	7
848	Roadmap on commercialization of metal halide perovskite photovoltaics. JPhys Materials, 2023, 6, 032501.	1.8	16
849	Rational Design of Fullerene Derivatives for Improved Stability of p-i-n Perovskite Solar Cells. Inorganics, 2023, 11, 153.	1.2	0
850	Benzothiadiazole-based materials for organic solar cells. Chinese Chemical Letters, 2024, 35, 108438.	4.8	1
851	Optoelectrical Properties of Hexamine Doped-Methylammonium Lead Iodide Perovskite under Different Grain-Shape Crystallinity. Nanomaterials, 2023, 13, 1281.	1.9	6
852	Inorganic antimony-based rudorffite photo-responsive electrochemical capacitor utilizing non-aqueous polyvinylpyrrolidone polymer gel electrolyte for hybrid energy harvesting and storage applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 291, 116373.	1.7	1

#	Article	IF	CITATIONS
853	Second-phase of low-dimensional perovskite in-situ grown from TACl with remnant PbI2 for high quality PSCs. Organic Electronics, 2023, 116, 106758.	1.4	2
854	Effect of molecular configuration of additives on perovskite crystallization and hot carriers behavior in perovskite solar cells. Chemical Engineering Journal, 2023, 463, 142449.	6.6	13
855	A comprehensive study on RbGeI3 based inorganic perovskite solar cell using green synthesized CuCrO2 as hole conductor. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 439, 114623.	2.0	14
856	CO-induced thermal decomposition of LiNi0.8Co0.15Al0.05O2. Physics Letters, Section A: General, Atomic and Solid State Physics, 2023, 470, 128774.	0.9	1
857	Two-dimensional materials for boosting the performance of perovskite solar cells: Fundamentals, materials and devices. Materials Science and Engineering Reports, 2023, 153, 100727.	14.8	5
858	MXenes for perovskite solar cells: Progress and prospects. Journal of Energy Chemistry, 2023, 81, 443-461.	7.1	3
859	An ethanol-induced on-paper perovskite nanocrystal crystallization mechanism for expiratory alcohol screening and information encryption. Sensors and Actuators B: Chemical, 2023, 384, 133649.	4.0	1
860	Structure stabilized with robust molecular cation N(CH3)4+ in high efficiency perovskite solar cells. Materials Today Chemistry, 2023, 30, 101511.	1.7	1
861	Dielectric constant prediction of perovskite microwave dielectric ceramics via machine learning. Materials Today Communications, 2023, 35, 105733.	0.9	1
862	Composite electrolytes engineered by anion acceptors for boosted high-voltage solid-state lithium metal batteries. Journal of Colloid and Interface Science, 2023, 642, 330-339.	5.0	1
863	Study on carrier dynamics of perovskite solar cells via transient absorption. Journal of Alloys and Compounds, 2023, 952, 170051.	2.8	3
864	Healthy and Highâ€Quality Singleâ€Source Lighting Based on Doubleâ€Doped Tin Halide Engineering. Laser and Photonics Reviews, 2023, 17, .	4.4	7
865	Surface Passivation of Organic-Inorganic Hybrid Perovskites with Methylhydrazine Iodide for Enhanced Photovoltaic Device Performance. Inorganics, 2023, 11, 168.	1.2	6
866	Investigation of structural and electrochemical properties of SrFexCo1-xO3-Î′ perovskite oxides as a supercapacitor electrode material. Journal of Energy Storage, 2023, 63, 107034.	3.9	11
867	Parameterization of the apparent chemical inductance of metal halide perovskite solar cells exhibiting constant-phase-element behavior. Journal of Power Sources, 2023, 560, 232614.	4.0	7
868	Formamidinium Lead Iodide Perovskite Thin Films Formed by Two-Step Sequential Method: Solvent–Morphology Relationship. Materials, 2023, 16, 1049.	1.3	1
869	Access and Capture of Layered Double Perovskite Polytypic Phase through High-Pressure Engineering. Journal of Physical Chemistry C, 2023, 127, 2407-2415.	1.5	5
870	Probing the Genuine Carrier Dynamics of Semiconducting Perovskites under Sunlight. Jacs Au, 2023, 3, 441-448.	3.6	6

#	Article	IF	CITATIONS
871	Can Alternative Module Design Help to Overcome Stability Problems of Perovskite Photovoltaics?. ACS Energy Letters, 2023, 8, 1147-1151.	8.8	3
872	Managing the Double-Edged Sword of Ni ³⁺ in Sputter-Deposited NiO _{<i>x</i>} by Interfacial Redox Reactions for Efficient Perovskite Solar Cells. ACS Applied Energy Materials, 2023, 6, 1396-1403.	2.5	7
873	High-Pressure Behavior of Î'-Phase of Formamidinium Lead Iodide by Optical Spectroscopies. Journal of Physical Chemistry C, 2023, 127, 2440-2447.	1.5	10
874	Quantifying electrochemical losses in perovskite solar cells. Journal of Materials Chemistry C, 2023, 11, 2911-2920.	2.7	1
875	Certified high-efficiency "large-area―perovskite solar module for Fresnel lens-based concentrated photovoltaics. IScience, 2023, 26, 106079.	1.9	3
876	Enhancement in Power Conversion Efficiency of Perovskite Solar Cells by Reduced Non-Radiative Recombination Using a Brij C10-Mixed PEDOT:PSS Hole Transport Layer. Polymers, 2023, 15, 772.	2.0	2
877	Enhanced Luminescent Performance via Passivation of Surface Undercoordinated Pb Atoms in a CsPbBr ₃ Microplate. Advanced Optical Materials, 2023, 11, .	3.6	5
878	Size-matched dicarboxylic acid for buried interfacial engineering in high-performance perovskite solar cells. Chemical Engineering Journal, 2023, 460, 141705.	6.6	8
879	Monolithic Perovskite/Si Tandem Solar Cells—Silicon Bottom Cell Types and Characterization Methods. Advanced Materials Technologies, 2023, 8, .	3.0	0
880	Polarons in perovskite solar cells: effects on photovoltaic performance and stability. JPhys Energy, 2023, 5, 024002.	2.3	6
881	Overview on Different Types of Solar Cells: An Update. Applied Sciences (Switzerland), 2023, 13, 2051.	1.3	12
882	Bifunctional Cellulose Interlayer Enabled Efficient Perovskite Solar Cells with Simultaneously Enhanced Efficiency and Stability. Advanced Science, 2023, 10, .	5.6	13
883	Thermochromic Halide Perovskite Windows with Ideal Transition Temperatures. Advanced Energy Materials, 2023, 13, .	10.2	10
884	Impact of photoexcitation on secondary electron emission: A Monte Carlo study. Journal of Applied Physics, 2023, 133, .	1.1	1
885	Highly Thermally Sensitive Cascaded Wannier–Mott Exciton Ionization/Carrier Localization in Manganese-Doped Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2023, 14, 1684-1692.	2.1	2
886	Tunable Spin Seebeck Thermopower in Nonlocal Perovskite MAPbBr ₃ â€Based Structure. Advanced Optical Materials, 2023, 11, .	3.6	2
887	Space―and Postâ€Flight Characterizations of Perovskite and Organic Solar Cells. Solar Rrl, 2023, 7, .	3.1	2
888	Eco-friendly inorganic molecular novel antiperovskites for light-emitting application. Materials Horizons, 0, , .	6.4	0

#	Article	IF	CITATIONS
889	Graphene‣ike Monoelemental 2D Materials for Perovskite Solar Cells. Advanced Energy Materials, 2023, 13, .	10.2	13
890	Perspectives for the conversion of perovskite indoor photovoltaics into IoT reality. Nanoscale, 2023, 15, 5167-5180.	2.8	4
891	Additive engineering for highly efficient and stable perovskite solar cells. Applied Physics Reviews, 2023, 10, .	5.5	13
892	Numerical modeling of CuSbSe2-based dual-heterojunction thin film solar cell with CCS back surface layer. AIP Advances, 2023, 13, .	0.6	7
893	Halide perovskite quantum dots for photocatalytic CO ₂ reduction. Journal of Materials Chemistry A, 2023, 11, 12482-12498.	5.2	20
894	Toward self-organizing low-dimensional organic–inorganic hybrid perovskites: Machine learning-driven co-navigation of chemical and compositional spaces. MRS Bulletin, 2023, 48, 164-172.	1.7	3
895	A promising scalable bar coating approach using a single crystal-derived precursor ink for high-performance large-area perovskite solar cells. Materials Today Chemistry, 2023, 29, 101415.	1.7	1
896	Recycling Useful Materials of Perovskite Solar Cells toward Sustainable Development. Advanced Sustainable Systems, 2023, 7, .	2.7	4
897	Facet Engineering for Decelerated Carrier Cooling in Polyhedral Perovskite Nanocrystals. Nano Letters, 2023, 23, 1946-1953.	4.5	6
898	Metalâ€Halide Perovskite Lasers: Cavity Formation and Emission Characteristics. Advanced Materials, 0, ,	11.1	12
899	Photovoltaic Devices and Photodetectors. Nanoscience and Technology, 2023, , 95-125.	1.5	1
900	Isomeric imidazole functionalized bithiophene-based hole transporting materials for stable perovskite solar cells. Cell Reports Physical Science, 2023, 4, 101312.	2.8	3
901	p-n Homojunction perovskite solar cells: effects of ionic density and thickness of the doped layers. Physica Scripta, 2023, 98, 045013.	1.2	0
902	Conclusions and Future Prospects. Nanoscience and Technology, 2023, , 179-197.	1.5	0
903	Enhancing Charge Carrier Transport in the Carbon-Electrode-Based CsPbI ₂ Br Perovskite Solar Cells via I/Br Homogenization Process Modulation and Oleic Acid Surface Passivation. ACS Applied Energy Materials, 2023, 6, 2973-2980.	2.5	7
904	å·æœ‰ä,ºå⁻Œç¡«ç©ºä¼ҫš"强åۥå‰Cu2S/CuClå¼,èŤé˜µåˆ—的构çʿåŠå¶åœ¨å‰å电èµç"µå®¹ä,ç	š" åł. 5甓. S	cience China
905	Photocatalytic Properties of ZnO:Al/MAPbI3/Fe2O3 Heterostructure: First-Principles Calculations. International Journal of Molecular Sciences, 2023, 24, 4856.	1.8	1
906	Magic guanidinium cations in perovskite solar cells: from bulk to interface. Materials Chemistry Frontiers, 2023, 7, 2507-2527.	3.2	6

#	Article	IF	Citations
907	<i>In Situ</i> and <i>Operando</i> Characterizations of Metal Halide Perovskite and Solar Cells: Insights from Lab-Sized Devices to Upscaling Processes. Chemical Reviews, 2023, 123, 3160-3236.	23.0	15
908	Effective model for studying optical properties of lead halide perovskites. Physical Review B, 2023, 107,	1.1	3
909	SCAPS Empowered Machine Learning Modelling of Perovskite Solar Cells: Predictive Design of Active Layer and Hole Transport Materials. Photonics, 2023, 10, 271.	0.9	2
910	Deciphering the Roles of MA-Based Volatile Additives for α-FAPbI ₃ to Enable Efficient Inverted Perovskite Solar Cells. Journal of the American Chemical Society, 2023, 145, 5920-5929.	6.6	43
911	Application of Natural Molecules in Efficient and Stable Perovskite Solar Cells. Materials, 2023, 16, 2163.	1.3	3
912	Leveraging Low-Energy Structural Thermodynamics in Halide Perovskites. ACS Energy Letters, 2023, 8, 1705-1715.	8.8	8
913	Ameliorating Properties of Perovskite and Perovskite–Silicon Tandem Solar Cells via Mesoporous Antireflection Coating Model. Advanced Electronic Materials, 2023, 9, .	2.6	3
914	Discrete Donor–Acceptor Pair Transitions in CH ₃ NH ₃ Pbl ₃ Perovskite Single Crystals. Physica Status Solidi - Rapid Research Letters, 0, , 2300005.	1.2	1
915	Low-cost and LiTFSI-free diphenylamine-substituted hole transporting materials for highly efficient perovskite solar cells and modules. Materials Chemistry Frontiers, 2023, 7, 2241-2250.	3.2	2
916	Observation of Enhanced Generation of a Fifth Harmonic from Halide Perovskite Nonlocal Metasurfaces. ACS Photonics, 2023, 10, 1367-1375.	3.2	4
917	Perovskiteâ€Solarâ€Cellâ€Powered Integrated Fuel Conversion and Energyâ€Storage Devices. Advanced Materials, 2023, 35, .	11.1	6
918	Fabrication, Optical Property, and White LED Application of Novel Lanthanideâ€Based Family Cs ₂ NaLnX ₆ (X = Cl, Br, I) Perovskite Nanomaterials. Laser and Photonics Reviews, 2023, 17, .	4.4	7
919	Enabling Perovskite Solar Cell Omnidirectional Light Utilizing Via Trapping Technology. Advanced Theory and Simulations, 2023, 6, .	1.3	1
920	Microscopic theory of Raman scattering for the rotational organic cation in metal halide perovskites. Physical Review B, 2023, 107, .	1.1	4
921	Simultaneous Interface Amelioration and Energy Level Modulation Using <i>In Situ</i> Polymerized Molecules for Efficient and Stable Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2023, 11, 4860-4870.	3.2	1
922	Highly Improved Photocurrent Density and Efficiency of Perovskite Solar Cells via Inclined Fluorine Sputtering Process. Advanced Functional Materials, 2023, 33, .	7.8	2
923	Fine-tuning chemical passivation over photovoltaic perovskites by varying the symmetry of bidentate acceptor in D–A molecules. Journal of Materials Chemistry A, 2023, 11, 8299-8307.	5.2	9
924	A Polymer Defect Passivator for Efficient Holeâ€Conductorâ€Free Printable Mesoscopic Perovskite Solar Cells. Advanced Functional Materials, 2023, 33, .	7.8	14

#	Article	IF	CITATIONS
925	Dirhodium C–H Functionalization of Hole-Transport Materials. Journal of Organic Chemistry, 2023, 88, 4309-4316.	1.7	0
926	Dimensional Tuning of Perylene Diimideâ€Based Polymers for Perovskite Solar Cells with Over 24% Efficiency. Small, 2023, 19, .	5.2	7
927	Functional organic cation induced 3D-to-0D phase transformation and surface reconstruction of CsPbI3 inorganic perovskite. Science Bulletin, 2023, 68, 706-712.	4.3	8
928	Origin of Enhanced Nonradiative Carrier Recombination Induced by Oxygen in Hybrid Sn Perovskite. Journal of Physical Chemistry Letters, 2023, 14, 2950-2957.	2.1	2
929	Polyaniline combining with ultrathin manganese dioxide nanosheets on carbon nanofibers as effective binder-free supercapacitor electrode. Electrochimica Acta, 2023, 450, 142275.	2.6	12
930	Ligand-free template-assisted synthesis of stable perovskite nanocrystals with near-unity photoluminescence quantum yield within the pores of vaterite spheres. Nanoscale, 0, , .	2.8	0
931	Strain-Induced Modification of Photoluminescence in Quasi-2D Perovskite Thin Films. Journal of Physical Chemistry C, 2023, 127, 6371-6379.	1.5	1
932	First-principles study of the lattice thermal conductivity of the nitride perovskite <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>LaWN</mml:mi><mml:mn>3Physical Review B, 2023, 107, .</mml:mn></mml:msub></mml:math 	nl:ma> <td>וm<mark>8</mark>msub> ‹/r</td>	וm <mark>8</mark> msub> ‹/r
933	A Methodology of Fabricating Novel Electrodes for Semiconductor Devices: Doping and Van der Waals Integrating Organic Semiconductor Films. Small, 2023, 19, .	5.2	1
934	Optoelectronic materials utilizing hot excitons or hot carriers: from mechanism to applications. Journal of Materials Chemistry C, 2023, 11, 7937-7956.	2.7	3
935	Intermediate Phase Engineering with 2,2â€Azodi(2â€Methylbutyronitrile)Âfor Efficient and Stable Perovskite Solar Cells. Advanced Materials, 2023, 35, .	11.1	18
936	An Overview of Lead, Tin, and Mixed Tin–Leadâ€Based ABI ₃ Perovskite Solar Cells. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	12
937	Recent Advances in Wide-Bandgap Organic–Inorganic Halide Perovskite Solar Cells and Tandem Application. Nano-Micro Letters, 2023, 15, .	14.4	41
938	Utilizing machine learning algorithm in predicting the power conversion efficiency limit of a monolithically perovskites/silicon tandem structure. Semiconductor Physics, Quantum Electronics and Optoelectronics, 2023, 26, 114-119.	0.3	2
939	Coâ€Solvent Engineering Contributing to Achieve Highâ€Performance Perovskite Solar Cells and Modules Based on Antiâ€Solvent Free Technology. Small, 2023, 19, .	5.2	4
940	Role of a corrugated Dion–Jacobson 2D perovskite as an additive in 3D MAPbBr ₃ perovskite-based light emitting diodes. Nanoscale Advances, 2023, 5, 2508-2516.	2.2	1
941	Advances of metal halide perovskite large-size single crystals in photodetectors: from crystal materials to growth techniques. Journal of Materials Chemistry C, 2023, 11, 5908-5967.	2.7	3
942	First-principles study of interfacial features and charge dynamics between spiro-MeOTAD and photoactive lead halide perovskites. Chemical Communications, 2023, 59, 5055-5058.	2.2	4

#	Article	IF	CITATIONS
943	Highly stable CsFAPbIBr perovskite solar cells with dominant bulk recombination at real operating temperatures. Sustainable Energy and Fuels, 0, , .	2.5	0
944	Triplet–triplet annihilation mediated photon upconversion solar energy systems. Materials Chemistry Frontiers, 2023, 7, 2297-2315.	3.2	10
945	Mapping the pathways of photo-induced ion migration in organic-inorganic hybrid halide perovskites. Nature Communications, 2023, 14, .	5.8	15
946	Solar Energy Conversion and Electron Storage by a Cu2O/CuO Photocapacitive Electrode. Energies, 2023, 16, 3231.	1.6	2
947	All-inorganic perovskite solar cells featuring mixed group IVA cations. Nanoscale, 2023, 15, 7249-7260.	2.8	6
948	Can Nitride Perovskites Provide the Same Superior Optoelectronic Properties as Lead Halide Perovskites?. ACS Energy Letters, 2023, 8, 2051-2057.	8.8	4
949	Multiconfigurational Calculations and Photodynamics Describe Norbornadiene Photochemistry. Journal of Organic Chemistry, 2023, 88, 5311-5320.	1.7	5
950	KNbO ₃ photoelectrode for DSSC: a structural, optical and electrical approach. Dalton Transactions, 2023, 52, 5976-5982.	1.6	1
951	Fiber-bridging-induced toughening of perovskite for resistance to crack propagation. Matter, 2023, 6, 1622-1638.	5.0	4
952	Improving the Solar Energy Utilization of Perovskite Solar Cells via Synergistic Effects of Alkylamine and Alkyl Acid on Defect Passivation. Solar Rrl, 2023, 7, .	3.1	1
953	Design and Synthesis of Novel NIRâ€Sensitive Unsymmetrical Squaraine Dyes for Molecular Photovoltaics. Physica Status Solidi (A) Applications and Materials Science, 2023, 220, .	0.8	4
954	Effect of Residual Chloride in FAPbI ₃ Film on Photovoltaic Performance and Stability of Perovskite Solar Cell. ACS Energy Letters, 2023, 8, 2122-2129.	8.8	12
955	Recent progress in lanthanide ions doped inorganic metal halide perovskites. Journal of Rare Earths, 2024, 42, 237-250.	2.5	4
956	Wet-chemistry synthesis of two-dimensional Pt- and Pd-based intermetallic electrocatalysts for fuel cells. Nanoscale, 2023, 15, 8508-8531.	2.8	5
957	Effective Approaches for Perovskite Solar Cells; Recent Advances and Perspectives. Physica Status Solidi (A) Applications and Materials Science, 0, , .	0.8	0
958	Solution processable polypyrrole nanotubes as an alternative hole transporting material in perovskite solar cells. Materials Today Communications, 2023, 35, 105994.	0.9	1
959	Chiral Perovskite Nanocrystal Growth inside Helical Hollow Silica Nanoribbons. Nano Letters, 2023, 23, 3174-3180.	4.5	7
960	2D/3D perovskite heterostructure solar cell with orientation-controlled Dion–Jacobson 2D phase. Applied Physics Express, 2023, 16, 041005.	1.1	1

#	Article	IF	CITATIONS
961	Leadâ€Free, Luminescent Perovskite Nanocrystals Obtained through Ambient Condition Synthesis. Small, 2023, 19, .	5.2	3
962	Direct Arylation Synthesis of Small Molecular Acceptors for Organic Solar Cells. Molecules, 2023, 28, 3515.	1.7	3
963	Inhibition of Ion Migration for Highly Efficient and Stable Perovskite Solar Cells. Advanced Materials, 2023, 35, .	11.1	8
964	Nanographene Coupled with Interfacial Pyrene Derivatives for Thermally Stable Perovskite Solar Cells. ACS Energy Letters, 2023, 8, 2267-2275.	8.8	4
965	Optoelectronic properties fine-tuning through chalcogenide-based π-bridge for dye molecules featuring hydantoin anchoring group: first-principle calculations. Molecular Physics, 2023, 121, .	0.8	0
966	Recent progress of copper halide perovskites: properties, synthesis and applications. Journal of Materials Chemistry C, 2023, 11, 6260-6275.	2.7	5
967	Thermal tolerance of perovskite quantum dots dependent on A-site cation and surface ligand. Nature Communications, 2023, 14, .	5.8	12
968	Recent Trends in Sustainable Solar Energy Conversion Technologies: Mechanisms, Prospects, and Challenges. Energy & Fuels, 2023, 37, 6283-6301.	2.5	11
969	Efficient and stable full-printed mesoscopic perovskite solar cells with potassium hexafluorophosphate additives. Sustainable Energy and Fuels, 2023, 7, 2349-2356.	2.5	1
970	Effect of surface termination on electronic and optical properties of lead-free tin-based eco-friendly perovskite solar cell: a first principal study. Environmental Science and Pollution Research, 2023, 30, 98796-98804.	2.7	0
971	Dodecahedron CsPbBr ₃ Perovskite Nanocrystals Enable Facile Harvesting of Hot Electrons and Holes. Journal of Physical Chemistry Letters, 2023, 14, 3953-3960.	2.1	2
972	Multifunctional Additives to Enhanced Perovskite Solar Cell Performance. Solar Rrl, 2023, 7, .	3.1	1
973	Single-Crystal Halide Perovskites for Transistor Applications. , 2023, , 265-296.		0
974	Hybrid composites for optoelectronics. , 2023, , 253-276.		0
993	A Review on Interface Engineering of MXenes for Perovskite Solar Cells. Nano-Micro Letters, 2023, 15, .	14.4	16
995	Numerical Analysis of Novel Cs2AuBiCl6-Based Double Perovskite Solar Cells with Graphene Oxide as HTL—A SCAPS-1D Simulation. Springer Proceedings in Materials, 2023, , 21-31.	0.1	0
1001	Quantified Analysis of Highly Efficient Halide Perovskite Solar Cell. , 2023, , .		0
1004	Design and Analysis of High-Efficiency Ecofriendly Lead-free Perovskite Solar Cell with TiO ₂ and C60 Electron Transport Layers. , 2023, , .		0

#	Article	IF	Citations
1005	Towards cost-efficient and stable perovskite solar cells and modules: utilization of self-assembled monolayers. Materials Chemistry Frontiers, 2023, 7, 3958-3985.	3.2	8
1007	Tunable Molecular Packing of Dopant-Free Hole-Transport Polymers for Perovskite Solar Cells. ACS Energy Letters, 2023, 8, 2878-2885.	8.8	10
1009	Far-field super-resolution chemical microscopy. Light: Science and Applications, 2023, 12, .	7.7	2
1010	Development of less toxic perovskite materials for solar cell applications. , 2023, , 645-669.		0
1011	Application of perovskites in solar cells. , 2023, , 485-517.		0
1016	Progress of Photocapacitors. Chemical Reviews, 2023, 123, 9327-9355.	23.0	11
1030	Optimization of Non-Toxic Inorganic CsSnGel3 Perovskite Solar Cell with TiO ₂ and CNTS Charge Transport Layers using SCAPS-1D. , 2023, , .		0
1062	Lead immobilization for environmentally sustainable perovskite solar cells. Nature, 2023, 617, 687-695.	13.7	25
1073	CoCr ₂ O ₄ Nanoparticles with Abundant Oxygen Vacancies: A New Photothermal Platform for Efficient Solar Evaporation. , 2023, 5, 1992-2001.		8
1077	Recent Progress of Layered Perovskite Solar Cells Incorporating Aromatic Spacers. Nano-Micro Letters, 2023, 15, .	14.4	5
1090	Inverted Wide-Bandgap 2D/3D Perovskite Solar Cells with >22% Efficiency and Low Voltage Loss. Nano Letters, 2023, 23, 6705-6712.	4.5	6
1105	Patterning of Metal Halide Perovskite Thin Films and Functional Layers for Optoelectronic Applications. Nano-Micro Letters, 2023, 15, .	14.4	5
1107	Study of CsPbBr ₃ Perovskite Light-Emitting Diodes with PEDOT:PSS-MAPbBr ₃ QDs Complex Hole Transport Layer. , 2023, , .		0
1129	High-performance metal halide perovskite transistors. Nature Electronics, 2023, 6, 559-571.	13.1	4
1149	Specific applications of the lanthanides. , 2023, , 649-741.		0
1160	Three-dimensional lead iodide perovskites based on complex ions. Materials Advances, 0, , .	2.6	Ο
1181	Prospects of copper–bismuth chalcogenide absorbers for photovoltaics and photoelectrocatalysis. Journal of Materials Chemistry A, 2023, 11, 22087-22104.	5.2	3
1215	Fabrication of Carbon-Based Perovskite Solar Cell under Ambient Condition. , 0, , .		0

#	Article	IF	Citations
1222	Thermodynamic interpretation of the open-circuit voltage in sustainable energy conversion processes. AIP Conference Proceedings, 2023, , .	0.3	0
1225	Synergistic investigation of natural and synthetic C1-trophic microorganisms to foster a circular carbon economy. Nature Communications, 2023, 14, .	5.8	2
1238	Modular design of solar-powered photocathodic metal protection device. , 2023, 2, .		0
1263	Pernicious effects and management of lead leakage from perovskite solar cells. Journal of Materials Chemistry A, 2023, 11, 25825-25848.	5.2	1
1264	PAL 2.0: a physics-driven bayesian optimization framework for material discovery. Materials Horizons, 2024, 11, 781-791.	6.4	0
1274	Challenges in the design and synthesis of self-assembling molecules as selective contacts in perovskite solar cells. Chemical Science, 0, , .	3.7	0
1289	Optimization of Perovskite Solar Cells. , 2023, , .		0
1290	Formation of Single-Domain Structures in BaTiO ₃ upon Phase Transition. , 2023, , .		0
1291	Dielectric constants and double-layer formation in a perovskite thin film revealed by electrochemical impedance spectroscopy. MRS Communications, 0, , .	0.8	0
1300	Role of Defects, Impurities and Deviations from the Stoichiometry in the Optoelectronic Properties of Semiconductors. , 2023, , 75-141.		0
1363	Review on Characteristics, Scalable Fabrication, Advancing Strategies, and Recent Enhancements in High-Performance Perovskite Photovoltaic Cells. , 2024, , .		0
1368	An Overview of Solar Cell Technologies Toward the Next-Generation Agrivoltaics. Green Energy and Technology, 2024, , 69-129.	0.4	0
1370	Engineering functionalization and properties of graphene quantum dots (GQDs) with controllable synthesis for energy and display applications. Nanoscale, 2024, 16, 3347-3378.	2.8	2
1371	Optimizing Cs2TiBr6-Based PSCs with Graphene Quantum Dots. , 0, , .		0
1372	Photovoltaic Behaviour of Cs ₂ BiAgI ₆ Solar Cells: Investigating Bulk Defect Density via SCAPS-1d Simulations. , 2023, , .		0
1377	Flexible Polymer Dye-Sensitized Solar Cells. , 2023, , .		0
1398	Chalcogenides and their nanocomposites: fundamental, properties and applications. , 2024, , 1-27.		0
1400	Potential-induced degradation: a challenge in the commercialization of perovskite solar cells. Energy and Environmental Science, 2024, 17, 1819-1853.	15.6	0

#	Article	IF	CITATIONS
1403	Developments in Dye-Sensitized Solar Cells - An Overview. , 2024, , .		0
1414	Implementation Phase Change Material at Cold Side of Thermoelectric Cooler Box as Thermal Energy Storage. Lecture Notes in Mechanical Engineering, 2024, , 305-315.	0.3	0
1418	Synthesis and Characterization of Selenides and Hybrid Halide Perovskites for Nanodevices. Minerals, Metals and Materials Series, 2024, , 54-61.	0.3	0
1420	Low-cost tilt monitoring system for spin coater calibration. AIP Conference Proceedings, 2024, , .	0.3	0
1423	Comprehensive Assessment of Perovskite Solar Cell Efficiency Through Holistic Edge Detection Analysis of Crystallographic Grain Size. , 2024, , .		0
1432	High Efficiency Perovskite Solar Cells Optimization. , 2023, , .		0
1434	Strategies for constructing high-performance tin-based perovskite solar cells. Journal of Materials Chemistry C, 2024, 12, 4184-4207.	2.7	0
1447	Self-Powered Real-Time Wireless Communication System Using Wearable Fabric Based Triboelectric Nanogenerator and Inductor. , 2024, , .		0
1480	Graph theoretical analysis as an aid in the elucidation of structure-property relations of perovskite materials. AIP Conference Proceedings, 2024, , .	0.3	0