Fully oxygen-tolerant atom transfer radical polymeriza

Chemical Science 11, 8809-8816

DOI: 10.1039/d0sc03179h

Citation Report

#	Article	IF	CITATIONS
1	Reversible-deactivation radical polymerization (Controlled/living radical polymerization): From discovery to materials design and applications. Progress in Polymer Science, 2020, 111, 101311.	11.8	555
2	Light-intensity switch enabled nonsynchronous growth of fluorinated raspberry-like nanoparticles. Chemical Science, 2020, 11, 10431-10436.	3.7	20
3	Investigations into CTA-differentiation-involving polymerization of fluorous monomers: exploitation of experimental variances in fine-tuning of molecular weights. Polymer Chemistry, 2020, 11 , 7402-7409.	1.9	3
4	A covalent organic framework as a photocatalyst for atom transfer radical polymerization under white light irradiation. Polymer Chemistry, 2021, 12, 183-188.	1.9	30
5	Reflection on the Matyjaszewski Lab Webinar Series and the Rise of Webinars in Polymer Chemistry. ACS Macro Letters, 2021, 10, 54-59.	2.3	1
6	Simple and Scalable Protocol for Producing Hydrophobic Polymer Brushes Beyond Wafer-Scale Dimensions toward Real-Life Applications. ACS Applied Polymer Materials, 2021, 3, 1395-1405.	2.0	12
7	Cu-Catalyzed Atom Transfer Radical Polymerization in the Presence of Liquid Metal Micro/Nanodroplets. Macromolecules, 2021, 54, 1631-1638.	2.2	22
8	Making ATRP More Practical: Oxygen Tolerance. Accounts of Chemical Research, 2021, 54, 1779-1790.	7.6	93
9	Conjugated Cross-linked Phenothiazines as Green or Red Light Heterogeneous Photocatalysts for Copper-Catalyzed Atom Transfer Radical Polymerization. Journal of the American Chemical Society, 2021, 143, 9630-9638.	6.6	68
10	Orthogonal synthesis and modification of polymer materials. Journal of Polymer Science, 2021, 59, 1748-1786.	2.0	22
11	Assemblies of Polyacrylonitrile-Derived Photoactive Polymers as Blue and Green Light Photo-Cocatalysts for Cu-Catalyzed ATRP in Water and Organic Solvents. Frontiers in Chemistry, 2021, 9, 734076.	1.8	9
12	Visible Lightâ€Regulated Heterogeneous Catalytic PETâ€RAFT by High Crystallinity Covalent Organic Framework. Macromolecular Rapid Communications, 2021, 42, e2100384.	2.0	23
13	Solvent-Free Synthesis of the Polymer Electrolyte via Photo-Controlled Radical Polymerization: Toward Ultrafast In-Built Fabrication of Solid-State Batteries under Visible Light. ACS Applied Materials & Diterfaces, 2021, 13, 8426-8434.	4.0	18
14	Tuning dispersity of linear polymers and polymeric brushes grown from nanoparticles by atom transfer radical polymerization. Polymer Chemistry, 2021, 12, 6071-6082.	1.9	29
15	Graphitic carbon nitride (g-C ₃ N ₄) as a sustainable heterogeneous photocatalyst for metal free and oxygen-tolerant photo-atom transfer radical polymerization (photo-ATRP). Green Chemistry, 2021, 23, 9617-9624.	4.6	16
16	Biocompatible photoinduced CuAAC using sodium pyruvate. Chemical Communications, 2021, 57, 12844-12847.	2.2	5
17	Photoinduced organocatalyzed controlled radical polymerization feasible over a wide range of wavelengths. Polymer Chemistry, 2022, 13, 527-535.	1.9	12
18	Maltotriose-based star polymers as self-healing materials. European Polymer Journal, 2022, 164, 110972.	2.6	1

#	Article	IF	CITATIONS
19	Red-Light-Induced, Copper-Catalyzed Atom Transfer Radical Polymerization. ACS Macro Letters, 2022, 11, 376-381.	2.3	33
20	Toward Green Atom Transfer Radical Polymerization: Current Status and Future Challenges. Advanced Science, 2022, 9, e2106076.	5.6	73
21	Airâ€Tolerant Reversible Complexation Mediated Polymerization (RCMP) Using Aldehyde. Macromolecular Rapid Communications, 2022, , 2200091.	2.0	1
22	The scale-up of electrochemically mediated atom transfer radical polymerization without deoxygenation. Chemical Engineering Journal, 2022, 445, 136690.	6.6	17
23	Visible light-triggered PET-RAFT polymerization by heterogeneous 2D porphyrin-based COF photocatalyst under aqueous condition. European Polymer Journal, 2022, 173, 111306.	2.6	15
24	New Approaches to Atom Transfer Radical Polymerization and Their Realization in the Synthesis of Functional Polymers and Hybrid Macromolecular Structures. Polymer Science - Series C, 2022, 64, 82-94.	0.8	3
25	Atom Transfer Radical Polymerization: A Mechanistic Perspective. Journal of the American Chemical Society, 2022, 144, 15413-15430.	6.6	90
26	Miniemulsion SI-ATRP by Interfacial and Ion-Pair Catalysis for the Synthesis of Nanoparticle Brushes. Macromolecules, 2022, 55, 6332-6340.	2.2	13
27	Photoinduced oxygen-catalyzed RAFT polymerization using heterogeneous bionic enzymes. Polymer Chemistry, 2022, 13, 4776-4781.	1.9	2
28	Large volume and oxygen tolerant photoinduced aqueous atom transfer radical polymerization. Chemical Engineering Journal, 2023, 451, 138777.	6.6	6
29	Sulfoxide-Containing Polyacrylamides Prepared by PICAR ATRP for Biohybrid Materials. ACS Macro Letters, 2022, 11, 1091-1096.	2.3	6
30	Open-air green-light-driven ATRP enabled by dual photoredox/copper catalysis. Chemical Science, 2022, 13, 11540-11550.	3.7	35
31	Photoactive Copper Complexes: Properties and Applications. Chemical Reviews, 2022, 122, 16365-16609.	23.0	81
32	Cuâ€Catalyzed Atom Transfer Radical Polymerization: The Effect of Cocatalysts. Macromolecular Chemistry and Physics, 2023, 224, .	1.1	10
33	Scaling-Up an Aqueous Self-Degassing Electrochemically Mediated ATRP in Dispersion for the Preparation of Cellulose–Polymer Composites and Films. Polymers, 2022, 14, 4981.	2.0	0
34	Blueâ€lightâ€induced atom transfer radical polymerization enabled by iron/copper dual catalysis. Journal of Polymer Science, 2023, 61, 920-928.	2.0	4
35	Visible Lightâ€ATRP Driven by Tris(2â€Pyridylmethyl)Amine (TPMA) Impurities in the Open Air. Macromolecular Rapid Communications, 2023, 44, .	2.0	7
36	New insights in the biodegradation of high-cyclic polycyclic aromatic hydrocarbons with crude enzymes of <i>Trametes versicolor</i> . Environmental Technology (United Kingdom), 2024, 45, 2243-2254.	1.2	1

3

#	Article	IF	CITATIONS
37	Influences of nitrogen base excess on ARGET ATRP of styrene with ascorbic acid acetonide and traces of oxygen and water. Polymer Chemistry, 2023, 14, 1567-1576.	1.9	1
38	Cu(0)-RDRP of acrylates using an alkyl iodide initiator. Polymer Chemistry, 2023, 14, 1639-1645.	1.9	1
39	Recognition of "Oxygen-/Water-Fueled―PET-RAFT Protocol Matched to Covalent Organic Frameworks. ACS Catalysis, 2023, 13, 2948-2956.	5.5	8
40	Fully Oxygen-Tolerant Visible-Light-Induced ATRP of Acrylates in Water: Toward Synthesis of Protein-Polymer Hybrids. Macromolecules, 2023, 56, 2017-2026.	2.2	8
41	Driving Polymer Brushes from Synthesis to Functioning. Angewandte Chemie - International Edition, 2023, 62, .	7.2	18
42	Driving Polymer Brushes from Synthesis to Functioning. Angewandte Chemie, 2023, 135, .	1.6	3
44	Methods of controlled radical polymerization in the synthesis of functional polymers and macromolecular structures. Russian Chemical Bulletin, 2023, 72, 1285-1298.	0.4	0
50	Visible-light-induced ATRP under high-pressure: synthesis of ultra-high-molecular-weight polymers. Chemical Communications, 0, , .	2.2	0