Antitumour dendritic cell vaccination in a priming and

Nature Reviews Drug Discovery 19, 635-652 DOI: 10.1038/s41573-020-0074-8

Citation Report

#	Article	IF	CITATIONS
1	3D Tumor Models and Their Use for the Testing of Immunotherapies. Frontiers in Immunology, 2020, 11, 603640.	2.2	90
2	Non-coding RNA derived from extracellular vesicles in cancer immune escape: Biological functions and potential clinical applications. Cancer Letters, 2021, 501, 234-246.	3.2	20
3	Efficacy of cancer vaccines in selected gynaecological breast and ovarianÂcancers: A 20-year systematic review and meta-analysis. European Journal of Cancer, 2021, 142, 63-82.	1.3	19
4	Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nature Reviews Clinical Oncology, 2021, 18, 215-229.	12.5	486
5	Nanomaterial-based delivery vehicles for therapeutic cancer vaccine development. Cancer Biology and Medicine, 2021, 18, 352-371.	1.4	22
6	The role of dendritic cells in tumor microenvironments and their uses as therapeutic targets. BMB Reports, 2021, 54, 31-43.	1.1	33
7	The Proposition of the Pulmonary Route as an Attractive Drug Delivery Approach of Nano-Based Immune Therapies and Cancer Vaccines to Treat Lung Tumors. Frontiers in Nanotechnology, 2021, 3, .	2.4	5
8	Promises and challenges of adoptive T-cell therapies for solid tumours. British Journal of Cancer, 2021, 124, 1759-1776.	2.9	113
9	Cationic Nanoparticle-Based Cancer Vaccines. Pharmaceutics, 2021, 13, 596.	2.0	21
10	Beyond Tumor Mutation Burden: Tumor Neoantigen Burden as a Biomarker for Immunotherapy and Other Types of Therapy. Frontiers in Oncology, 2021, 11, 672677.	1.3	48
11	Towards customized cancer vaccines: a promising filed in personalized cancer medicine. Expert Review of Vaccines, 2021, 20, 545-557.	2.0	2
12	Visualizable Delivery of Nanodisc Antigen-Conjugated Adjuvant for Cancer Immunotherapy. CCS Chemistry, 2022, 4, 1238-1250.	4.6	12
13	Development of Effective Tumor Vaccine Strategies Based on Immune Response Cascade Reactions. Advanced Healthcare Materials, 2021, 10, e2100299.	3.9	20
14	Lymph Node Delivery Strategy Enables the Activation of Cytotoxic T Lymphocytes and Natural Killer Cells to Augment Cancer Immunotherapy. ACS Applied Materials & Interfaces, 2021, 13, 22213-22224.	4.0	18
15	Nanovaccineâ€Mediated Cell Selective Delivery of Neoantigens Potentiating Adoptive Dendritic Cell Transfer for Personalized Immunization. Advanced Functional Materials, 2021, 31, 2104068.	7.8	19
16	Biomimetic sonodynamic therapy-nanovaccine integration platform potentiates Anti-PD-1 therapy in hypoxic tumors. Nano Today, 2021, 38, 101195.	6.2	65
17	Exosome-Based Vaccines: History, Current State, and Clinical Trials. Frontiers in Immunology, 2021, 12, 711565.	2.2	103
18	Combining Cancer Vaccines with Immunotherapy: Establishing a New Immunological Approach.	1.8	30

#	Article	IF	CITATIONS
19	Targeting neoantigens for cancer immunotherapy. Biomarker Research, 2021, 9, 61.	2.8	29
20	Largeâ€Sized Graphene Oxide Nanosheets Increase DC–Tâ€Cell Synaptic Contact and the Efficacy of DC Vaccines against SARSâ€CoVâ€2. Advanced Materials, 2021, 33, e2102528.	11.1	34
21	Advances in Engineered Polymer Nanoparticle Tracking Platforms towards Cancer Immunotherapy—Current Status and Future Perspectives. Vaccines, 2021, 9, 935.	2.1	18
22	Contribution of pre-existing neoantigen-specific T cells to a durable complete response after tumor-pulsed dendritic cell vaccine plus nivolumab therapy in a patient with metastatic salivary duct carcinoma. Immunological Investigations, 2022, 51, 1498-1514.	1.0	8
23	Deciphering Repertoire of B16 Melanoma Reactive TCRs by Immunization, In Vitro Restimulation and Sequencing of IFNÎ ³ -Secreting T Cells. International Journal of Molecular Sciences, 2021, 22, 9859.	1.8	1
24	Cyclophosphamide loaded thermo-responsive hydrogel system synergize with a hydrogel cancer vaccine to amplify cancer immunotherapy in a prime-boost manner. Bioactive Materials, 2021, 6, 3036-3048.	8.6	36
25	Tumor-on-a-chip devices for cancer immunotherapy. , 2022, , 155-195.		1
26	Bioinspired and Biomimetic Delivery Platforms for Cancer Vaccines. Advanced Materials, 2022, 34, e2103790.	11.1	81
27	Vaccines for Non-Viral Cancer Prevention. International Journal of Molecular Sciences, 2021, 22, 10900.	1.8	4
28	In Vivo PET Imaging of Monocytes Labeled with [89Zr]Zr-PLGA-NH2 Nanoparticles in Tumor and Staphylococcus aureus Infection Models. Cancers, 2021, 13, 5069.	1.7	4
29	Aggregation-Induced Emission-Based Vaccine Improves Potential Antitumor Immunotherapy. Journal of Biomedical Nanotechnology, 2021, 17, 2053-2061.	0.5	0
30	Neoantigen Dendritic Cell Vaccination Combined with Anti-CD38 and CpG Elicits Anti-Tumor Immunity against the Immune Checkpoint Therapy-Resistant Murine Lung Cancer Cell Line LLC1. Cancers, 2021, 13, 5508.	1.7	9
31	Induced pluripotent stem cells–derived hematopoietic progenitors for cellular immunotherapies. , 2022, , 233-263.		1
32	Potential Immune Biomarker Candidates and Immune Subtypes of Lung Adenocarcinoma for Developing mRNA Vaccines. Frontiers in Immunology, 2021, 12, 755401.	2.2	13
33	Hybrid membrane-coated nanosuspensions for multi-modal anti-glioma therapy via drug and antigen delivery. Journal of Nanobiotechnology, 2021, 19, 378.	4.2	28
34	Dendritic Cells and Cancer Immunotherapy: The Adjuvant Effect. International Journal of Molecular Sciences, 2021, 22, 12339.	1.8	23
35	Polymer Nanoparticleâ€Mediated Delivery of Oxidized Tumor Lysateâ€Based Cancer Vaccines. Macromolecular Bioscience, 2022, 22, e2100356.	2.1	10
36	Combinatorial Therapeutic Approaches with Nanomaterial-Based Photodynamic Cancer Therapy. Pharmaceutics, 2022, 14, 120.	2.0	28

#	Article	IF	CITATIONS
37	Nanomaterials with changeable physicochemical property for boosting cancer immunotherapy. Journal of Controlled Release, 2022, 342, 210-227.	4.8	16
38	Amplifying antitumor T cell immunity with versatile drug delivery systems for personalized cancer immunotherapy. Medicine in Drug Discovery, 2022, 13, 100116.	2.3	1
39	Nanovesicleâ€Mediated Targeted Delivery of Immune Checkpoint Blockades to Potentiate Therapeutic Efficacy and Prevent Side Effects. Advanced Materials, 2022, 34, e2106516.	11.1	26
40	Safety and efficacy of dendritic cell-based immunotherapy DCVAC/OvCa added to first-line chemotherapy (carboplatin plus paclitaxel) for epithelial ovarian cancer: a phase 2, open-label, multicenter, randomized trial. , 2022, 10, e003190.		16
41	Research progress on dendritic cell vaccines in cancer immunotherapy. Experimental Hematology and Oncology, 2022, 11, 3.	2.0	61
42	Harnessing dendritic cells for innovative therapeutic cancer vaccines. Current Opinion in Oncology, 2022, 34, 161-168.	1.1	10
43	Antigen Capture and Immune Modulation by Bacterial Outer Membrane Vesicles as In Situ Vaccine for Cancer Immunotherapy Postâ€₽hotothermal Therapy. Small, 2022, 18, e2107461.	5.2	50
44	Engineered exosomes as an in situ DC-primed vaccine to boost antitumor immunity in breast cancer. Molecular Cancer, 2022, 21, 45.	7.9	132
45	The role of DNA mismatch repair in immunotherapy of human cancer. International Journal of Biological Sciences, 2022, 18, 2821-2832.	2.6	20
46	Combined TLR-3/TLR-8 Signaling in the Presence of α-Type-1 Cytokines Represents a Novel and Potent Dendritic Cell Type-1, Anti-Cancer Maturation Protocol. Cells, 2022, 11, 835.	1.8	1
47	Therapeutic dendritic cell vaccines engineered with antigenâ€biomineralized Bi ₂ S ₃ nanoparticles for personalized tumor radioimmunotherapy. Aggregate, 2022, 3, .	5.2	13
48	Tri-component programmable nanoregulator with Three-pronged penetration boosts immunotherapy of Triple-Negative breast cancer. Chemical Engineering Journal, 2022, 439, 135712.	6.6	17
49	Photodynamic therapy of melanoma with new, structurally similar, NIR-absorbing ruthenium (II) complexes promotes tumor growth control via distinct hallmarks of immunogenic cell death American Journal of Cancer Research, 2022, 12, 210-228.	1.4	0
50	Comprehensive Analysis of the Potential Immune-Related Biomarker ATG101 that Regulates Apoptosis of Cholangiocarcinoma Cells After Photodynamic Therapy. Frontiers in Pharmacology, 2022, 13, 857774.	1.6	1
51	Immunotherapy discovery on tumor organoid-on-a-chip platforms that recapitulate the tumor microenvironment. Advanced Drug Delivery Reviews, 2022, 187, 114365.	6.6	30
52	Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	230
53	Myeloid cell-targeted therapies for solid tumours. Nature Reviews Immunology, 2023, 23, 106-120.	10.6	74
54	An armed oncolytic virus enhances the efficacy of tumor-infiltrating lymphocyte therapy by converting tumors to artificial antigen-presenting cells in situ. Molecular Therapy, 2 <u>022, 30, 3658-3676.</u>	3.7	13

#	Article	IF	CITATIONS
55	Roles of exosomal circRNAs in tumour immunity and cancer progression. Cell Death and Disease, 2022, 13, .	2.7	20
56	Activation of Cellular Players in Adaptive Immunity via Exogenous Delivery of Tumor Cell Lysates. Pharmaceutics, 2022, 14, 1358.	2.0	5
57	Trial watch: Dendritic cell (DC)-based immunotherapy for cancer. Oncolmmunology, 2022, 11, .	2.1	54
58	Recent advances in biological membrane-based nanomaterials for cancer therapy. Biomaterials Science, 2022, 10, 5756-5785.	2.6	5
59	Hybrid M13 bacteriophage-based vaccine platform for personalized cancer immunotherapy. Biomaterials, 2022, 289, 121763.	5.7	13
60	<i>In Situ</i> Programming of Nanovaccines for Lymph Node-Targeted Delivery and Cancer Immunotherapy. ACS Nano, 2022, 16, 15226-15236.	7.3	10
61	lcaritin and intratumoral injection of CpG treatment synergistically promote T cell infiltration and antitumor immune response in mice. International Immunopharmacology, 2022, 111, 109093.	1.7	6
62	New opportunities for immunomodulation of the tumour microenvironment using chemical tools. Chemical Society Reviews, 2022, 51, 7944-7970.	18.7	15
63	Mast Cells and Dendritic Cells as Cellular Immune Checkpoints in Immunotherapy of Solid Tumors. International Journal of Molecular Sciences, 2022, 23, 11080.	1.8	8
64	Immunobiology of high-grade serous ovarian cancer: lessons for clinical translation. Nature Reviews Cancer, 2022, 22, 640-656.	12.8	38
65	Mechanisms of tumor resistance to immune checkpoint blockade and combination strategies to overcome resistance. Frontiers in Immunology, 0, 13, .	2.2	11
66	Amplifying Dendritic Cell Activation by Bioinspired Nanometal Organic Frameworks for Synergistic Sonoimmunotherapy. Small, 2022, 18, .	5.2	21
67	Strategies to overcome DC dysregulation in the tumor microenvironment. Frontiers in Immunology, 0, 13, .	2.2	19
68	Pan-Cancer Analysis of the Prognostic and Immunotherapeutic Value of MITD1. Cells, 2022, 11, 3308.	1.8	3
69	Expression and prognosis of GNG5 in lower-grade glioma using public database. International Journal of Transgender Health, 2022, 15, 1101-1116.	1.1	0
70	Cellular immunotherapy for medulloblastoma. Neuro-Oncology, 2023, 25, 617-627.	0.6	7
71	Living Leukocyteâ€Based Drug Delivery Systems. Advanced Materials, 2023, 35, .	11.1	26
72	Nanomedicine for advanced cancer immunotherapy. Journal of Controlled Release, 2022, 351, 1017-1037.	4.8	7

#	Article	IF	Citations
73	Mannosylated engineered trichosanthin-legumain protein vaccine hydrogel for breast cancer immunotherapy. International Journal of Biological Macromolecules, 2022, 223, 1485-1494.	3.6	7
74	Nonlysosomal Route of mRNA Delivery and Combining with Epigenetic Regulation Optimized Antitumor Immunoprophylactic Efficacy. Advanced Healthcare Materials, 2023, 12, .	3.9	5
75	Nanoformulations targeting immune cells for cancer therapy: mRNA therapeutics. Bioactive Materials, 2023, 23, 438-470.	8.6	13
76	Development of a personalized dendritic cell vaccine and single-cell RNA sequencing–guided assessment of its cell type composition. Cytotherapy, 2023, 25, 210-219.	0.3	1
77	Cell atlas of the immune microenvironment in gastrointestinal cancers: Dendritic cells and beyond. Frontiers in Immunology, 0, 13, .	2.2	1
78	DC vaccines loaded with glioma cells killed by photodynamic therapy induce Th17 anti-tumor immunity and provide a four-gene signature for glioma prognosis. Cell Death and Disease, 2022, 13, .	2.7	10
79	Towards nextâ€generation TIL therapy: TILs enriched in neoepitopeâ€specific T cells. Clinical and Translational Medicine, 2023, 13, .	1.7	2
80	NLRC5-CIITA Fusion Protein as an Effective Inducer of MHC-I Expression and Antitumor Immunity. International Journal of Molecular Sciences, 2023, 24, 7206.	1.8	2
81	Comparison of tumor-derived total RNA and cell lysate on antitumor immune activity. Biomedicine and Pharmacotherapy, 2023, 160, 114377.	2.5	0
82	Ranitidine as an adjuvant regulates macrophage polarization and activates CTLs through the PI3K-Akt2 signaling pathway. International Immunopharmacology, 2023, 116, 109729.	1.7	2
83	Cancer vaccines based on whole-tumor lysate or neoepitopes with validated HLA binding outperform those with predicted HLA-binding affinity. IScience, 2023, 26, 106288.	1.9	0
84	Deciphering the potential roles of ferroptosis in regulating tumor immunity and tumor immunotherapy. Frontiers in Immunology, 0, 14, .	2.2	6
85	m6A methylation: a process reshaping the tumour immune microenvironment and regulating immune evasion. Molecular Cancer, 2023, 22, .	7.9	14
86	Chemotherapy-Sensitized <i>In Situ</i> Vaccination for Malignant Osteosarcoma Enabled by Bioinspired Calcium Phosphonate Nanoagents. ACS Nano, 2023, 17, 6247-6260.	7.3	4
87	Chemoimmunological Cascade Cancer Therapy Using Fluorine Assembly Nanomedicine. ACS Nano, 2023, 17, 7498-7510.	7.3	5
96	Whole tumour cell-based vaccines: tuning the instruments to orchestrate an optimal antitumour immune response. British Journal of Cancer, 2023, 129, 572-585.	2.9	4
130	Designing Nanodiscs as Versatile Platforms for On-Demand Therapy. Nanoscale, 0, , .	2.8	0
131	RNA Modifications in Cancer Metabolism and Tumor Microenvironment. Cancer Treatment and Research, 2023, , 3-24.	0.2	0

	CITATION	Citation Report	
#	Article	IF	CITATIONS
135	Research progress on graphene oxide nanoparticle-based diagnosis and treatment platform in tumor therapy. Applied Nanoscience (Switzerland), 2024, 14, 411-421.	1.6	1
147	Immunemodulation and Cancer. , 2023, , 17-25.		0