Generation of Alkyl Radicals: From the Tyranny of Tin t

Chemical Reviews 120, 9790-9833

DOI: 10.1021/acs.chemrev.0c00278

Citation Report

#	Article	IF	CITATIONS
1	Visibleâ€Light Photoredoxâ€Catalyzed Ringâ€Opening Carboxylation of Cyclic Oxime Esters with CO ₂ . ChemSusChem, 2020, 13, 6312-6317.	3.6	28
2	Vinyl Sulfonium Salts as the Radical Acceptor for Metal-Free Decarboxylative Alkenylation. Organic Letters, 2020, 22, 7768-7772.	2.4	32
3	Emerging Concepts in Carbon Nitride Organic Photocatalysis. ChemPlusChem, 2020, 85, 2499-2517.	1.3	47
4	Photogenerated electrophilic radicals for the umpolung of enolate chemistry. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 46, 100387.	5.6	13
5	Photoredoxâ€Catalyzed Multicomponent Cyclization of 2â€Vinyl Phenols, <i>N</i> â€Alkoxypyridinium Salts, and Sulfur Ylides for Synthesis of Dihydrobenzofurans. ChemCatChem, 2021, 13, 543-547.	1.8	24
6	Phosphorus Compounds as Precursors and Catalysts for Radical Câ°C Bondâ€Forming Reactions. Advanced Synthesis and Catalysis, 2021, 363, 924-936.	2.1	36
7	Deaminative metal-free reaction of alkenylboronic acids, sodium metabisulfite and Katritzky salts. Chemical Communications, 2021, 57, 915-918.	2.2	22
8	Reactions of benzyltriphenylphosphonium salts under photoredox catalysis. Organic and Biomolecular Chemistry, 2021, 19, 7810-7815.	1.5	2
9	Tin and Lead in Organic Synthesis. , 2021, , .		O
10	Synergistic photoredox and tertiary amine catalysis: generation of allylic sulfones from Morita–Baylis–Hillman acetates and sulfur dioxide. Organic Chemistry Frontiers, 2021, 8, 3308-3313.	2.3	23
11	Lewis Acid Activation of Fragment-Coupling Reactions of Tertiary Carbon Radicals Promoted by Visible-Light Irradiation of EDA Complexes. Organic Letters, 2021, 23, 1103-1106.	2.4	34
12	C4-arylation and domino C4-arylation/3,2-carbonyl migration of indoles by tuning Pd catalytic modes: Pd(<scp>i</scp>)–Pd(<scp>ii</scp>) catalysis <i>vs.</i> Pd(<scp>ii</scp>) catalysis. Chemical Science, 2021, 12, 3216-3225.	3.7	44
13	Phosphite mediated asymmetric N to C migration for the synthesis of chiral heterocycles from primary amines. Chemical Science, 2021, 12, 8996-9003.	3.7	4
14	Fast Carbon Isotope Exchange of Carboxylic Acids Enabled by Organic Photoredox Catalysis. Journal of the American Chemical Society, 2021, 143, 2200-2206.	6.6	63
15	Diacyl peroxides: practical reagents as aryl and alkyl radical sources. Chemical Communications, 2021, 57, 6707-6724.	2.2	31
16	Single Electron Transfer-Induced Redox Processes Involving <i>N</i> -(Acyloxy)phthalimides. ACS Catalysis, 2021, 11, 1640-1683.	5.5	190
17	Photoâ€Mediated Intermolecular Coupling of Alkenes with Ketones via Acyloxy Nitroso Compounds. Angewandte Chemie - International Edition, 2021, 60, 8547-8551.	7.2	17
18	Lichtâ€vermittelte intermolekulare Kupplung von Alkenen mit Ketonen Ã1⁄4ber Acyloxyâ€Nitrosoâ€Verbindungen. Angewandte Chemie, 2021, 133, 8629-8634.	1.6	O

#	ARTICLE	IF	CITATIONS
19	Development of Organosilicon Peroxides as Practical Alkyl Radical Precursors and Their Applications to Transition Metal Catalysis. Bulletin of the Chemical Society of Japan, 2021, 94, 513-524.	2.0	24
20	Visible-Light Decatungstate/Disulfide Dual Catalysis for the Hydro-Functionalization of Styrenes. Organic Letters, 2021, 23, 1484-1488.	2.4	37
21	Controlled Single-Electron Transfer via Metal–Ligand Cooperativity Drives Divergent Nickel-Electrocatalyzed Radical Pathways. Journal of the American Chemical Society, 2021, 143, 6990-7001.	6.6	24
22	Electrophotocatalytic Câ^'H Heterofunctionalization of Arenes. Angewandte Chemie, 2021, 133, 11263-11267.	1.6	12
23	Electrophotocatalytic Câ^'H Heterofunctionalization of Arenes. Angewandte Chemie - International Edition, 2021, 60, 11163-11167.	7.2	75
24	Enhancing Visible-Light Photocatalysis <i>via</i> Endohedral Functionalization of Single-Walled Carbon Nanotubes with Organic Dyes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 24877-24886.	4.0	19
25	Electrochemical Generation and Use in Organic Synthesis of <i>C</i> ―, <i>O</i> ― and <i>N</i> entered Radicals. Chemical Record, 2021, 21, 2538-2573.	2.9	21
26	Asymmetric Synthesis of Homoallylic Alcohols Featuring Vicinal Tetrasubstituted Carbon Centers via Dual Pd/Photoredox Catalysis. Organic Letters, 2021, 23, 4447-4451.	2.4	15
27	Ti(O <i>i</i> Pr) ₄ -Enabled Dual Photoredox and Nickel-Catalyzed Arylation and Alkenylation of Cyclopropanols. Organic Letters, 2021, 23, 5452-5456.	2.4	12
28	Synthesis of Cyclic Anhydrides via Ligandâ€Enabled C–H Carbonylation of Simple Aliphatic Acids. Angewandte Chemie, 2021, 133, 16518-16523.	1.6	8
29	Radical philicity and its role in selective organic transformations. Nature Reviews Chemistry, 2021, 5, 486-499.	13.8	169
30	Metal-Free Photosynthesis of Alkylated Benzimidazo $[2,1-\langle i\rangle a\langle i\rangle]$ is oquinoline-6(5 $\langle i\rangle H\langle i\rangle$)-ones and Indolo $[2,1-\langle i\rangle a\langle i\rangle]$ is oquinolin-6(5 $\langle i\rangle H\langle i\rangle$)-ones in PEG-200. Journal of Organic Chemistry, 2021, 86, 9055-9066.	1.7	50
31	Synthesis of Cyclic Anhydrides via Ligandâ€Enabled C–H Carbonylation of Simple Aliphatic Acids. Angewandte Chemie - International Edition, 2021, 60, 16382-16387.	7.2	25
32	Strategic Use of Visible-Light Photoredox Catalysis in Natural Product Synthesis. Chemical Reviews, 2022, 122, 1717-1751.	23.0	199
33	Hydroalkylation of Unactivated Olefins via Visible-Light-Driven Dual Hydrogen Atom Transfer Catalysis. Journal of the American Chemical Society, 2021, 143, 11251-11261.	6.6	59
34	Photocatalytic C–H Trifluoromethylthiolation by the Decatungstate Anion. Organic Letters, 2021, 23, 5729-5733.	2.4	40
35	Enantioselective Photochemical Reactions Enabled by Triplet Energy Transfer. Chemical Reviews, 2022, 122, 1626-1653.	23.0	197
36	In-situ-generation of alkylsilyl peroxides from alkyl hydroperoxides and their subsequent copper-catalyzed functionalization with organosilicon compounds. Tetrahedron Letters, 2021, 75, 153144.	0.7	4

#	Article	IF	CITATIONS
37	Molecular Main Group Metal Hydrides. Chemical Reviews, 2021, 121, 12784-12965.	23.0	147
38	Recent advances in radical chemistry proceeding through pro-aromatic radicals. CheM, 2021, 7, 2060-2100.	5.8	69
39	Direct Photocatalyzed Hydrogen Atom Transfer (HAT) for Aliphatic C–H Bonds Elaboration. Chemical Reviews, 2022, 122, 1875-1924.	23.0	442
40	Visible-Light-Promoted Selenocyanation of Cyclobutanone Oxime Esters Using Potassium Selenocyanate. Journal of Organic Chemistry, 2021, 86, 11399-11406.	1.7	20
41	Metalâ€toâ€Ligand Ratioâ€Dependent Chemodivergent Asymmetric Synthesis. Angewandte Chemie, 2021, 133, 23074.	1.6	0
42	Selective deoxygenative alkylation of alcohols via photocatalytic domino radical fragmentations. Nature Communications, 2021, 12, 5365.	5. 8	51
43	Metalâ€toâ€Ligand Ratioâ€Dependent Chemodivergent Asymmetric Synthesis. Angewandte Chemie - International Edition, 2021, 60, 22892-22899.	7.2	16
44	<i>>o</i> >-Semiquinone radical anion isolated as an amorphous porous solid. Physical Chemistry Chemical Physics, 2021, 23, 17408-17419.	1.3	5
45	Mechanistic studies of reactive oxygen species mediated electrochemical radical reactions of alkyl iodides. Chemical Communications, 2021, 57, 8356-8359.	2.2	3
46	Extending photocatalysis to the visible and NIR: the molecular strategy. Nanoscale, 2021, 13, 9147-9159.	2.8	26
47	Visible-Light-Mediated Z-Stereoselective Monoalkylation of \hat{l}^2 , \hat{l}^2 -Dichlorostyrenes by Photoredox/Nickel Dual Catalysis. Synlett, 2021, 32, 1513-1518.	1.0	4
48	Direct excitation strategy for radical generation in organic synthesis. Chemical Society Reviews, 2021, 50, 6320-6332.	18.7	103
49	Phenolate anion-catalyzed direct activation of inert alkyl chlorides driven by visible light. Organic Chemistry Frontiers, 2021, 8, 6364-6370.	2.3	19
50	An organophotoredox-catalyzed redox-neutral cascade involving <i>N</i> -(acyloxy)phthalimides and maleimides. Organic Chemistry Frontiers, 2021, 8, 2256-2262.	2.3	30
51	Advances of $\langle i \rangle N \langle i \rangle$ -Hydroxyphthalimide Esters in Photocatalytic Alkylation Reactions. Chinese Journal of Organic Chemistry, 2021, 41, 4661.	0.6	34
52	Additive-Free, Visible-Light-Enabled Decarboxylative Alkylation of Enamides. Organic Letters, 2021, 23, 8262-8266.	2.4	21
53	Phosphine/Photoredox Catalyzed Anti-Markovnikov Hydroamination of Olefins with Primary Sulfonamides via α-Scission from Phosphoranyl Radicals. Journal of the American Chemical Society, 2021, 143, 18331-18338.	6.6	47
54	1,4-Alkylcarbonylation of 1,3-Enynes to Access Tetra-Substituted Allenyl Ketones $\langle i \rangle via \langle i \rangle$ an NHC-Catalyzed Radical Relay. ACS Catalysis, 2021, 11, 13363-13373.	5.5	56

#	Article	IF	CITATIONS
55	Organic Sulfinic Acids and Salts in Visible Light-Induced Reactions. Synthesis, 2022, 54, 1231-1249.	1.2	6
56	Dioxygen-Triggered Oxosulfonylation/Sulfonylation of Terminal Olefins toward Î ² -Keto Sulfones/Sulfones. Organic Letters, 2021, 23, 8296-8301.	2.4	15
57	Acridine Orange Hemi(Zinc Chloride) Salt as a Lewis Acidâ€Photoredox Hybrid Catalyst for the Generation of ⟨i⟩α⟨ i⟩â€Carbonyl Radicals. Advanced Synthesis and Catalysis, 2022, 364, 755-765.	2.1	13
58	Electrochemical C–N bond activation for deaminative reductive coupling of Katritzky salts. Nature Communications, 2021, 12, 6745.	5.8	45
59	Photoelectrochemical Decarboxylative C–H Alkylation of Quinoxalin-2(1 <i>H</i>)-ones. ACS Sustainable Chemistry and Engineering, 2021, 9, 16820-16828.	3.2	14
60	Inherently dinuclear iridium(<scp>iii</scp>) <i>imeso</i> architectures accessed by cyclometalation of calix[4] arene-based bis(aryltriazoles). Dalton Transactions, 2021, 50, 16765-16769.	1.6	7
61	Direct and Unified Access to Carbon Radicals from Aliphatic Alcohols by Costâ€Efficient Titaniumâ€Mediated Homolytic Câ~'OH Bond Cleavage. Angewandte Chemie - International Edition, 2022, 61,	7.2	24
62	Direct and Unified Access to Carbon Radicals from AliphaticÂAlcohols by Costâ€Efficient Titaniumâ€Mediated Homolytic C–OH BondÂCleavage. Angewandte Chemie, 0, , .	1.6	4
63	Enantioselective Radical Reactions Using Chiral Catalysts. Chemical Reviews, 2022, 122, 5842-5976.	23.0	136
64	Concomitant functionalization of two different ketones by merging BrÃ,nsted acid catalysis and radical relay coupling. Organic Chemistry Frontiers, 2022, 9, 1561-1566.	2.3	2
65	Three-component 1,2-dicarbofunctionalization of alkenes involving alkyl radicals. Chemical Communications, 2022, 58, 730-746.	2.2	45
66	A new approach for the copper-catalyzed functionalization of alkyl hydroperoxides with organosilicon compounds via in-situ-generated alkylsilyl peroxides. Tetrahedron, 2022, , 132627.	1.0	9
67	Siteâ€Selective C(sp 3)â€H Alkenylation Using Decatungstate Anion as Photocatalyst. Advanced Synthesis and Catalysis, 0, , .	2.1	11
68	Lowâ€Cost Transition Metalâ€Catalyzed Heckâ€Type Reactions: An Overview. European Journal of Organic Chemistry, 2022, 2022, .	1.2	14
69	A Photocatalytic System Composed of Benzimidazolium Aryloxide and Tetramethylpiperidine 1-Oxyl to Promote Desulfonylative α-Oxyamination Reactions of α-Sulfonylketones. ACS Omega, 2022, 7, 4655-4666.	1.6	6
70	Alternating current electrolysis: A photoredox catalysis mimic and beyond. Green Synthesis and Catalysis, 2022, 3, 4-10.	3.7	18
71	Aromatization as the driving force for single electron transfer towards C–C cross-coupling reactions. Catalysis Science and Technology, 2022, 12, 1934-1940.	2,1	10
72	Recent advances in radical-mediated transformations of 1,3-dienes. Chinese Journal of Catalysis, 2022, 43, 548-557.	6.9	45

#	Article	IF	Citations
73	Photocatalytic redox-neutral reaction of \hat{I}^3 -indolyl \hat{I}_\pm -keto esters. Organic Chemistry Frontiers, 2022, 9, 1875-1883.	2.3	2
74	Alkylâ€GeMe ₃ : Neutral Metalloid Radical Precursors upon Visibleâ€Light Photocatalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	31
75	Efficient Photocatalytic Carbonyl Alkylative Amination Enabled by Titaniumâ€Dioxideâ€Mediated Decarboxylation. Chemistry - A European Journal, 2022, 28, .	1.7	4
76	Alkylâ€GeMe ₃ : Neutral Metalloid Radical Precursors upon Visibleâ€Light Photocatalysis. Angewandte Chemie, 2022, 134, .	1.6	1
77	Applications of Halogen-Atom Transfer (XAT) for the Generation of Carbon Radicals in Synthetic Photochemistry and Photocatalysis. Chemical Reviews, 2022, 122, 2292-2352.	23.0	206
78	Catalytic cleavage and functionalization of bulky and inert Csp3–Csp3 bonds via a relayed proton-coupled electron transfer strategy. Cell Reports Physical Science, 2022, 3, 100763.	2.8	10
79	Modular and Facile Access to Chiral \hat{l}_{\pm} -Aryl Phosphates via Dual Nickel- and Photoredox-Catalyzed Reductive Cross-Coupling. Journal of the American Chemical Society, 2022, 144, 3989-3997.	6.6	55
80	Ce(III)/Photoassisted Synthesis of Amides from Carboxylic Acids and Isocyanates. Organic Letters, 2022, 24, 2431-2435.	2.4	17
81	Metalâ€Free Photochemical Câ^'Se Crossâ€Coupling of Aryl Halides with Diselenides. Advanced Synthesis and Catalysis, 2022, 364, 1607-1612.	2.1	8
82	Remote Giese Radical Addition by Photocatalytic Ring Opening of Activated Cycloalkanols. Advanced Synthesis and Catalysis, 2022, 364, 1689-1694.	2.1	6
83	Boryl Radical Activation of Benzylic C–OH Bond: Cross-Electrophile Coupling of Free Alcohols and CO ₂ via Photoredox Catalysis. Journal of the American Chemical Society, 2022, 144, 8551-8559.	6.6	41
84	Designing radical chemistry by visible light-promoted homolysis. Trends in Chemistry, 2022, 4, 305-317.	4.4	21
85	Phenanthrenequinone-Sensitized Photocatalytic Synthesis of Polysubstituted Quinolines from 2-Vinylarylimines. Organic Letters, 2022, 24, 274-278.	2.4	12
86	Photocatalytic C–O Bond Cleavage of Alcohols Using Xanthate Salts. Organic Letters, 2022, 24, 359-363.	2.4	18
87	Photocatalytic C(sp ³) radical generation <i>via</i> C–H, C–C, and C–X bond cleavage. Chemical Science, 2022, 13, 5465-5504.	3.7	45
88	Photocatalytic generation of ligated boryl radicals from tertiary amine-borane complexes: An emerging tool in organic synthesis. Chem Catalysis, 2022, 2, 957-966.	2.9	12
89	Dual Photoredox and Cobalt Catalysis Enabled Transformations. European Journal of Organic Chemistry, 2022, 2022, .	1.2	26
90	Decarboxylative tandem C-N coupling with nitroarenes via SH2 mechanism. Nature Communications, 2022, 13, 2432.	5.8	32

#	Article	IF	CITATIONS
91	Uncovering the Potential of Boronic Acid and Derivatives as Radical Source in Photo(electro)chemical Reactions. Advanced Synthesis and Catalysis, 2022, 364, 1643-1665.	2.1	28
92	Photoâ€Induced Rutheniumâ€Catalyzed Double Remote C(sp ²)â^'H / C(sp ³)â^'H Functionalizations by Radical Relay. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
93	Visible Lightâ€Mediated Manipulation of 1, <i>n</i> i>â€Enynes in Organic Synthesis. ChemCatChem, 2022, 14, .	1.8	13
94	Dehydroalanine modification sees the light: a photochemical conjugate addition strategy. Trends in Chemistry, 2022, 4, 643-657.	4.4	21
95	Radical C(sp3)–H functionalization and cross-coupling reactions. Nature Reviews Chemistry, 2022, 6, 405-427.	13.8	73
96	The photocatalytic selective 1,2-hydroxyacylmethylation of 1,3-dienes with sulfur ylides as the source of alkyl radicals. Organic Chemistry Frontiers, 2022, 9, 3747-3756.	2.3	6
97	Synthesis of Polycyclic Quinazolinones through C(sp ³)â^'H Functionalization of Inert Alkanes or Visibleâ€Lightâ€Promoted Oxidation Decarboxylation of <i>N</i> â€Hydroxyphthalimide Esters. European Journal of Organic Chemistry, 2022, 2022, .	1.2	7
98	Umpolung Ala ^B Reagents for the Synthesis of Nonâ€Proteogenic Amino Acids, Peptides and Proteins**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
99	Visibleâ€Lightâ€Mediated Câ€2 Functionalization and Deoxygenative Strategies in Heterocyclic <i>N</i> â€Oxides. Advanced Synthesis and Catalysis, 2022, 364, 2289-2306.	2.1	16
100	Umpolung AlaB Reagents for the Synthesis of Nonâ€Proteogenic Amino Acids, Peptides and Proteins. Angewandte Chemie, 0, , .	1.6	0
101	Efficient synthesis of \hat{l}^2 -substituted amines via combining deoxygenation of amides with photochemical organocatalysis. Cell Reports Physical Science, 2022, 3, 100955.	2.8	10
102	Cyclization Strategies Using Imide Derivatives for the Synthesis of Polycyclic Nitrogenâ€Containing Compounds. European Journal of Organic Chemistry, 2022, 2022, .	1.2	6
103	A Pyridine-Based Donor–Acceptor Molecule: A Highly Reactive Organophotocatalyst That Enables the Reductive Cleavage of C–Br Bonds through Halogen Bonding. ACS Catalysis, 2022, 12, 7843-7849.	5.5	20
104	Redox activated amines in the organophotoinduced alkylation of coumarins. Organic and Biomolecular Chemistry, 2022, 20, 5716-5720.	1.5	4
105	Benzylic Fluorination Induced by a Charge-Transfer Complex with a Solvent-Dependent Selectivity Switch. Organic Letters, 2022, 24, 5376-5380.	2.4	11
106	Electrophotocatalysis: Combining Light and Electricity to Catalyze Reactions. Journal of the American Chemical Society, 2022, 144, 12567-12583.	6.6	101
107	Oxidative lactonization of C(sp3)-H bond in methyl aromatic alcohols enabled by proton-coupled electron transfer. Science China Chemistry, 2022, 65, 1526-1531.	4.2	6
108	Deoxygenative alkylation of tertiary amides using alkyl iodides under visible light. Science China Chemistry, 2022, 65, 2231-2237.	4.2	10

#	Article	IF	CITATIONS
109	Switchable Radical Carbonylation by Philicity Regulation. Journal of the American Chemical Society, 2022, 144, 14923-14935.	6.6	31
110	Photocatalytic Hydroalkylation of Aryl-Alkenes. Journal of Organic Chemistry, 2022, 87, 11042-11047.	1.7	2
111	Synthesis and applications of thiosulfonates and selenosulfonates as free-radical reagents. Chinese Chemical Letters, 2023, 34, 107736.	4.8	33
112	Photoinduced Oxygen Transfer Using Nitroarenes for the Anaerobic Cleavage of Alkenes. Journal of the American Chemical Society, 2022, 144, 15437-15442.	6.6	48
113	Recent Advances in Light-Induced Selenylation. ACS Organic & Inorganic Au, 2022, 2, 455-463.	1.9	15
114	Direct photolysis of 4- <i>tert</i> -alkyl-1,4-dihydropyridines under blue-light irradiation for the generation of tertiary alkyl radicals. Green Chemistry, 2022, 24, 6845-6848.	4.6	3
115	Azodioxy compounds as precursors for C-radicals and their application in thermal styrene difunctionalization. Chemical Science, 2022, 13, 9749-9754.	3.7	2
116	Exploiting photoredox catalysis for carbohydrate modification through C–H and C–C bond activation. Nature Reviews Chemistry, 2022, 6, 782-805.	13.8	18
117	Halogen-atom and group transfer reactivity enabled by hydrogen tunneling. Science, 2022, 377, 1323-1328.	6.0	46
118	Chromium/Photoredox Dualâ€Catalyzed Synthesis of αâ€Benzylic Alcohols, Isochromanones, 1,2â€Oxy Alcohols and 1,2â€Thio Alcohols. Angewandte Chemie - International Edition, 0, , .	7.2	6
119	Chrom/Photoredoxâ€dualkatalysierte Synthese von <i>α</i> â€benzylischen Alkoholen, Isochromanonen, 1,2â€Oxyalkoholen und 1,2â€Thioalkoholen. Angewandte Chemie, 2022, 134, .	1.6	0
120	Towards Enantiomerically Pure Unnatural \hat{l}_{\pm} -Amino Acids via Photoredox Catalytic 1,4-Additions to a Chiral Dehydroalanine. Journal of Organic Chemistry, 2022, 87, 14308-14318.	1.7	2
121	Alkyl Radical Generation via C–C Bond Cleavage in 2-Substituted Oxazolidines. ACS Catalysis, 2022, 12, 12469-12476.	5.5	6
122	Visible-Light-Enabled Ph∢sub>3P/Lil-Promoted Tandem Radical Trifluoromethylation/Cyclization/Iodination of 1,6-Enynes with Togni's Reagent. Journal of Organic Chemistry, 2022, 87, 12877-12889.	1.7	8
123	Catalytic Generation of Radicals from Nitroalkanes. Synlett, 0, , .	1.0	3
124	Organophotoredox and Hydrogen Atom Transfer Cocatalyzed C–H Alkylation of Quinoxalin-2(1 <i>H</i>)-ones with Aldehydes, Amides, Alcohols, Ethers, or Cycloalkanes. Journal of Organic Chemistry, 2022, 87, 14580-14587.	1.7	6
126	Silyl-mediated photoredox-catalyzed radical–radical cross-coupling reaction of alkyl bromides and ketoesters. Organic Chemistry Frontiers, 2022, 9, 6611-6616.	2.3	2
127	C(sp ³)–C(sp ³) coupling of non-activated alkyl-iodides with electron-deficient alkenes <i>via</i> visible-light/silane-mediated alkyl-radical formation. Chemical Science, 2022, 13, 13241-13247.	3.7	15

#	ARTICLE	IF	CITATIONS
128	Dual role of benzophenone enables a fast and scalable C-4 selective alkylation of pyridines in flow. Chemical Science, 2022, 13, 12527-12532.	3.7	7
129	Organogermanium(<scp>iv</scp>) compounds in photo-induced radical reactions. Organic Chemistry Frontiers, 2022, 9, 7016-7027.	2.3	11
130	Alkylboronic acids as alkylating agents: photoredox-catalyzed alkylation reactions assisted by K ₃ PO ₄ . Chemical Science, 2022, 13, 13466-13474.	3.7	11
131	Electrosynthetic Câ°O Bond Activation in Alcohols and Alcohol Derivatives. Angewandte Chemie, 2023, 135, .	1.6	3
132	Photoredox/Ti Dualâ€Catalyzed Dehydroxylation of Cyclobutanone Oximes for γâ€Cyanoalkyl Radical Generation: Access to Cyanoalkylâ€Substituted Oxoindolines. Advanced Synthesis and Catalysis, 2022, 364, 3932-3940.	2.1	3
133	Photocatalytic Decarboxylative Pyridylation of Carboxylic Acids Using In Situ-Generated Amidyl Radicals as Oxidants. ACS Catalysis, 2022, 12, 13225-13233.	5.5	12
134	Electrosynthetic Câ $^{\circ}$ O Bond Activation in Alcohols and Alcohol Derivatives. Angewandte Chemie - International Edition, 2023, 62, .	7.2	15
135	Electrocatalytic Generation of Acyl Radicals and Their Applications. European Journal of Organic Chemistry, 2022, 2022, .	1.2	11
136	Photocatalytic Modular Cyanoalkylamination of Alkenes Involving Two Different Iminyl Radicals. Organic Letters, 2022, 24, 8019-8024.	2.4	17
137	Dual-Role Halogen-Bonding-Assisted EDA-SET/HAT Photoreaction System with Phenol Catalyst and Aryl Iodide: Visible-Light-Driven Carbon–Carbon Bond Formation. Journal of Organic Chemistry, 2022, 87, 15499-15510.	1.7	14
138	Merging dual photoredox/cobalt catalysis and boronic acid (derivatives) activation for the Minisci reaction. Organic Chemistry Frontiers, 2022, 9, 6958-6967.	2.3	6
139	Photocatalytic Cleavage of Trityl Protected Thiols and Alcohols. Synthesis, 2023, 55, 1367-1374.	1.2	1
140	Electrocatalytic synthesis: an environmentally benign alternative for radical-mediated aryl/alkenyl C(sp ²)â€"C(sp ³) cross-coupling reactions. Green Chemistry, 2022, 24, 9373-9401.	4.6	17
141	Multiphotocatalyst Cascades: From Furans to Fused Butyrolactones and Substituted Cyclopentanones. Organic Letters, 2022, 24, 8786-8790.	2.4	3
142	Photocatalytic Alkyl Addition to Access Quaternary Alkynyl α-Amino Esters. Organic Letters, 2022, 24, 8870-8874.	2.4	3
143	Trifluoromethylation of Carbonyl and Unactivated Olefin Derivatives by C(<i>>sp</i> ^{<i>3</i>})â°'C Bond Cleavage. Angewandte Chemie - International Edition, 2023, 62,	7.2	16
144	Temperatureâ€Assisted Generation of Arylmethyl Radicals from Bis(arylmethyl)tin Dichlorides: Efficient Reagents for Csp3â€Csp2 Bondâ€Forming Reactions. Chemistry - A European Journal, 0, , .	1.7	0
145	Lewis Base–Boryl Radicals Enabled Borylation Reactions and Selective Activation of Carbon–Heteroatom Bonds. Accounts of Chemical Research, 2023, 56, 169-186.	7.6	29

#	Article	IF	Citations
146	Trifluoromethylation of Carbonyl and Unactivated Olefin Derivatives by $C(\langle i\rangle sp\langle i\rangle\langle sup\rangle\langle i\rangle\langle sup\rangle) \hat{a}^{2}C$ Bond Cleavage. Angewandte Chemie, 2023, 135, .	1.6	2
147	Visible-Light-Driven Solventylation Strategy for Olefin Functionalization. ACS Omega, 2022, 7, 48564-48571.	1.6	3
148	Persulfateâ€Mediated Oxidative Câ^'H Functionalization of Glycinates to Access Diverse Unnatural Amino Acids. European Journal of Organic Chemistry, 2022, 2022, .	1.2	1
149	Effect of Arylazo Sulfones on DNA: Binding, Cleavage, Photocleavage, Molecular Docking Studies and Interaction with A375 Melanoma and Non-Cancer Cells. International Journal of Molecular Sciences, 2023, 24, 1834.	1.8	4
150	The Last Fortress of Tin's Tyranny – Protodenitration of Nitroalkanes. European Journal of Organic Chemistry, 2023, 26, .	1.2	1
151	Electrochemical synthesis of oxazoles (i>via < /i> a phosphine-mediated deoxygenative [3 + 2] cycloaddition of carboxylic acids. Green Chemistry, 2023, 25, 1435-1441.	4.6	10
152	Generation and reaction of alanyl radicals in open flasks. Chemical Communications, 2023, 59, 2094-2097.	2.2	1
153	Contemporary photoelectrochemical strategies and reactions in organic synthesis. Chemical Communications, 2023, 59, 3487-3506.	2.2	11
154	Synthesis of αâ€Aryl Carbonyls via Photoinduced Formation of Câ^'C Bonds. ChemCatChem, 2023, 15, .	1.8	1
155	Modulating stereoselectivity in allylic C(sp3)-H bond arylations via nickel and photoredox catalysis. Nature Communications, 2023, 14 , .	5.8	15
156	Organophotoredox-Catalyzed Oxidative C(sp2)–H Alkylation of N-Heteroarenes with Dihydroquinazolinones by C–C Cleavage. Synlett, 2023, 34, 1241-1246.	1.0	9
157	Chlorine Atom Transfer of Unactivated Alkyl Chlorides Enabled by Zirconocene and Photoredox Catalysis., 2023, 1, 112-118.		8
158	Aminals as powerful XAT-reagents: activation of fluorinated alkyl chlorides. Chemical Science, 2023, 14, 3229-3234.	3.7	7
159	Facile access to <i>gem</i> difluorocyclopropanes <i>via</i> an <i>N</i> -heterocyclic carbene-catalyzed radical relay/cyclization strategy. Organic Chemistry Frontiers, 2023, 10, 1669-1674.	2.3	9
160	Visible-Light-Photocatalyzed Dicarbofunctionalization of Conjugated Alkenes with Ketone-Based Dihydroquinazolinones. Organic Letters, 2023, 25, 1441-1446.	2.4	10
161	Visible-Light Photoredox-Catalyzed Giese Reaction of α-Silyl Ethers with Various Michael Acceptors. Journal of Organic Chemistry, 2023, 88, 3555-3566.	1.7	2
162	Recent Advances in Electron Donorâ€Acceptor (EDA)â€Complex Reactions involving Quaternary Pyridinium Derivatives. Advanced Synthesis and Catalysis, 2023, 365, 1538-1564.	2.1	15
163	Photoinduced Metalâ€Free Decarboxylative Transformations: Rapid Access to Amines, Alkyl Halides, and Olefins. European Journal of Organic Chemistry, 2023, 26, .	1.2	1

#	Article	IF	CITATIONS
164	Visible-Light-Induced Radical <i>gem</i> lodoallylation of 2,2,2-Trifluorodiazoethane. Organic Letters, 2023, 25, 1958-1962.	2.4	5
165	Carbon-centered radical capture at nickel(II) complexes: Spectroscopic evidence, rates, and selectivity. CheM, 2023, 9, 1295-1308.	5.8	23
166	Martin Silicates as Versatile Radical Precursors in Photoredox/ Nickel Dual Catalysis. Synlett, 0, , .	1.0	1
167	Design principles of theÂuse of alkynes in radical cascades. Nature Reviews Chemistry, 2023, 7, 405-423.	13.8	23
168	NHC-Catalyzed Synthesis of \hat{l}_{\pm} -Sulfonyl Ketones via Radical-Mediated Sulfonyl Methylation of Aldehydes. Organic Letters, 2023, 25, 2657-2662.	2.4	11
169	Mesoionic Carbeneâ€Catalyzed Formyl Alkylation of Aldehydes. Angewandte Chemie - International Edition, 2023, 62, .	7.2	14
170	Mesoionic Carbene atalyzed Formyl Alkylation of Aldehydes. Angewandte Chemie, 2023, 135, .	1.6	0
177	Visible-Light Copper Catalysis for the Synthesis of α-Alkyl-Acetophenones by the Radical-Type Ring Opening of Sulfonium Salts and Oxidative Alkylation of Alkenes. Organic Letters, 2023, 25, 3260-3265.	2.4	5
178	Photoinduced Base-Metal Catalyzed sp ³ -C-Si Bond Activation of Organosilanols to Generate sp ³ -Carbon-Centered Radicals. ACS Catalysis, 2023, 13, 6879-6886.	5.5	1
209	Reduction of unactivated alkyl chlorides enabled by light-induced single electron transfer. Science China Chemistry, 2024, 67, 471-481.	4.2	1
211	Photo-induced radical transformations of tosyl cyanide. Organic and Biomolecular Chemistry, 2024, 22, 196-201.	1.5	1
228	Visible-light-mediated direct C3 alkylation of quinoxalin-2(1 <i>H</i>)-ones using alkanes. Chemical Communications, 2024, 60, 2409-2412.	2.2	0
235	Multicomponent Mannich and Related Reactions. , 2024, , .		O