Stretchable distributed fiber-optic sensors

Science 370, 848-852 DOI: 10.1126/science.aba5504

Citation Report

#	Article	IF	CITATIONS
1	Co-optimization of Morphology and Actuation Parameters of Multi-sectional FREEs for Trajectory Matching. IEEE Robotics and Automation Letters, 2021, , 1-1.	3.3	2
2	Shape Sensing Using Two Outer Cores of Multicore Fiber and Optical Frequency Domain Reflectometer. Journal of Lightwave Technology, 2021, 39, 6624-6630.	2.7	18
3	High-Mechanical-Resolution Pressure Sensor Based on Melt-Blown Fibers in Integrated Wearable Mask for Respiratory Monitoring. IEEE Transactions on Electron Devices, 2021, 68, 5765-5772.	1.6	3
4	Review on Conductive Polymer/CNTs Nanocomposites Based Flexible and Stretchable Strain and Pressure Sensors. Sensors, 2021, 21, 341.	2.1	128
5	The new material science of robots. Current Opinion in Solid State and Materials Science, 2021, 25, 100894.	5.6	3
6	Transparent, Flexible, and Stable Polyethersulfone/Copperâ€Nanowires/Polyethylene Terephthalate Sandwichâ€Structured Films for Highâ€Performance Electromagnetic Interference Shielding. Advanced Engineering Materials, 2021, 23, 2100283.	1.6	20
7	Low cost exoskeleton manipulator using bidirectional triboelectric sensors enhanced multiple degree of freedom sensory system. Nature Communications, 2021, 12, 2692.	5.8	107
8	Artificial Intelligence of Things (AloT) Enabled Virtual Shop Applications Using Selfâ€Powered Sensor Enhanced Soft Robotic Manipulator. Advanced Science, 2021, 8, e2100230.	5.6	138
9	Elastomeric Haptic Devices for Virtual and Augmented Reality. Advanced Functional Materials, 2021, 31, 2009364.	7.8	39
10	Measurement of cable forces for automated monitoring of engineering structures using fiber optic sensors: A review. Automation in Construction, 2021, 126, 103687.	4.8	37
11	Bio-inspired flexible electronics for smart E-skin. Acta Biomaterialia, 2022, 139, 280-295.	4.1	48
12	Selfâ€Powered Stretchable Mechanoluminescent Optical Fiber Strain Sensor. Advanced Intelligent Systems, 2021, 3, 2100035.	3.3	28
13	Soft Tactile Sensing Skins for Robotics. Current Robotics Reports, 2021, 2, 343-354.	5.1	33
14	Fusing Dexterity and Perception for Soft Robot-Assisted Minimally Invasive Surgery: What We Learnt from STIFF-FLOP. Applied Sciences (Switzerland), 2021, 11, 6586.	1.3	13
15	Digital light processing of liquid crystal elastomers for self-sensing artificial muscles. Science Advances, 2021, 7, .	4.7	99
16	A Field Guide to Azopolymeric Optical Fourier Surfaces and Augmented Reality. Advanced Functional Materials, 2021, 31, 2104105.	7.8	19
17	Electrospun liquid crystal elastomer microfiber actuator. Science Robotics, 2021, 6, .	9.9	157
18	Sensing and Reconstruction of 3-D Deformation on Pneumatic Soft Robots. IEEE/ASME Transactions on Mechatronics, 2021, 26, 1877-1885.	3.7	21

#	Article	IF	CITATIONS
19	Low Deposition Temperature Amorphous ALD-Ga ₂ O ₃ Thin Films and Decoration with MoS ₂ Multilayers toward Flexible Solar-Blind Photodetectors. ACS Applied Materials & Interfaces, 2021, 13, 41802-41809.	4.0	23
20	Largeâ€Scale Surface Shape Sensing with Learningâ€Based Computational Mechanics. Advanced Intelligent Systems, 2021, 3, 2100089.	3.3	6
21	MXene enhanced self-powered alternating current electroluminescence devices for patterned flexible displays. Nano Energy, 2021, 86, 106077.	8.2	44
22	Review of Robot Skin: A Potential Enabler for Safe Collaboration, Immersive Teleoperation, and Affective Interaction of Future Collaborative Robots. IEEE Transactions on Medical Robotics and Bionics, 2021, 3, 681-700.	2.1	29
23	A Motion Capturing and Energy Harvesting Hybridized Lower‣imb System for Rehabilitation and Sports Applications. Advanced Science, 2021, 8, e2101834.	5.6	72
24	A Multimodal Hydrogel Soft-Robotic Sensor for Multi-Functional Perception. Frontiers in Robotics and Al, 2021, 8, 692754.	2.0	5
25	Selfâ€Powered Interactive Fiber Electronics with Visual–Digital Synergies. Advanced Materials, 2021, 33, e2104681.	11.1	58
26	Centrosymmetric―and Axisymmetricâ€Patterned Flexible Tactile Sensor for Roughness and Slip Intelligent Recognition. Advanced Intelligent Systems, 2022, 4, 2100072.	3.3	16
27	Optical Microfiber Neuron for Finger Motion Perception. Advanced Fiber Materials, 2022, 4, 226-234.	7.9	13
28	Progress in the Triboelectric Human–Machine Interfaces (HMIs)-Moving from Smart Gloves to Al/Haptic Enabled HMI in the 5G/IoT Era. Nanoenergy Advances, 2021, 1, 81-121.	3.6	59
29	Multi-sized planar capacitive pressure sensor with ultra-high sensitivity. Nano Energy, 2021, 87, 106178.	8.2	40
30	Recent advances in wearable biosensing gloves and sensory feedback biosystems for enhancing rehabilitation, prostheses, healthcare, and virtual reality. Biosensors and Bioelectronics, 2021, 190, 113443.	5.3	48
31	Pneumatic Artificial Muscle With Large Stroke Based on a Contraction Ratio Amplification Mechanism and Self-Contained Sensing. IEEE Robotics and Automation Letters, 2021, 6, 8599-8606.	3.3	4
32	Modeling electromechanical coupling of liquid metal embedded elastomers while accounting stochasticity in 3D percolation. Extreme Mechanics Letters, 2021, 48, 101443.	2.0	18
33	A Sensitized Plastic Fiber Sensor for Multi-Point Bending Measurement Based on Deep Learning. IEEE Photonics Journal, 2021, 13, 1-7.	1.0	14
34	Internet of Things Infrastructure Based on Fast, High Spatial Resolution, and Wide Measurement Range Distributed Optic-Fiber Sensors. IEEE Internet of Things Journal, 2022, 9, 2882-2889.	5.5	13
35	User-Interactive Robot Skin With Large-Area Scalability for Safer and Natural Human-Robot Collaboration in Future Telehealthcare. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 4276-4288.	3.9	12
36	Theoretical Analysis of a Novel Force Sensor Based on Optical Fibers Used for Semicircular Flexure Beam Unit. Lecture Notes in Computer Science, 2021, , 253-262.	1.0	0

		CITATION REPORT		
#	Article		IF	CITATIONS
37	Batch Transfer Printing of Small-Size Silicon Nano-Films with Flat Stamp. Micromachines, 2021, 12,	1255.	1.4	3
38	Fiber-optic meta-tip with multi-sensitivity resonance dips for humidity sensing. Sensors and Actuato B: Chemical, 2022, 352, 130957.	brs	4.0	15
39	Artificial Intelligence of Things (AIoT) Enabled Floor Monitoring System for Smart Home Application ACS Nano, 2021, 15, 18312-18326.	JS.	7.3	80
40	Dissecting Biological and Synthetic Soft–Hard Interfaces for Tissue-Like Systems. Chemical Revie 2022, 122, 5233-5276.	ws,	23.0	32
41	A stretchable and strain-unperturbed pressure sensor for motion interference–free tactile monitoring on skins. Science Advances, 2021, 7, eabi4563.		4.7	136
42	Recent Advances in Multiresponsive Flexible Sensors towards Eâ€skin: A Delicate Design for Versat Sensing. Small, 2022, 18, e2103734.	ile	5.2	76
43	Shaping the future of robotics through materials innovation. Nature Materials, 2021, 20, 1582-158	7.	13.3	65
44	Soft actuators for real-world applications. Nature Reviews Materials, 2022, 7, 235-249.		23.3	296
45	Smart Textile Based on 3D Stretchable Silver Nanowires/MXene Conductive Networks for Personal Healthcare and Thermal Management. ACS Applied Materials & Interfaces, 2021, 13, 56607-50	5619.	4.0	67
46	High-sensitivity optical fiber temperature sensor with cascaded configuration of MZI and FPI based Vernier effect. Optical Fiber Technology, 2021, 67, 102751.	on	1.4	10
47	Graded Kirigami Composites for Programmed Strain Distributions. Advanced Materials Technologie 2022, 7, 2101241.	s,	3.0	9
48	A Novel Force Sensor Based on Optical Fibers Used for Semicircular Flexure Beam Unit. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-10.		2.4	5
49	Augmenting Sensor Performance with Machine Learning Towards Smart Wearable Sensing Electror Systems. Advanced Intelligent Systems, 2022, 4, .	າເດ	3.3	20
50	Multitouch Pressure Sensing With Soft Optical Time-of-Flight Sensors. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-8.		2.4	5
51	Polymer-Based Optical Waveguide Triaxial Tactile Sensing for 3-Dimensional Curved Shell. IEEE Robotics and Automation Letters, 2022, 7, 3443-3450.		3.3	9
52	Optical-Waveguide Based Tactile Sensing for Surgical Instruments of Minimally Invasive Surgery. Frontiers in Robotics and Al, 2021, 8, 773166.		2.0	4
53	Advances in Highâ€Performance Autonomous Energy and Selfâ€Powered Sensing Textiles with Nov Fabric Structures. Advanced Materials, 2022, 34, e2109355.	vel 3D	11.1	118
54	3D printing of resilient biogels for omnidirectional and exteroceptive soft actuators. Science Robotics, 2022, 7, eabk2119.		9.9	70

#	Article	IF	CITATIONS
55	Ti ₃ C ₂ T _{<i>x</i>} MXene-Based Flexible Piezoresistive Physical Sensors. ACS Nano, 2022, 16, 1734-1758.	7.3	177
56	Electronic Textiles for Wearable Point-of-Care Systems. Chemical Reviews, 2022, 122, 3259-3291.	23.0	316
57	Highly stretchable and sensitive strain sensors with ginkgo-like sandwich architectures. Nanoscale Advances, 2022, 4, 1681-1693.	2.2	6
58	An Accurate Position Acquisition Method of a Hyper-Redundant Arm With Load. IEEE Sensors Journal, 2022, 22, 8986-8995.	2.4	1
59	A Soft Sensor for Bleeding Detection in Colonoscopies. Advanced Intelligent Systems, 2022, 4, .	3.3	1
60	Recent advances in materials and applications for bioelectronic and biorobotic systems. View, 2022, 3, .	2.7	18
61	Guiding the design of superresolution tactile skins with taxel value isolines theory. Science Robotics, 2022, 7, eabm0608.	9.9	16
62	Flexible Electronics and Devices as Human–Machine Interfaces for Medical Robotics. Advanced Materials, 2022, 34, e2107902.	11.1	211
63	A soft thumb-sized vision-based sensor with accurate all-round force perception. Nature Machine Intelligence, 2022, 4, 135-145.	8.3	70
64	Artificial Intelligenceâ€Enabled Sensing Technologies in the 5G/Internet of Things Era: From Virtual Reality/Augmented Reality to the Digital Twin. Advanced Intelligent Systems, 2022, 4, .	3.3	146
65	Stretchable and Strain-Decoupled Fluorescent Optical Fiber Sensor for Body Temperature and Movement Monitoring. ACS Photonics, 2022, 9, 1415-1424.	3.2	19
66	Optical Microfibers for Sensing Proximity and Contact in Human–Machine Interfaces. ACS Applied Materials & Interfaces, 2022, 14, 14447-14454.	4.0	16
67	Fiber Optofluidic Microlasers: Structures, Characteristics, and Applications. Laser and Photonics Reviews, 2022, 16, .	4.4	32
68	Contact-Resistance-Free Stretchable Strain Sensors with High Repeatability and Linearity. ACS Nano, 2022, 16, 541-553.	7.3	43
69	Investigation of self-oscillation piezoelectric energy harvesting mechanics for lower-limb motion. , 2021, , .		0
70	Proximity-field nanopatterning for high-performance chemical and mechanical sensor applications based on 3D nanostructures. Applied Physics Reviews, 2022, 9, .	5.5	10
71	In-Hand Object Recognition with Innervated Fiber Optic Spectroscopy for Soft Grippers. , 2022, , .		5
72	Electroactive Polymer-Based Soft Actuator with Integrated Functions of Multi-Degree-of-Freedom Motion and Perception. Soft Robotics, 2023, 10, 119-128.	4.6	13

#	Article	IF	CITATIONS
73	Rapid manufacturing of color-based hemispherical soft tactile fingertips. , 2022, , .		6
74	Framework for Armature-Based 3D Shape Reconstruction of Sensorized Soft Robots in eXtended Reality. Frontiers in Robotics and AI, 2022, 9, 810328.	2.0	2
75	Temperature Measurement of Hot Airflow Using Ultra-Fine Thermo-Sensitive Fluorescent Wires. Sensors, 2022, 22, 3175.	2.1	1
76	Bioinspired Stretchable Fiber-Based Sensor toward Intelligent Human–Machine Interactions. ACS Applied Materials & Interfaces, 2022, 14, 22666-22677.	4.0	22
77	Fiber-optic integrated aerodynamic three-hole vector probe for high-velocity flow field measurement. IScience, 2022, 25, 104402.	1.9	1
78	Stretchable Optical Waveguide Sensor Capable of Two-Degree-of-Freedom Strain Sensing Mediated by a Semidivided Optical Core. IEEE/ASME Transactions on Mechatronics, 2022, 27, 2151-2157.	3.7	9
79	1D-2D nanohybrid-based textile strain sensor to boost multiscale deformative motion sensing performance. Nano Research, 2022, 15, 8398-8409.	5.8	18
80	3D printing stretchable core-shell laser scribed graphene conductive network for self-powered wearable devices. Composites Part B: Engineering, 2022, 240, 110000.	5.9	15
81	Fabrication and Functionality Integration Technologies for Smallâ€5cale Soft Robots. Advanced Materials, 2022, 34, .	11.1	13
82	A strain reflection-based fiber optic sensor using thin core and standard single-mode fibers. Optics Communications, 2022, 522, 128659.	1.0	9
83	Glass-Ceramic Fiber for Stress Sensing. SSRN Electronic Journal, 0, , .	0.4	0
84	A Sandwich StructureÂOn Grapefruit Microstructured FiberÂFor Measurement of Non-Coaxial Torsion. SSRN Electronic Journal, 0, , .	0.4	0
85	Haptic perception using optoelectronic robotic flesh for embodied artificially intelligent agents. Science Robotics, 2022, 7, .	9.9	16
86	Measurement of Parachute Canopy Textile Deformation Using Mechanically Invisible Stretchable Lightguides. Advanced Materials Technologies, 2022, 7, .	3.0	4
87	Photonic integrated circuit-based fiber-optic temperature and strain sensing system. Optics Letters, 2022, 47, 3620.	1.7	0
88	Multifunctional Fiberâ€Enabled Intelligent Health Agents. Advanced Materials, 2022, 34, .	11.1	36
89	Flexible passive integrated photonic devices with superior optical and mechanical performance. Optics Express, 2022, 30, 26534.	1.7	2
90	Environmentally Tolerant Ionic Hydrogel with High Power Density for Low-Grade Heat Harvesting. ACS Applied Materials & Interfaces, 2022, 14, 34714-34721.	4.0	13

#	Article	IF	CITATIONS
91	Flexible and Ultra‣ensitive Planar Supercapacitive Pressure Sensor Based on Porous Ionic Foam. Advanced Engineering Materials, 2023, 25, .	1.6	8
92	Mechanical Gradients Enable Highly Stretchable Electronics Based on Nanofiber Substrates. ACS Applied Materials & Interfaces, 2022, 14, 35997-36006.	4.0	17
93	Mechanoreceptor Inspired Electronic Skin for Multiâ€Modal Tactile Information Decoding. Advanced Materials Technologies, 2023, 8, .	3.0	5
94	Conformable and Compact Multiaxis Tactile Sensor for Human and Robotic Grasping via Anisotropic Waveguides. Advanced Materials Technologies, 2022, 7, .	3.0	16
95	Soft, Allâ€Polymer Optoelectronic Tactile Sensor for Stick‣lip Detection. Advanced Materials Technologies, 2022, 7, .	3.0	3
96	Learning to sense three-dimensional shape deformation of a single multimode fiber. Scientific Reports, 2022, 12, .	1.6	8
97	Development of High Refractive Index Polydimethylsiloxane Waveguides Doped with Benzophenone via Solvent-Free Fabrication for Biomedical Pressure Sensing. Photonics, 2022, 9, 557.	0.9	1
98	Ultra-compact MXene fibers by continuous and controllable synergy of interfacial interactions and thermal drawing-induced stresses. Nature Communications, 2022, 13, .	5.8	55
99	Mechanically Active Materials and Devices for Bioâ€interfaced Pressure Sensors—A Review. Advanced Materials, 0, , .	11.1	14
100	Fluidic innervation sensorizes structures from a single build material. Science Advances, 2022, 8, .	4.7	22
101	Low-Powered and Resilient IR-Based Pigmented Soft Optoelectronic Sensors. ACS Applied Materials & Interfaces, 2022, 14, 38144-38152.	4.0	2
102	Soft Modular Glove with Multimodal Sensing and Augmented Haptic Feedback Enabled by Materials' Multifunctionalities. ACS Nano, 2022, 16, 14097-14110.	7.3	52
103	Reflection-Based Optical Fiber Strain Sensor Using Polarization Maintaining and Thin Core Fibers. IEEE Photonics Technology Letters, 2022, 34, 1199-1202.	1.3	1
104	Stretchable reflective coating for soft optical waveguides and sensors. Soft Matter, 2022, 18, 7827-7837.	1.2	2
105	Digital medical education empowered by intelligent fabric space. , 2022, 1, 20220011.		13
107	Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions. Nature Communications, 2022, 13, .	5.8	149
108	Topographic design in wearable MXene sensors with in-sensor machine learning for full-body avatar reconstruction. Nature Communications, 2022, 13, .	5.8	49
110	Flexible radio-frequency micro electro-mechanical switch towards the applications of satellite communications. Npj Flexible Electronics, 2022, 6, .	5.1	4

	CITATION	Report	
#	ARTICLE Stretchable Strain Sensors Based on Deterministicâ€Contactâ€Resistance Braided Structures with High Performance and Canability of Continuous Production, Advanced Functional Materials, 2022, 32	IF 7.8	CITATIONS
112	An interactive mouthguard based on mechanoluminescence-powered optical fibre sensors for bite-controlled device operation. Nature Electronics, 2022, 5, 682-693.	13.1	57
113	Elastic Fibers/Fabrics for Wearables and Bioelectronics. Advanced Science, 2022, 9, .	5.6	19
114	A lanthanide-doped glass-ceramic fiber for stress sensing. Cell Reports Physical Science, 2022, 3, 101093.	2.8	6
115	A bent fiber optic sensor based on gold nanoparticle-decorated silver film for integration of cytosensor and plasmonic photothermal therapy: A simulation study. Optik, 2022, 271, 170227.	1.4	5
116	Triboelectric Nanogenerator Enabled Wearable Sensors and Electronics for Sustainable Internet of Things Integrated Green Earth. Advanced Energy Materials, 2023, 13, .	10.2	79
117	A sandwich structure on Grapefruit microstructured fiber for measurement of non-coaxial torsion. Optical Fiber Technology, 2023, 75, 103164.	1.4	0
118	Recent Advancements in Optical Frequency-Domain Reflectometry: A Review. IEEE Sensors Journal, 2023, 23, 1707-1723.	2.4	6
119	Liquid-Metal-Based Magnetic Controllable Soft Microswitch with Rapid and Reliable Response for Intelligent Soft Systems. Micromachines, 2022, 13, 2255.	1.4	1
120	Design, Fabrication and Characterisation of Multi-Parameter Optical Sensors Dedicated to E-Skin Applications. Sensors, 2023, 23, 114.	2.1	1
121	Autonomous self-healing optical sensors for damage intelligent soft-bodied systems. Science Advances, 2022, 8, .	4.7	19
122	Versatile Mechanochromic Sensor based on Highly Stretchable Chiral Liquid Crystalline Elastomer. Small, 2023, 19, .	5.2	11
123	0D to 2D carbon-based materials in flexible strain sensors: recent advances and perspectives. 2D Materials, 2023, 10, 022002.	2.0	7
124	Data-driven multi-joint waveguide bending sensor based on time series neural network. Optics Express, 2023, 31, 2359.	1.7	1
125	Rigid Skeleton Enhanced Dexterous Soft Finger Possessing Proprioception. , 2022, , .		1
126	Bird-inspired robotics principles as a framework for developing smart aerospace materials. Journal of Composite Materials, 2023, 57, 679-710.	1.2	3
127	Optical Nanofiber Skins for Multifunctional Humanoid Tactility. Advanced Intelligent Systems, 2023, 5,	3.3	12
128	Flow Casting Soft Shells with Geometrical Complexity and Multifunctionality. Advanced Materials Technologies, 2023, 8, .	3.0	5

#	Article	IF	CITATIONS
129	Self-Healing Multimodal Flexible Optoelectronic Fiber Sensors. Chemistry of Materials, 2023, 35, 1345-1354.	3.2	7
130	Bending-Sensitive Optical Waveguide Sensor With Carbon-Fiber Layer for Monitoring Grip Strength. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31, 1922-1932.	2.7	1
131	Intentionally Light-Loss Carbon-Optic Fiber (COF) Twisted Sensor for Calf Strength Sensing via Monitoring Vastus Medialis. IEEE Sensors Journal, 2023, 23, 9271-9279.	2.4	4
132	Miniaturized retractable thin-film sensor for wearable multifunctional respiratory monitoring. Nano Research, 2023, 16, 11846-11854.	5.8	8
133	Hydrogelâ€Based Multifunctional Soft Electronics with Distributed Sensing Units: A Review. , 2023, 2, .		3
134	Opticalâ€Nanofiberâ€Enabled Gestureâ€Recognition Wristband for Human–Machine Interaction with the Assistance of Machine Learning. Advanced Intelligent Systems, 2023, 5, .	3.3	3
135	Selective fiber optic TFBG-assisted biosensors featuring functional coatings. Sensors and Actuators B: Chemical, 2023, 384, 133618.	4.0	4
136	The pH‣ensitive Optical Fiber Integrated CMCSâ€PA@Fe Hydrogels for Photothermal Therapy and Realâ€īime Monitoring of Infected Wounds. Advanced Functional Materials, 2023, 33, .	7.8	22
137	Mechanoluminescent optical fiber sensors for human–computer interaction. Science Bulletin, 2023, 68, 542-545.	4.3	10
138	Mechanoluminescence-powered bite-controlled human–machine interface. Science Bulletin, 2023, 68, 559-561.	4.3	3
139	Soft Robotic Perception System with Ultrasonic Auto-Positioning and Multimodal Sensory Intelligence. ACS Nano, 2023, 17, 4985-4998.	7.3	25
140	Directional Torsion Sensor Based on a Two-Core Fiber with a Helical Structure. Sensors, 2023, 23, 2874.	2.1	5
141	A parylene-mediated plasmonic–photonic hybrid fiber-optic sensor and its instrumentation for miniaturized and self-referenced biosensing. Analyst, The, 2023, 148, 1672-1681.	1.7	1
142	Technology Roadmap for Flexible Sensors. ACS Nano, 2023, 17, 5211-5295.	7.3	238
143	Three-Dimensional Displacement Measurement of Micro-Milling Tool Based on Fiber Array Encoding. Micromachines, 2023, 14, 631.	1.4	1
144	A Highly Flexible Optical Waveguide Sensor with Rectangular Structure for Muscle Contraction Signals Detection. , 2022, , .		0
145	Development of a Graphene-Based Wireless Displacement Transducer. IEEE Sensors Journal, 2023, 23, 8284-8291.	2.4	1
146	Three-dimensional force-tactile sensors based on embedded fiber Bragg gratings in anisotropic materials. Optics Letters, 2023, 48, 2269.	1.7	1

#	Article	IF	CITATIONS
147	Continuum Robots: An Overview. Advanced Intelligent Systems, 2023, 5, .	3.3	21
148	In-Fiber Thermally Diffused Coupler and Fiber Bragg Grating Inscribed in Twin-Core Fiber for Sensitivity-Enhanced Vector Bending Sensing. Photonic Sensors, 2023, 13, .	2.5	2
149	ForceSticker. , 2022, 7, 1-32.		0
150	Soft Robot Proprioception Using Unified Soft Body Encoding and Recurrent Neural Network. Soft Robotics, 2023, 10, 825-837.	4.6	2
151	Innervation of Sensing Microchannels for Threeâ€Dimensional Stimuli Perception. Advanced Materials Technologies, 2023, 8, .	3.0	4
152	Optical Soft Tactile Sensor Algorithm Based on Multiscale ResNet. IEEE Sensors Journal, 2023, 23, 10731-10738.	2.4	3
153	Large Curvature Bending Measurable Fiber-Optic Neurons for Multi-Joint Bending Perception. Journal of Lightwave Technology, 2023, 41, 5780-5787.	2.7	2
154	Scalable functionalized liquid crystal elastomer fiber soft actuators with multi-stimulus responses and photoelectric conversion. Materials Horizons, 2023, 10, 2587-2598.	6.4	13
155	A Flexible Supercapacitor with High Energy Density Driven by MXene/Deep Eutectic Solvent Gel Polyelectrolyte. ACS Energy Letters, 2023, 8, 2316-2324.	8.8	11
156	Multimodal Selfâ€sustainable Autonomous Locomotions of Lightâ€driven Seifert Ribbon Actuators based on Liquid Crystal Elastomers. Angewandte Chemie, 0, , .	1.6	0
157	Multimodal Selfâ€sustainable Autonomous Locomotions of Lightâ€driven Seifert Ribbon Actuators based on Liquid Crystal Elastomers. Angewandte Chemie - International Edition, 2023, 62, .	7.2	11
161	Soft Robotics Enables Neuroprosthetic Hand Design. ACS Nano, 2023, 17, 9661-9672.	7.3	9
171	OptiGap: A Modular Optical Sensor System for Bend Localization. , 2023, , .		0
172	STEV: Stretchable Triboelectric E-skin enabled Proprioceptive Vibration Sensing for Soft Robot. , 2023, , .		0
173	A Soft Robot with Three Dimensional Shape Sensing and Contact Recognition Multi-Modal Sensing via Tunable Soft Optical Sensors. , 2023, , .		1
177	Development of an Optical Pressure Sensing Array: Initial Validation. , 2023, , .		0
183	Prosthetic finger for fingertip tactile sensing <i>via</i> flexible chromatic optical waveguides. Materials Horizons, 2023, 10, 4940-4951.	6.4	2
195	A Compact Wearable Data Glove Based on Flexible Beam Sensors. , 2023, , .		0

#	Article	IF	CITATIONS
196	GelPixel: A Single-Pixel-Based Tactile Sensor. , 2023, , .		0
211	Novel Single Bubble Haptic Sensor: SubbleSight. , 2023, , .		0
215	Optical fiber vibration sensor for automated inspection of industrial assets. , 2023, , .		0
219	Polymer-Based Self-Calibrated Optical Fiber Tactile Sensor. , 2023, , .		0
220	A Two-Dimensional Reticular Core Optical Waveguide Sensor for Tactile and Positioning Sensing. , 2023, , .		0
221	Spatial or Temporal Signal Considered for Gait Recognition based on Optic-fiber Sensor. , 2023, , .		0
226	Hamiltonian Optimal Control ofÂDistributed Lagrangian Systems. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2024, , 219-236.	0.1	0
230	Method of Data Transmission Technology Based on Fiber Optic Sensing Vibration. , 2023, , .		0
231	Design and Implementation of a Textile-Based Sensor for Wearable Rehabilitation Technologies. , 2023, ,		0