Structure of the activated ROQ1 resistosome directly re XopQ

Science 370, DOI: 10.1126/science.abd9993

Citation Report

	DODT	
ARTICLE	IF	CITATIONS
Enzyme formation by immune receptors. Science, 2020, 370, 1163-1164.	6.0	10
A Truncated Singleton NLR Causes Hybrid Necrosis in <i>Arabidopsis thaliana</i> . Molecular Biology and Evolution, 2021, 38, 557-574.	3.5	26
NOD-like receptor-mediated plant immunity: from structure to cell death. Nature Reviews Immunology, 2021, 21, 305-318.	10.6	103
Maize Plants Chimeric for an Autoactive Resistance Gene Display a Cell-Autonomous Hypersensitive Response but Non–Cell Autonomous Defense Signaling. Molecular Plant-Microbe Interactions, 2021, 34, 606-616.	1.4	2
A misâ€regulated cyclic nucleotideâ€gated channel mediates cytosolic calcium elevation and activates immunity in Arabidopsis. New Phytologist, 2021, 230, 1078-1094.	3.5	51
Plant NLR diversity: the known unknowns of pan-NLRomes. Plant Cell, 2021, 33, 814-831.	3.1	99
A novel allele of the <i>Arabidopsis thaliana</i> MACPF protein CAD1 results in deregulated immune signaling. Genetics, 2021, 217, .	1.2	9
Plant evolution driven by interactions with symbiotic and pathogenic microbes. Science, 2021, 371, .	6.0	162
Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature, 2021, 592, 110-115.	13.7	536
Disentangling cause and consequence: genetic dissection of the <i>DANGEROUS MIX2</i> risk locus, and activation of the DM2h NLR in autoimmunity. Plant Journal, 2021, 106, 1008-1023.	2.8	14
A Meta-Analysis Reveals Opposite Effects of Biotic and Abiotic Stresses on Transcript Levels of Arabidopsis Intracellular Immune Receptor Genes. Frontiers in Plant Science, 2021, 12, 625729.	1.7	12
Perturbation of nuclear–cytosolic shuttling of Rx1 compromises extreme resistance and translational arrest of potato virus X transcripts. Plant Journal, 2021, 106, 468-479.	2.8	9
Integrity of the Post-LRR Domain Is Required for TIR-NB-LRR Function. Molecular Plant-Microbe Interactions, 2021, 34, 286-296.	1.4	22
SARM1 is a metabolic sensor activated by an increased NMN/NAD+ ratio to trigger axon degeneration. Neuron, 2021, 109, 1118-1136.e11.	3.8	168
A Truncated TIR-NBS Protein TN10 Pairs with Two Clustered TIR-NBS-LRR Immune Receptors and Contributes to Plant Immunity in Arabidopsis. International Journal of Molecular Sciences, 2021, 22, 4004.	1.8	9

23	Recent Advances in Effector-Triggered Immunity in Plants: New Pieces in the Puzzle Create a Different Paradigm. International Journal of Molecular Sciences, 2021, 22, 4709.	
24	Extreme Resistance to Viruses in Potato and Soybean. Frontiers in Plant Science, 2021, 12, 658981.	

1.8

From Player to Pawn: Viral Avirulence Factors Involved in Plant Immunity. Viruses, 2021, 13, 688.

#

#	Article	IF	CITATIONS
25	Stepwise artificial evolution of an Swâ€5b immune receptor extends its resistance spectrum against resistanceâ€breaking isolates of <i>Tomato spotted wilt virus</i> . Plant Biotechnology Journal, 2021, 19, 2164-2176.	4.1	15
26	α-Helices in the Type III Secretion Effectors: A Prevalent Feature with Versatile Roles. International Journal of Molecular Sciences, 2021, 22, 5412.	1.8	4
27	Apoptosis is not conserved in plants as revealed by critical examination of a model for plant apoptosis-like cell death. BMC Biology, 2021, 19, 100.	1.7	15
28	What the Wild Things Do: Mechanisms of Plant Host Manipulation by Bacterial Type III-Secreted Effector Proteins. Microorganisms, 2021, 9, 1029.	1.6	39
30	Calcium channels at the center of nucleotide-binding leucine-rich repeat receptor-mediated plant immunity. Journal of Genetics and Genomics, 2021, 48, 429-432.	1.7	0
31	Pathogen effector recognition-dependent association of NRG1 with EDS1 and SAG101 in TNL receptor immunity. Nature Communications, 2021, 12, 3335.	5.8	112
32	Tandem Protein Kinases Emerge as New Regulators of Plant Immunity. Molecular Plant-Microbe Interactions, 2021, 34, 1094-1102.	1.4	17
34	The Sw-5b NLR nucleotide-binding domain plays a role in oligomerization, and its self-association is important for activation of cell death signaling. Journal of Experimental Botany, 2021, 72, 6581-6595.	2.4	5
35	A Comparative Overview of the Intracellular Guardians of Plants and Animals: NLRs in Innate Immunity and Beyond. Annual Review of Plant Biology, 2021, 72, 155-184.	8.6	56
36	The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell, 2021, 184, 3528-3541.e12.	13.5	308
37	Acidic pH irreversibly activates the signaling enzyme SARM1. FEBS Journal, 2021, 288, 6783-6794.	2.2	11
38	A Novel NAD Signaling Mechanism in Axon Degeneration and its Relationship to Innate Immunity. Frontiers in Molecular Biosciences, 2021, 8, 703532.	1.6	28
39	Direct acetylation of a conserved threonine of RIN4 by the bacterial effector HopZ5 or AvrBsT activates RPM1-dependent immunity in Arabidopsis. Molecular Plant, 2021, 14, 1951-1960.	3.9	29
41	Engineering healthy crops: molecular strategies for enhancing the plant immune system. Current Opinion in Biotechnology, 2021, 70, 151-157.	3.3	10
41	Engineering healthy crops: molecular strategies for enhancing the plant immune system. Current Opinion in Biotechnology, 2021, 70, 151-157. PTI-ETI crosstalk: an integrative view of plant immunity. Current Opinion in Plant Biology, 2021, 62, 102030.	3.3 3.5	10 373
41 42 43	Engineering healthy crops: molecular strategies for enhancing the plant immune system. Current Opinion in Biotechnology, 2021, 70, 151-157. PTI-ETI crosstalk: an integrative view of plant immunity. Current Opinion in Plant Biology, 2021, 62, 102030. Nucleocytoplasmic trafficking during immunity. Molecular Plant, 2021, 14, 1612-1614.	3.3 3.5 3.9	10 373 1
41 42 43 44	Engineering healthy crops: molecular strategies for enhancing the plant immune system. Current Opinion in Biotechnology, 2021, 70, 151-157. PTI-ETI crosstalk: an integrative view of plant immunity. Current Opinion in Plant Biology, 2021, 62, 102030. Nucleocytoplasmic trafficking during immunity. Molecular Plant, 2021, 14, 1612-1614. An angiosperm NLR Atlas reveals that NLR gene reduction is associated with ecological specialization and signal transduction component deletion. Molecular Plant, 2021, 14, 2015-2031.	3.3 3.5 3.9 3.9	10 373 1 57

#	Article	IF	CITATIONS
47	Regulation of Cell Death and Signaling by Pore-Forming Resistosomes. Annual Review of Phytopathology, 2021, 59, 239-263.	3.5	26
48	NLR immune receptor RB is differentially targeted by two homologous but functionally distinct effector proteins. Plant Communications, 2021, 2, 100236.	3.6	8
49	Evolutionary tradeâ€offs at the Arabidopsis <i>WRR4A</i> resistance locus underpin alternate <i>Albugo candida</i> race recognition specificities. Plant Journal, 2021, 107, 1490-1502.	2.8	5
50	Plant pathogens convergently evolved to counteract redundant nodes of an NLR immune receptor network. PLoS Biology, 2021, 19, e3001136.	2.6	69
51	NADase and now Ca2+ channel, what else to learn about plant NLRs?. Stress Biology, 2021, 1, 1.	1.5	1
52	The truncated TNL receptor TN2â€mediated immune responses require ADR1 function. Plant Journal, 2021, 108, 672-689.	2.8	9
53	Pathophysiology of pulmonary function anomalies in COVID-19 survivors. Breathe, 2021, 17, 210065.	0.6	18
54	Regulation of plant antiviral defense genes via host RNA-silencing mechanisms. Virology Journal, 2021, 18, 194.	1.4	14
55	Immunological circuits against biotic and abiotic stresses among plants: An analytical review. Plant Gene, 2021, 27, 100320.	1.4	0
56	Molecular Mechanism & Structure—Zooming in on Plant Immunity. Molecular Plant-Microbe Interactions, 2021, 34, 1346-1349.	1.4	4
57	Plant immune networks. Trends in Plant Science, 2022, 27, 255-273.	4.3	140
59	Analysis of intraspecies diversity reveals a subset of highly variable plant immune receptors and predicts their binding sites. Plant Cell, 2021, 33, 998-1015.	3.1	45
64	A vector system for fast-forward studies of the HOPZ-ACTIVATED RESISTANCE1 (ZAR1) resistosome in the model plant <i>Nicotiana benthamiana</i> . Plant Physiology, 2022, 188, 70-80.	2.3	11
65	A phytobacterial TIR domain effector manipulates NAD ⁺ to promote virulence. New Phytologist, 2022, 233, 890-904.	3.5	47
66	How activated NLRs induce anti-microbial defenses in plants. Biochemical Society Transactions, 2021, 49, 2177-2188.	1.6	14
68	RefPlantNLR is a comprehensive collection of experimentally validated plant disease resistance proteins from the NLR family. PLoS Biology, 2021, 19, e3001124.	2.6	81
69	Arabidopsis ADR1 helper NLR immune receptors localize and function at the plasma membrane in a phospholipid dependent manner. New Phytologist, 2021, 232, 2440-2456.	3.5	36
71	A cluster of atypical resistance genes in soybean confers broad-spectrum antiviral activity. Plant Physiology, 2022, 188, 1277-1293.	2.3	9

#	Article	IF	CITATIONS
74	The Mechanosensitive Ion Channel MSL10 Modulates Susceptibility to <i>Pseudomonas syringae</i> in <i>Arabidopsis thaliana</i> . Molecular Plant-Microbe Interactions, 2022, 35, 567-582.	1.4	7
77	Functional diversification gave rise to allelic specialization in a rice NLR immune receptor pair. ELife, 2021, 10, .	2.8	28
79	Structural Evolution of TIR-Domain Signalosomes. Frontiers in Immunology, 2021, 12, 784484.	2.2	27
82	Structural basis of NLR activation and innate immune signalling in plants. Immunogenetics, 2022, 74, 5-26.	1.2	51
83	A tale of many families: calcium channels in plant immunity. Plant Cell, 2022, 34, 1551-1567.	3.1	45
84	Characterization of Five Meloidogyne incognita Effectors Associated with PsoRPM3. International Journal of Molecular Sciences, 2022, 23, 1498.	1.8	2
85	Arabidopsis PUB2 and PUB4 connect signaling components of patternâ€ŧriggered immunity. New Phytologist, 2022, 233, 2249-2265.	3.5	17
86	Crystal structure of the Toll/interleukinâ€1 receptor (TIR) domain of ILâ€1R10 provides structural insights into TIR domain signalling. FEBS Letters, 2022, 596, 886-897.	1.3	5
87	Thirty years of resistance: Zig-zag through the plant immune system. Plant Cell, 2022, 34, 1447-1478.	3.1	318
88	Research on ADR1s helps understanding the plant immune network. Stress Biology, 2022, 2, 1.	1.5	2
89	Molecular innovations in plant TIR-based immunity signaling. Plant Cell, 2022, 34, 1479-1496.	3.1	55
90	In situ deletions reveal regulatory components for expression of an intracellular immune receptor gene and its coâ€expressed genes in Arabidopsis. Plant, Cell and Environment, 2022, , .	2.8	2
91	A Glimpse of Programmed Cell Death Among Bacteria, Animals, and Plants. Frontiers in Cell and Developmental Biology, 2021, 9, 790117.	1.8	3
92	A new biochemistry connecting pathogen detection to induced defense in plants. New Phytologist, 2022, 234, 819-826.	3.5	24
93	Life-or-death decisions in plant immunity. Current Opinion in Immunology, 2022, 75, 102169.	2.4	8
94	Tackling multiple bacterial diseases of Solanaceae with a handful of immune receptors. Horticulture Environment and Biotechnology, 2022, 63, 149-160.	0.7	3
95	Exciting times in plant biotic interactions. Plant Cell, 2022, 34, 1421-1424.	3.1	3
96	Structure, Oligomerization and Activity Modulation in N-Ribohydrolases. International Journal of Molecular Sciences, 2022, 23, 2576.	1.8	7

#	Article	IF	CITATIONS
98	Structural basis of SARM1 activation, substrate recognition, and inhibition by small molecules. Molecular Cell, 2022, 82, 1643-1659.e10.	4.5	66
99	An Update on Resistance Genes and Their Use in the Development of Leaf Rust Resistant Cultivars in Wheat. Frontiers in Genetics, 2022, 13, 816057.	1.1	25
101	Molecular insights into the biochemical functions and signalling mechanisms of plant NLRs. Molecular Plant Pathology, 2022, 23, 772-780.	2.0	12
102	Evasion of plant immunity by microbial pathogens. Nature Reviews Microbiology, 2022, 20, 449-464.	13.6	129
103	New recognition specificity in a plant immune receptor by molecular engineering of its integrated domain. Nature Communications, 2022, 13, 1524.	5.8	47
104	An epiphany for plant resistance proteins and its impact on calciumâ€based immune signalling. New Phytologist, 2022, 234, 769-772.	3.5	4
105	Cavity surface residues of <scp>PAD4</scp> and <scp>SAG101</scp> contribute to <scp>EDS1</scp> dimer signaling specificity in plant immunity. Plant Journal, 2022, 110, 1415-1432.	2.8	20
107	Short prokaryotic Argonaute systems trigger cell death upon detection of invading DNA. Cell, 2022, 185, 1471-1486.e19.	13.5	85
109	Structural aspects of the MHC expression control system. Biophysical Chemistry, 2022, 284, 106781.	1.5	4
110	The N-terminally truncated helper NLR <i>NRG1C</i> antagonizes immunity mediated by its full-length neighbors <i>NRG1A</i> and <i>NRG1B</i> . Plant Cell, 2022, 34, 1621-1640.	3.1	22
113	Plant autoimmunity—fresh insights into an old phenomenon. Plant Physiology, 2022, 188, 1419-1434.	2.3	15
115	Perception of structurally distinct effectors by the integrated WRKY domain of a plant immune receptor. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	32
117	Resistosomes at the interface of pathogens and plants. Current Opinion in Plant Biology, 2022, 67, 102212.	3.5	17
118	Seeing is believing: Exploiting advances in structural biology to understand and engineer plant immunity. Current Opinion in Plant Biology, 2022, 67, 102210.	3.5	35
119	The Ry _{sto} immune receptor recognises a broadly conserved feature of potyviral coat proteins. New Phytologist, 2022, 235, 1179-1195.	3.5	10
122	Indirect recognition of pathogen effectors by NLRs. Essays in Biochemistry, 2022, 66, 485-500.	2.1	4
123	Robust transcriptional indicators of immune cell death revealed by spatiotemporal transcriptome analyses. Molecular Plant, 2022, 15, 1059-1075.	3.9	17
124	Ca ²⁺ signals in plant immunity. EMBO Journal, 2022, 41, e110741.	3.5	82

#	Article	IF	CITATIONS
125	NLR receptor networks in plants. Essays in Biochemistry, 2022, 66, 541-549.	2.1	10
128	TIR domains of plant immune receptors are 2′,3′-cAMP/cGMP synthetases mediating cell death. Cell, 2022, 185, 2370-2386.e18.	13.5	104
131	An alternative splicing isoform of wheat TaYRG1 resistance protein activates immunity by interacting with dynamin-related proteins. Journal of Experimental Botany, 2022, 73, 5474-5489.	2.4	2
132	Show me your ID: NLR immune receptors with integrated domains in plants. Essays in Biochemistry, 2022, 66, 527-539.	2.1	23
133	Functional Diversification Analysis of Soybean Malectin/Malectin-Like Domain-Containing Receptor-Like Kinases in Immunity by Transient Expression Assays. Frontiers in Plant Science, 0, 13, .	1.7	2
134	Two plant NLR proteins confer strain-specific resistance conditioned by an effector from Pseudomonas syringae pv. actinidiae. Journal of Genetics and Genomics, 2022, 49, 823-832.	1.7	9
136	Insight into the structure and molecular mode of action of plant paired NLR immune receptors. Essays in Biochemistry, 2022, 66, 513-526.	2.1	11
137	Direct recognition of pathogen effectors by plant NLR immune receptors and downstream signalling. Essays in Biochemistry, 2022, 66, 471-483.	2.1	21
138	The emerging frontier of plant immunity's core hubs. FEBS Journal, 2023, 290, 3311-3335.	2.2	7
139	From plant immunity to crop disease resistance. Journal of Genetics and Genomics, 2022, 49, 693-703.	1.7	24
140	What's new in protein kinase/phosphatase signalling in the control of plant immunity?. Essays in Biochemistry, 2022, 66, 621-634.	2.1	13
141	The activity of the <scp>RGA5</scp> sensor <scp>NLR</scp> from rice requires binding of its integrated <scp>HMA</scp> domain to effectors but not <scp>HMA</scp> domain selfâ€interaction. Molecular Plant Pathology, 2022, 23, 1320-1330.	2.0	4
142	A genetically linked pair of NLR immune receptors shows contrasting patterns of evolution. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	19
143	The Arabidopsis <scp><i>WRR4A</i></scp> and <scp><i>WRR4B</i></scp> paralogous <scp>NLR</scp> proteins both confer recognition of multiple <i>Albugo candida</i> effectors. New Phytologist, 2023, 237, 532-547.	3.5	7
144	Identification and receptor mechanism of TIR-catalyzed small molecules in plant immunity. Science, 2022, 377, .	6.0	101
145	Shared TIR enzymatic functions regulate cell death and immunity across the tree of life. Science, 2022, 377, .	6.0	59
146	<scp>NLR</scp> we there yet? Nucleocytoplasmic coordination of <scp>NLR</scp> â€mediated immunity. New Phytologist, 2022, 236, 24-42.	3.5	12
147	TIR-catalyzed ADP-ribosylation reactions produce signaling molecules for plant immunity. Science, 2022, 377.	6.0	91

	CITATION	Report	
# 148	ARTICLE The Nucleotide Revolution: Immunity at the Intersection of Toll/Interleukin-1 Receptor Domains, Nucleotides and Cacsup 2+cloup Molecular Plant-Microbe Interactions, 2022, 35, 964-976	IF 1.4	CITATIONS
149	EDS1 modules as two-tiered receptor complexes for TIR-catalyzed signaling molecules to activate plant immunity. Stress Biology, 2022, 2, .	1.5	Ο
150	Discovery of stripe rust resistance with incomplete dominance in wild emmer wheatÂusing bulked segregant analysis sequencing. Communications Biology, 2022, 5, .	2.0	33
151	Cyclic nucleotide-induced helical structure activates a TIR immune effector. Nature, 2022, 608, 808-812.	13.7	59
152	Activation and Regulation of NLR Immune Receptor Networks. Plant and Cell Physiology, 2022, 63, 1366-1377.	1.5	16
154	Prokaryotic innate immunity through pattern recognition of conserved viral proteins. Science, 2022, 377, .	6.0	90
155	NLRexpress—A bundle of machine learning motif predictors—Reveals motif stability underlying plant Nod-like receptors diversity. Frontiers in Plant Science, 0, 13, .	1.7	5
156	The rice <scp>OsERF101</scp> transcription factor regulates the <scp>NLR</scp> Xa1â€mediated immunity induced by perception of <scp>TAL</scp> effectors. New Phytologist, 2022, 236, 1441-1454.	3.5	3
157	Role of pathogen's effectors in understanding host-pathogen interaction. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119347.	1.9	6
158	<scp>EDS1</scp> complexes are not required for <scp>PRR</scp> responses and execute <scp>TNLâ€ETI</scp> from the nucleus in <i>Nicotiana benthamiana</i> . New Phytologist, 2022, 236, 2249-2264.	3.5	20
159	Plant receptor-like protein activation by a microbial glycoside hydrolase. Nature, 2022, 610, 335-342.	13.7	43
160	Pathogen effector AvrSr35 triggers Sr35 resistosome assembly via a direct recognition mechanism. Science Advances, 2022, 8, .	4.7	37
161	Plant NLRs: Evolving with pathogen effectors and engineerable to improve resistance. Frontiers in Microbiology, 0, 13, .	1.5	4
162	A wheat resistosome defines common principles of immune receptor channels. Nature, 2022, 610, 532-539.	13.7	97
163	Uncompetitive, adduct-forming SARM1 inhibitors are neuroprotective in preclinical models of nerve injury and disease. Neuron, 2022, 110, 3711-3726.e16.	3.8	18
164	Differential requirement of TIR enzymatic activities in TIR-type immune receptor SNC1-mediated immunity. Plant Physiology, 2022, 190, 2094-2098.	2.3	13
165	The helper NLR immune protein NRC3 mediates the hypersensitive cell death caused by the cell-surface receptor Cf-4. PLoS Genetics, 2022, 18, e1010414.	1.5	35
166	Cyclic ADP ribose isomers: Production, chemical structures, and immune signaling. Science, 2022, 377, .	6.0	61

#	Article	IF	CITATIONS
167	Calcium channels and transporters: Roles in response to biotic and abiotic stresses. Frontiers in Plant Science, 0, 13, .	1.7	7
169	Tsw – A case study on structure-function puzzles in plant NLRs with unusually large LRR domains. Frontiers in Plant Science, 0, 13, .	1.7	2
170	Dying in self-defence: a comparative overview of immunogenic cell death signalling in animals and plants. Cell Death and Differentiation, 2023, 30, 258-268.	5.0	23
171	Isolation of Protein Complexes from Tobacco Leaves by a Twoâ€&tep Tandem Affinity Purification. Current Protocols, 2022, 2, .	1.3	1
174	Multilevel evolution shapes the function of NB-LRR encoding genes in plant innate immunity. Frontiers in Plant Science, 0, 13, .	1.7	2
176	Engineering effectorâ€triggered immunity in rice: Obstacles and perspectives. Plant, Cell and Environment, 2023, 46, 1143-1156.	2.8	2
177	The molecular dialog between oomycete effectors and their plant and animal hosts. Fungal Biology Reviews, 2023, 43, 100289.	1.9	4
178	Recent progression and future perspectives in cotton genomic breeding. Journal of Integrative Plant Biology, 2023, 65, 548-569.	4.1	20
179	Allelic variation in the Arabidopsis TNL CHS3/CSA1 immune receptor pair reveals two functional cell-death regulatory modes. Cell Host and Microbe, 2022, 30, 1701-1716.e5.	5.1	18
180	Variation in plant Toll/Interleukin-1 receptor domain protein dependence on <i>ENHANCED DISEASE SUSCEPTIBILITY 1</i> . Plant Physiology, 2023, 191, 626-642.	2.3	19
181	Effector XopQ-induced stromule formation in <i>Nicotiana benthamiana</i> depends on ETI signaling components ADR1 and NRG1. Plant Physiology, 2023, 191, 161-176.	2.3	12
182	Emerging principles in the design of bioengineered made-to-order plant immune receptors. Current Opinion in Plant Biology, 2022, 70, 102311.	3.5	14
183	In situ deletions reveal regulatory components for expression of an intracellular immune receptor gene and its coâ€expressed genes in Arabidopsis. Plant, Cell and Environment, 0, , .	2.8	0
184	NLRscape: an atlas of plant NLR proteins. Nucleic Acids Research, 2023, 51, D1470-D1482.	6.5	9
185	A long look at short prokaryotic Argonautes. Trends in Cell Biology, 2023, 33, 605-618.	3.6	28
186	An <scp>NBS‣RR</scp> protein in the <i>Rpp1</i> locus negates the dominance of <i>Rpp1</i> â€mediated resistance against <i>Phakopsora pachyrhizi</i> in soybean. Plant Journal, 2023, 113, 915-933.	2.8	5
187	The intracellular immune receptor like gene <i>SNC1</i> is an enhancer of effector-triggered immunity in Arabidopsis. Plant Physiology, 2023, 191, 874-884.	2.3	3
188	Structure, biochemical function, and signaling mechanism of plant NLRs. Molecular Plant, 2023, 16, 75-95.	3.9	19

#	Article	IF	CITATIONS
189	Plant–Pathogen Interaction: New Era of Plant–Pathogen Interaction Studies: "Omics―Perspectives. , 2022, , 172-180.		0
190	Engineering Resistance against Sclerotinia sclerotiorum Using a Truncated NLR (TNx) and a Defense-Priming Gene. Plants, 2022, 11, 3483.	1.6	0
191	A duplex structure of SARM1 octamers stabilized by a new inhibitor. Cellular and Molecular Life Sciences, 2023, 80, .	2.4	2
195	Effectorâ€dependent activation and oligomerization of plant <scp>NRC</scp> class helper <scp>NLRs</scp> by sensor <scp>NLR</scp> immune receptors Rpiâ€amr3 and Rpiâ€amr1. EMBO Journal, 2023, 42, .	3.5	37
196	Assassination tango: an <scp>NLR</scp> / <scp>NLRâ€ID</scp> immune receptors pair of rapeseed coâ€operates inside the nucleus to activate cell death. Plant Journal, 2023, 113, 1211-1222.	2.8	1
197	Assembly and Architecture of NLR Resistosomes and Inflammasomes. Annual Review of Biophysics, 2023, 52, 207-228.	4.5	11
198	Sensor <scp>NLR</scp> immune proteins activate oligomerization of their <scp>NRC</scp> helpers in response to plant pathogens. EMBO Journal, 2023, 42, .	3.5	34
199	An atypical NLR protein modulates the NRC immune receptor network in Nicotiana benthamiana. PLoS Genetics, 2023, 19, e1010500.	1.5	19
201	Plant immune receptor pathways as a united front against pathogens. PLoS Pathogens, 2023, 19, e1011106.	2.1	3
202	An overview of plant resistance to plant-pathogenic bacteria. Tropical Plant Pathology, 2023, 48, 243-259.	0.8	2
203	TIR-catalyzed nucleotide signaling molecules in plant defense. Current Opinion in Plant Biology, 2023, 73, 102334.	3.5	11
204	Plant Receptor-like proteins (RLPs): Structural features enabling versatile immune recognition. Physiological and Molecular Plant Pathology, 2023, 125, 102004.	1.3	8
205	Effector-Triggered Immunity. Annual Review of Immunology, 2023, 41, 453-481.	9.5	26
206	Cryo-EM structure of the RADAR supramolecular anti-phage defense complex. Cell, 2023, 186, 987-998.e15.	13.5	28
207	Punctaâ€localized <scp>TRAF</scp> domain protein <scp>TC1b</scp> contributes to the autoimmunity of <i>snc1</i> . Plant Journal, 2023, 114, 591-612.	2.8	0
208	Evaluate the guide RNA effectiveness via Agrobacterium-mediated transient assays in Nicotiana benthamiana. Frontiers in Plant Science, 0, 14, .	1.7	3
209	Altering Specificity and Autoactivity of Plant Immune Receptors Sr33 and Sr50 Via a Rational Engineering Approach. Molecular Plant-Microbe Interactions, 2023, 36, 434-446.	1.4	10
210	The maize ZmVPS23-like protein relocates the nucleotide-binding leucine-rich repeat protein Rp1-D21 to endosomes and suppresses the defense response. Plant Cell, 0, , .	3.1	2

CITAT	TION	DEDODT
CITA	I I U N	REPORT

#	Article	IF	CITATIONS
211	Oligomerization of a plant helper NLR requires cell-surface and intracellular immune receptor activation. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120,	3.3	28
213	One hundred importantÂquestions for plant science – reflecting on a decade of plant research. New Phytologist, 2023, 238, 464-469.	3.5	2
214	Plant and prokaryotic TIR domains generate distinct cyclic ADPR NADase products. Science Advances, 2023, 9, .	4.7	24
215	Subcellular localization requirements and specificities for plant immune receptor Tollâ€interleukinâ€i receptor signaling. Plant Journal, 2023, 114, 1319-1337.	2.8	7
217	Cell death as a defense strategy against pathogens in plants and animals. PLoS Pathogens, 2023, 19, e1011253.	2.1	4
218	TIR domain-associated nucleotides with functions in plant immunity and beyond. Current Opinion in Plant Biology, 2023, 73, 102364.	3.5	4
219	Small family, big impact: RNL helper NLRs and their importance in plant innate immunity. PLoS Pathogens, 2023, 19, e1011315.	2.1	1
220	Toll/interleukin-1 receptor domains in bacterial and plant immunity. Current Opinion in Microbiology, 2023, 74, 102316.	2.3	4
221	Activation of <i>Tmâ€2²</i> resistance is mediated by a conserved cysteine essential for tobacco mosaic virus movement. Molecular Plant Pathology, 2023, 24, 838-848.	2.0	5
222	The evolution of plant NLR immune receptors and downstream signal components. Current Opinion in Plant Biology, 2023, 73, 102363.	3.5	6
245	Cryo-EM structure of the ssDNA-activated SPARTA complex. Cell Research, 2023, 33, 731-734.	5.7	5
267	Editorial: Regulation of plant immunity by immune receptors. Frontiers in Plant Science, 0, 14, .	1.7	0
269	R gene-mediated resistance in the management of plant diseases. Journal of Plant Biochemistry and Biotechnology, 2024, 33, 5-23.	0.9	0
295	Imperative Role of R-Genes and Associated Molecular Mechanisms in Plant Disease Resistance. , 2024, , 73-97.		0