Recycling Potential of Lithium–Sulfur Batteries—A Hydrometallurgical Methods

Metals 10, 1513 DOI: 10.3390/met10111513

Citation Report

#	Article	IF	CITATIONS
1	New Science Based Concepts for Increased Efficiency in Battery Recycling. Metals, 2021, 11, 533.	2.3	8
2	Synthesis and Electrochemical Properties of TiNb2O7 and Ti2Nb10O29 Anodes under Various Annealing Atmospheres. Metals, 2021, 11, 983.	2.3	9
3	Recycling of Lithiumâ€lon Batteries—Current State of the Art, Circular Economy, and Next Generation Recycling. Advanced Energy Materials, 2022, 12, .	19.5	268
4	Sustainability of lithium–sulfur batteries. , 2022, , 603-626.		0
5	Recyclability and recycling technologies for lithium–sulfur batteries. , 2022, , 627-651.		0
6	Environmentally Friendly Recovery of Lithium from Lithium–Sulfur Batteries. Metals, 2022, 12, 1108.	2.3	5
7	Creating a circular EV battery value chain: End-of-life strategies and future perspective. Resources, Conservation and Recycling, 2022, 185, 106484.	10.8	30
8	A review on the socio-environmental impacts of lithium supply for electric aircraft. , 0, 1, .		0
9	Roadmap for a sustainable circular economy in lithium-ion and future battery technologies. JPhys Energy, 2023, 5, 021501.	5.3	16
10	Mechanochemical synthesis of Li-rich (Li ₂ Fe)SO cathode for Li-ion batteries. Green Chemistry, 0, , .	9.0	3
11	Prospective Life Cycle Assessment of Lithium-Sulfur Batteries for Stationary Energy Storage. ACS Sustainable Chemistry and Engineering, 2023, 11, 9553-9563.	6.7	3
12	Recycling von Lithium-Ionen-Batterien. , 2024, , 687-704.		1
13	Co-Precipitation of Metal Oxalates from Organic Leach Solution Derived from Spent Lithium-Ion Batteries (LIBs). Metals, 2024, 14, 80.	2.3	0
14	Predictive precision in battery recycling: unveiling lithium battery recycling potential through machine learning. Computers and Chemical Engineering, 2024, 183, 108623.	3.8	0

ATION REDC