Gold-Catalyzed Reactions of Specially Activated Alkyne

Chemical Reviews 121, 8756-8867

DOI: 10.1021/acs.chemrev.0c00788

Citation Report

#	Article	IF	CITATIONS
1	The interplay of carbophilic activation and Au(<scp>i</scp>)/Au(<scp>iii</scp>) catalysis: an emerging technique for 1,2-difunctionalization of C–C multiple bonds. Chemical Society Reviews, 2021, 50, 10422-10450.	38.1	101
2	Enantioselective Au(<scp>i</scp>)-catalyzed dearomatization of 1-naphthols with allenamides through Tethered Counterion-Directed Catalysis. Chemical Communications, 2021, 57, 10779-10782.	4.1	11
3	Divergent Gold Catalysis: Unlocking Molecular Diversity through Catalyst Control. Chemical Reviews, 2021, 121, 8478-8558.	47.7	176
4	Silver-Free Catalysis with Gold(I) Chloride Complexes. Bulletin of the Chemical Society of Japan, 2021, 94, 1099-1117.	3.2	30
5	New Chiral BINOLâ€Based Phosphates for Enantioselective [Au(I)] atalyzed Dearomatization of βâ€Naphthols with Allenamides. European Journal of Organic Chemistry, 2021, 2021, 1732-1736.	2.4	15
6	Gold-Catalyzed 1,2-Aminoarylation of Alkenes with External Amines. ACS Catalysis, 2021, 11, 4576-4582.	11.2	53
7	From Propargylic Alcohols to Substituted Thiochromenes: <i>gem</i> -Disubstituent Effect in Intramolecular Alkyne Iodo/hydroarylation. Journal of Organic Chemistry, 2021, 86, 7078-7091.	3.2	15
8	Gold-Catalyzed Access to Isophosphinoline 2-Oxides. Journal of Organic Chemistry, 2021, 86, 7813-7824.	3.2	6
9	Au(I) Catalyzed Synthesis of Densely Substituted Pyrazolines and Dihydropyridines via Sequential Aza-Enyne Metathesis/6i€-Electrocyclization. Organic Letters, 2021, 23, 3981-3985.	4.6	2
10	Hetero-Tetradehydro-Diels–Alder Cycloaddition of Enynamides and Cyanamides: Gold-Catalyzed Generation of Diversely Substituted 2,6-Diaminopyridines. Journal of Organic Chemistry, 2021, 86, 7218-7228.	3.2	14
11	Electro-alkynylation: Intramolecular Rearrangement of Trialkynylorganoborates for Chemoselective C(sp ²)–C(sp) Bond Formation. Organic Letters, 2021, 23, 4179-4184.	4.6	8
12	Gold-Catalyzed Skeletal Rearrangement of Alkenes: Regioselective Synthesis of Skeletally Diverse Tricyclic Heterocycles and Mechanistic Investigations. ACS Catalysis, 2021, 11, 6951-6959.	11.2	27
13	Au(I)-Catalyzed Oxidative Functionalization of Yndiamides. Organic Letters, 2021, 23, 4888-4892.	4.6	11
14	Indolizy Carbene Ligand. Evaluation of Electronic Properties and Applications in Asymmetric Gold(I) Catalysis. Angewandte Chemie, 2021, 133, 20032-20041.	2.0	0
15	Indolizy Carbene Ligand. Evaluation of Electronic Properties and Applications in Asymmetric Gold(I) Catalysis. Angewandte Chemie - International Edition, 2021, 60, 19879-19888.	13.8	11
16	Gold(I) atalyzed Intermolecular Formal [4+2] Cycloaddition of O â€Aryl Ynol Ethers and Enol Ethers: Synthesis of Chromene Derivatives. Chemistry - A European Journal, 2021, 27, 13079-13084.	3.3	3
17	Gold atalyzed Transformation of Ynamides. Chemical Record, 2021, 21, 4123-4149.	5.8	30
18	Synthesis of Polysubstituted Fused Pyrroles by Gold-Catalyzed Cycloisomerization/1,2-Sulfonyl Migration of Yndiamides. Organic Letters, 2021, 23, 6547-6552.	4.6	14

#	Article	IF	Citations
19	Goldâ€Catalyzed Reactions of 2â€Alkynylâ€1â€indolylâ€1,2â€diols with Thiols: Stereoselective Synthesis of (<i>Z</i>)â€i±â€indolâ€3â€yl αâ€(2â€Thioalkenyl) Ketones. Advanced Synthesis and Catalysis, 2022, 364, 132-	13 8 .	6
20	Gold(I)â€Catalyzed Indole Synthesis through Azaâ€Nazarovâ€Type Cyclization of αâ€Imino Gold Carbene Complexes and Arenes. Advanced Synthesis and Catalysis, 2021, 363, 5272-5278.	4.3	6
21	Gold-Catalyzed Nitrene Transfer from Benzofuroxans to <i>N</i> -Allylynamides: Synthesis of 3-Azabicyclo[3.1.0]hexanes. Journal of Organic Chemistry, 2021, 86, 12964-12972.	3.2	12
22	Advances in mercury(II)-salt-mediated cyclization reactions of unsaturated bonds. Beilstein Journal of Organic Chemistry, 2021, 17, 2348-2376.	2.2	2
23	Mediaâ€Driven Pdâ€Catalyzed Reaction Cascades with 1,3â€Diynamides Leading Selectively to Either Indoles or Quinolines. Angewandte Chemie - International Edition, 2021, 60, 22729-22734.	13.8	6
24	Mediaâ€Driven Pdâ€Catalyzed Reaction Cascades with 1,3â€Diynamides Leading Selectively to Either Indoles or Quinolines. Angewandte Chemie, 2021, 133, 22911.	2.0	1
25	A dicoordinate gold(<scp>i</scp>)–ethylene complex. Chemical Communications, 2021, 57, 9280-9283.	4.1	12
26	One-pot synthesis of tetrasubstituted 2-aminofurans <i>via</i> Au(<scp>i</scp>)-catalyzed cascade reaction of ynamides with propargylic alcohols. Organic and Biomolecular Chemistry, 2021, 19, 9396-9400.	2.8	4
27	Chiral Bifunctional Phosphine Ligand Enables Gold-Catalyzed Asymmetric Isomerization and Cyclization of Propargyl Sulfonamide into Chiral 3-Pyrroline. Organic Letters, 2021, 23, 8194-8198.	4.6	10
28	Straightforward Synthesis of Indenes by Gold-Catalyzed Intramolecular Hydroalkylation of Ynamides. ACS Organic & Inorganic Au, 0, , .	4.0	4
29	Divergent and Modular Synthesis of Terpenoid Scaffolds via a Au(I) Catalyzed Oneâ€Pot Cascade. Angewandte Chemie, 0, , .	2.0	0
30	Divergent and Modular Synthesis of Terpenoid Scaffolds via a Au ^I Catalyzed Oneâ€Pot Cascade. Angewandte Chemie - International Edition, 2022, 61, .	13.8	4
31	An asymmetric oxidative cyclization/Mannich-type addition cascade reaction for direct access to chiral pyrrolidin-3-ones. Chemical Communications, 2021, 57, 12171-12174.	4.1	7
32	Enantioselective Allenation of Terminal Alkynes Catalyzed by Copper Halides of Mixed Oxidation States and Its Application to the Total Synthesis of Scorodonin. Angewandte Chemie - International Edition, 2022, 61, .	13.8	11
33	EATA Reaction Catalyzed by Copper Halides of Mixed Oxidation States and Its Application to Total Synthesis of Scorodonin. Angewandte Chemie, 0, , .	2.0	0
34	Gold self-relay catalysis for accessing functionalized cyclopentenones bearing an all-carbon quaternary stereocenter. Organic Chemistry Frontiers, 2021, 9, 140-146.	4.5	12
35	Gold-catalysed synthesis of phosphonate-substituted oxetan-3-ones – an easy access to highly strained HWE reagents. Organic Chemistry Frontiers, 2021, 9, 117-122.	4.5	1
36	Redox-Neutral and Atom-Economic Route to β-Carbolines via Gold-Catalyzed [4 + 2] Cycloaddition of Indolylynamides and Cyanamides. Journal of Organic Chemistry, 2021, 86, 17804-17815.	3.2	13

#	Article	IF	CITATIONS
37	Gold(I) atalyzed Selective Cyclization and 1,2‧hift to Prepare Pseudorutaecarpine Derivatives. Advanced Synthesis and Catalysis, 2022, 364, 787-793.	4.3	15
38	Gold <scp>Selfâ€Relay</scp> Catalysis Enabling [3,3]â€Sigmatropic Rearrangement/Nazarov Cyclization and Allylic Alkylation Cascade for Constructing <scp>Allâ€Carbon</scp> Quaternary Stereocenters. Chinese Journal of Chemistry, 2022, 40, 687-692.	4.9	13
39	Controlling the Gold(I)-Catalyzed 1,5-Allenene Reaction: Construction of Fused Rings with Excellent Diastereoselectivity. Organic Letters, 2021, 23, 9635-9639.	4.6	8
40	From Thioureas to Thioquinolines through Isolated Benzothiazines by Gold Catalysis. Chemistry - A European Journal, 2021, 27, 18029-18032.	3.3	2
41	Enantioselective Câ^'H Functionalization Reactions under Gold Catalysis. Chemistry - A European Journal, 2022, 28, .	3.3	31
42	Palladium-catalyzed alkynylative [5 + 1] carboannulation of 1,3-diarylprop-2-yn-1-yl acetates with terminal alkynes enabled by C–H functionalization. Organic Chemistry Frontiers, 0, , .	4.5	1
43	Electrochemical fluorosulfonylation of alkenes to access vicinal fluorinated sulfones derivatives. Tetrahedron, 2022, 106-107, 132651.	1.9	5
44	Ferrocenyl Gold Complexes as Efficient Catalysts. European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	7
45	Enantioselective Cascade Annulation of αâ€Aminoâ€ynones and Enals Enabled by Gold and Oxidative NHC Relay Catalysis. Angewandte Chemie, 0, , .	2.0	3
46	Boosting Gold(I) Catalysis via Weak Interactions: New Fine-Tunable Impy Ligands. ACS Organic & Inorganic Au, 2022, 2, 229-235.	4.0	6
47	Enantioselective Cascade Annulation of αâ€Aminoâ€ynones and Enals Enabled by Gold and Oxidative NHC Relay Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	17
48	Selectivity, Speciation, and Substrate Control in the Gold-Catalyzed Coupling of Indoles and Alkynes. Organometallics, 2022, 41, 497-507.	2.3	5
49	Merging Gold/Copper Catalysis and Copper/Photoredox Catalysis: An Approach to Alkyl Oxazoles from <i>N</i> -Propargylamides. Journal of Organic Chemistry, 2021, 86, 18247-18256.	3.2	16
50	Divergent Synthesis of [3,4]-Fused 3-Alkenyl-Oxindoles via Propargyl Alcohol-Triggered C(sp ³)–H Functionalization. ACS Catalysis, 2022, 12, 943-952.	11.2	38
51	Straightforward Synthesis of α-Chloromethylketimines Catalyzed by Gold(I). A Clean Way to Building Blocks. Journal of Organic Chemistry, 2022, 87, 3114-3122.	3.2	2
52	Gold(I)-Mediated Rapid Cyclization of Propargylated Peptides via Imine Formation. Journal of the American Chemical Society, 2022, 144, 4966-4976.	13.7	6
53	Revisiting the Bonding Model for Gold(I) Species: The Importance of Pauli Repulsion Revealed in a Gold(I) yclobutadiene Complex. Angewandte Chemie, 0, , .	2.0	0
54	Revisiting the Bonding Model for Gold(I) Species: The Importance of Pauli Repulsion Revealed in a Gold(I) yclobutadiene Complex. Angewandte Chemie - International Edition, 2022, 61, .	13.8	8

#	Article	IF	Citations
55	Dicoordinate Au(I)–Ethylene Complexes as Hydroamination Catalysts. ACS Catalysis, 2022, 12, 4227-4241.	11.2	15
56	Palladium atalyzed Regiodivergent Synthesis of 1,3â€Đienyl and Allyl Esters from Propargyl Esters. Angewandte Chemie - International Edition, 2022, 61, .	13.8	11
57	Silyliumâ€Catalyzed Alkynylation and Etherification Reactions of Benzylic Acetates. European Journal of Organic Chemistry, 2022, 2022, .	2.4	2
58	Palladiumâ€Catalyzed Regiodivergent Synthesis of 1,3â€Dienyl and Allyl Esters from Propargyl Esters. Angewandte Chemie, 0, , .	2.0	1
59	Iridium-catalyzed oxidative coupling and cyclization of NH isoquinolones with olefins leading to isoindolo[2,1-b]isoquinolin-5(7H)-one derivatives. Tetrahedron Letters, 2022, 97, 153779.	1.4	3
60	Highly selective cross-coupling reactions of 1,1-dibromoethylenes with alkynylaluminums for the synthesis of aryl substituted conjugated enediynes and unsymmetrical 1,3-diynes. RSC Advances, 2022, 12, 13314-13318.	3.6	1
61	Recent advances in gold-complex and chiral organocatalyst cooperative catalysis for asymmetric alkyne functionalization. Chinese Chemical Letters, 2022, 33, 4969-4979.	9.0	26
62	Efficient Synthesis of Dipyrrolobenzenes and Dipyrrolopyrazines <i>via</i> Bidirectional Gold Catalysis: a Combined Synthetic and Photophysical Study. Journal of the American Chemical Society, 2022, 144, 8306-8316.	13.7	16
63	Recent Advances in Catalytic Alkyne Transformation via Copper Carbene Intermediates. Molecules, 2022, 27, 3088.	3.8	10
64	Merging gold catalysis and haloethynyl frames: Emphasis on halide-shift processes. Tetrahedron Letters, 2022, 99, 153857.	1.4	3
65	Regio- and Diastereoselective Construction of Functionalized Benzo[<i>b</i>]oxepines and Benzo[<i>b</i>]azepines via Recyclable Gold(I)-Catalyzed Cyclizations. Journal of Organic Chemistry, 2022, 87, 7239-7252.	3.2	5
66	Synthesis of Monoâ€fluoroallenes through <scp>Copper atalyzed</scp> Defluorinative Silylation of α, <scp>αâ€Difluoroalkylalkynes</scp> . Chinese Journal of Chemistry, 2022, 40, 2035-2039.	4.9	3
67	Synthesis of (2-(Quinolin-2-yl)phenyl)carbamates by a One-Pot Friedel–Crafts Reaction/Oxidative Umpolung Aza-Grob Fragmentation Sequence. Journal of Organic Chemistry, 2022, 87, 7852-7863.	3.2	3
68	Recyclable gold(I)-catalyzed hydrohydrazidation of terminal alkynes towards keto-N-acylhydrazones. Journal of Organometallic Chemistry, 2022, , 122411.	1.8	0
69	Transition-Metal-Catalyzed Carbonylative Multifunctionalization of Alkynes. Journal of Organic Chemistry, 2023, 88, 4975-4994.	3.2	14
70	Entropyâ€Induced Selectivity Switch in Gold Catalysis: Fast Access to Indolo[1,2â€a]quinolines. Chemistry - A European Journal, 0, , .	3.3	11
71	Hâ€Bonded Counterionâ€Directed Catalysis: Enantioselective Gold(I)â€Catalyzed Addition to 2â€Alkynyl Enones as a Case Study. European Journal of Organic Chemistry, 2022, 2022, .	2.4	6
72	Gold(I)-Catalyzed Selective Hydroarylation of Indoles with Haloalkynes. Organic Letters, 2022, 24, 4689-4693.	4.6	7

		EPORT	
#	Article	IF	CITATIONS
73	Convenient synthesis of tricyclic N(1)–C(2)-fused oxazino-indolones <i>via</i> [Au(<scp>i</scp>)] catalyzed hydrocarboxylation of allenes. Chemical Communications, 2022, 58, 8698-8701.	4.1	4
74	Gold(I)-Catalyzed Cycloisomerization–Indole Addition Cascade: Synthesis of 3(2 <i>H</i>)-Furanone-Incorporated Unsymmetrical 3,3′- Bis(indolyl)methanes. Organic Letters, 2022, 24, 4930-4934.	4.6	9
75	Gold(I)-Catalyzed Heteroannulation of Salicylic Amides with Alkynes: Synthesis of 1,3-Benzoxazin-4-one Derivatives. Organic Letters, 2022, 24, 5684-5687.	4.6	5
76	Synthesis of Benzofuran Derivates via a Gold-Catalyzed Claisen Rearrangement Cascade. Organic Letters, 2022, 24, 5829-5834.	4.6	9
77	Formation and Intramolecular Capture of α-Imino Gold Carbenoids in the Au(I)-Catalyzed [3 + 2] Reaction of Anthranils, 1,2,4-Oxadiazoles, and 4,5-Dihydro-1,2,4-Oxadiazoles with Ynamides. Catalysts, 2022, 12, 915.	3.5	1
78	Reactive sensing of gold (III) by coumarin tethered fluorescent probe through alkyne activation. Journal of the Indian Chemical Society, 2022, 99, 100670.	2.8	2
79	Intramolecular activation of strong Si–O bonds by gold(<scp>i</scp>): regioselective synthesis of 3-bromo-2-silylbenzofurans. Chemical Communications, 2022, 58, 9250-9253.	4.1	1
80	Au(I) as a π-Lewis Base Catalyst: Controlled Synthesis of Sterically Congested Bis(triflyl)enals from α-Allenols. ACS Catalysis, 2022, 12, 11675-11681.	11.2	6
81	Gold-catalyzed carbocyclization and imidization of alkyne-tethered diazo compounds with nitrosoarenes for the synthesis of nitrones and naphthalene derivatives. Molecular Diversity, 0, , .	3.9	0
82	Gold(I)-Catalyzed Tandem Intramolecular Methoxylation/Double Aldol Condensation Strategy Yielding 2,2′-Spirobi[indene] Derivatives. Organic Letters, 2022, 24, 6777-6782.	4.6	2
83	Access to Azepino-Annulated Benzo[<i>c</i>]carbazoles Enabled by Gold-Catalyzed Hydroarylation of Alkynylindoles and Subsequent Oxidative Cyclization. Organic Letters, 2022, 24, 6505-6509.	4.6	9
84	Gold(I)-Catalyzed Tandem Cyclization/Hydroarylation of <i>o</i> -Alkynylphenols with Haloalkynes. Journal of Organic Chemistry, 2022, 87, 14374-14383.	3.2	11
85	On the Role of Noncovalent Ligand-Substrate Interactions in Au(I) Catalysis: An Experimental and Computational Study of Protodeauration. ACS Catalysis, 2022, 12, 13158-13163.	11.2	4
86	Enantioselective Synthesis of [5]Helicenes Containing Two Additional Chiral Axes. Israel Journal of Chemistry, 2023, 63, .	2.3	5
87	Synthesis of Phenanthreneâ€Based Polycycles by Gold(I)â€Catalyzed Cyclization of Biphenylâ€Embedded Trienynes. Advanced Synthesis and Catalysis, 2022, 364, 3960-3966.	4.3	1
88	Gold(I) Catalysis Applied to the Stereoselective Synthesis of Indeno[2,1- <i>b</i>]thiochromene Derivatives and Seleno Analogues. Organic Letters, 2022, 24, 8077-8082.	4.6	8
89	Gold(I)â€Catalyzed Benzylic C(sp ³)â^'H Functionalizations: Divergent Synthesis of Indole[<i>a</i>]―and [<i>b</i>]â€Fused Polycycles**. Angewandte Chemie - International Edition, 2023, 62, .	13.8	17
90	Gold(I) atalyzed Benzylic C(sp ³)â^'H Functionalizations: Divergent Synthesis of Indole[<i>a</i>]―and [<i>b</i>]â€Fused Polycycles**. Angewandte Chemie, 2023, 135, .	2.0	2

#	Article	IF	CITATIONS
91	Gold(III) Catalyzed Overman Rearrangements: Controlling Steric Interactions using Pincerâ€Type Ligands. ChemCatChem, 2022, 14, .	3.7	1
92	Synthesis of β-Allenylamines by Addition of Chloroprene Grignards to <i>N</i> Boc Imines. Organic Letters, 2022, 24, 7967-7971.	4.6	Ο
93	Spectroscopic Manifestations and Implications for Catalysis of Quasiâ€d ¹⁰ Configurations in Formal Gold(III) Complexes. Angewandte Chemie, 2023, 135, .	2.0	1
94	Spectroscopic Manifestations and Implications for Catalysis of Quasiâ€d10 Configurations in Formal Gold(III) Complexes. Angewandte Chemie - International Edition, 0, , .	13.8	6
95	Total Synthesis of Natural Products using Gold Catalysis. Chemistry - an Asian Journal, 2022, 17, .	3.3	12
96	Silver Dependent Enantiodivergent Gold(I) Catalysed Asymmetric Intramolecular Hydroamination of Alkenes: A Theoretical Study. Catalysts, 2022, 12, 1392.	3.5	1
97	Collective Total Syntheses of Benzo[<i>c</i>]phenanthridine Alkaloids via a Sequential Transition Metal-Catalyzed Pot-Economic Approach. Organic Letters, 2022, 24, 8310-8315.	4.6	4
98	Digold Phosphinine Complexes Are Stable with a Bis(Phosphinine) Ligand but Not with a 2-Phosphinophosphinine. Inorganics, 2022, 10, 203.	2.7	1
99	Functionalized Chromans from <i>ortho</i> -Quinone Methides and Arylallenes. Journal of Organic Chemistry, 2022, 87, 15863-15887.	3.2	3
100	Gold-catalyzed formal (3 + 2) and (4 + 2) cycloadditions of alkynes to highly functionalized dihydropyrroles and tetrahydropyridines. Organic Chemistry Frontiers, 2023, 10, 680-685.	4.5	2
101	Late-stage diversification strategy for synthesizing ynamides through copper-catalyzed diynylation and azide–alkyne cycloaddition. Chemical Communications, 2023, 59, 450-453.	4.1	5
102	An MCM-41-immobilized dichloro(pyridine-2-carboxylato)gold(<scp>iii</scp>) complex: an efficient and recyclable catalyst for the annulation of anthranils and ynamides. Dalton Transactions, 2023, 52, 806-817.	3.3	1
104	Intramolecular hydroamination catalysed by gold nanoparticles deposited on fibrillated cellulose. Scientific Reports, 2022, 12, .	3.3	0
105	I ₂ atalyzed Cycloisomerization of Ynamides: Chemoselective and Divergent Access to Indole Derivatives. Angewandte Chemie, 2023, 135, .	2.0	0
106	I ₂ atalyzed Cycloisomerization of Ynamides: Chemoselective and Divergent Access to Indole Derivatives. Angewandte Chemie - International Edition, 2023, 62, .	13.8	8
107	Recent Advances in Gold(I)-Catalyzed Approaches to Three-Type Small-Molecule Scaffolds via Arylalkyne Activation. Molecules, 2022, 27, 8956.	3.8	2
108	Gold-Catalyzed Intermolecular Alkyne Insertion into the N–S Bond in Sulfenamides. Organic Letters, 2022, 24, 9264-9268.	4.6	2
109	Mechanosynthesis of Triazolylâ€bis(indolyl)methane Pharmacophores via Gold Catalysis: A Prelude to Molecular Electronic Properties and Biological Potency. ChemMedChem, 0, , .	3.2	3

#	Article	IF	Citations
110	Gold-Catalyzed [4 + 1] Heterocyclization of Hydroxamic Acid and Nonactivated Alkyne: A Protocol to Construct 5-Methyl-1,4,2-dioxazole. Journal of Organic Chemistry, 2023, 88, 433-441.	3.2	2
111	Flexible Synthesis of Benzofuranones from <i>ortho</i> â€Alkynyl Phenols or Benzofurans. European Journal of Organic Chemistry, 2023, 26, .	2.4	3
112	Computational Understanding of Dual Gold and Photoredox-Catalyzed Regioselective Thiosulfonylation of Alkenes. Journal of Organic Chemistry, 2023, 88, 1107-1112.	3.2	5
113	Cold-Catalyzed Alkyne Multifunctionalization through an Oxidation–Oxyalkylation–Aryloxylation Sequence. Organic Letters, 2023, 25, 405-409.	4.6	3
114	Heteroatom-substituted alkynes as three-atom components in (3+2) cycloadditions. Cell Reports Physical Science, 2023, 4, 101212.	5.6	1
115	Lâ€Shaped Heterobidentate Imidazo[1,5â€ <i>a</i>]pyridinâ€3â€ylidene (N,C)â€Ligands for Oxidantâ€Free Au ^I /Au ^{III} Catalysis. Angewandte Chemie, 2023, 135, .	2.0	1
116	Lâ€Shaped Heterobidentate Imidazo[1,5â€ <i>a</i>]pyridinâ€3â€ylidene (N,C)â€Ligands for Oxidantâ€Free Au ^I /Au ^{III} Catalysis. Angewandte Chemie - International Edition, 2023, 62, .	13.8	17
117	Heart of gold: enabling ligands for oxidative addition of haloorganics in Au(<scp>i</scp>)/Au(<scp>ii</scp>) catalysed cross-coupling reactions. Organic and Biomolecular Chemistry, 2023, 21, 1629-1646.	2.8	2
118	Two-dimensional porous vermiculite-based nanocatalysts for synergetic catalytic therapy. Biomaterials, 2023, 295, 122031.	11.4	17
119	Dodging the Conventional Reactivity of <i>o</i> -Alkynylanilines under Gold Catalysis for Distal 7- <i>endo</i> - <i>dig</i> Cyclization. Journal of Organic Chemistry, 2023, 88, 2260-2287.	3.2	3
120	Regio- and stereospecific <i>cis</i> -hydrophenoxylation of ynamides with acidic phenols. Organic and Biomolecular Chemistry, 2023, 21, 3073-3078.	2.8	1
121	Silylium-Catalyzed Regio- and Stereoselective Carbosilylation of Ynamides with Allylic Trimethylsilanes. Organic Letters, 2023, 25, 1020-1024.	4.6	3
122	Rapid access to C2-quaternary 3-methyleneindolines <i>via</i> base-mediated post-Ugi Conia-ene cyclization. Chemical Communications, 2023, 59, 3099-3102.	4.1	2
123	Gold Complexes with Hydrophilic N-Heterocyclic Carbene Ligands and Their Contribution to Aqueous-Phase Catalysis. Catalysts, 2023, 13, 436.	3.5	0
124	Gold self-relay catalysis enabling annulative oxygenation of propargylic alcohols with O-nucleophiles. Chemical Communications, 2023, 59, 4032-4035.	4.1	6
125	Highlighting the Rich Chemistry of the Allenone Moiety. Advanced Synthesis and Catalysis, 2023, 365, 1332-1384.	4.3	3
126	Gold-catalyzed <i>endo</i> -selective cyclization of alkynylcyclobutanecarboxamides: synthesis of cyclobutane-fused dihydropyridones. Organic and Biomolecular Chemistry, 2023, 21, 2705-2708.	2.8	0
127	Fluorination of α-Imino Gold Carbenes to Access C ₃ -Fluorinated Aza-Heterocycles. ACS Catalysis, 2023, 13, 4391-4397.	11.2	4

	CITATION	ation Report	
#	Article	IF	CITATIONS
128	Generation and Utility of Cyclic Dienyl Gold Carbene Intermediates. ACS Catalysis, 2023, 13, 4646-4655.	11.2	8
129	Gold-catalyzed multicomponent reactions. Organic Chemistry Frontiers, 2023, 10, 2359-2384.	4.5	8
130	Gold atalyzed Cascade Reaction of Diynamides with Allylic Alcohols: A Versatile Platform to Allenamide, 2â€Aminofuran and Bridged [2.2.2]Octadiene Derivatives. Chemistry - A European Journal, 0, , .	3.3	1
131	A hemilabile NHCâ€gold complex and its application to the redox neutral 1,2â€oxyarylation of feedstock alkenes. Angewandte Chemie, 0, , .	2.0	0
132	A Hemilabile NHC old Complex and its Application to the Redox Neutral 1,2â€Oxyarylation of Feedstock Alkenes. Angewandte Chemie - International Edition, 2023, 62, .	13.8	7
133	Acceleration of Stepwise Carbon-Polygold Bonding Cleavage in Hypercoordinated Carbon-Centered Gold(I) Clusters. Inorganic Chemistry, 2023, 62, 6147-6154.	4.0	0
134	Au → M bonds promote catalytic alkyne hydrofunctionalisation. Chemical Communications, 2023, 59, 5459-5462.	4.1	1
135	Quantum Mechanical Prediction and Experimental Verification of Au(I)-Catalyzed Substitution-Controlled Syntheses of 1 <i>H</i> -Pyrido[4,3- <i>b</i>]indole and Spiro[indoline-3,3′-pyridine] Derivatives. Journal of Organic Chemistry, 2023, 88, 5483-5496.	3.2	1
136	Regio- and stereoselective oxidative conversion of alkynes to sulfenylated α,β-unsaturated carbonyls. Organic Chemistry Frontiers, 2023, 10, 2416-2421.	4.5	6
137	Gold-Catalyzed <i>Anti</i> -Markovnikov Oxidation of Au-Allenylidene to Generate Alkylidene Ketene. Organic Letters, 2023, 25, 2798-2805.	4.6	1
138	One-Pot Synthesis of Pentasubstituted Pyridines following the Gold(I)-Catalyzed Aza–Enyne Metathesis/6l€-Electrocyclization–Aromatization Sequence. Journal of Organic Chemistry, 2023, 88, 6973-6986.	3.2	1
139	Unlocking Migratory Insertion in Gold Redox Catalysis. Angewandte Chemie - International Edition, 2023, 62, .	13.8	12
140	Chemo- and Diastereoselective Cycloisomerization/[2 + 3] Cycloaddition of Enynamides: Synthesis of Spiropyrazolines as Potential Anticancer Reagents. Journal of Organic Chemistry, 2023, 88, 7311-7319.	3.2	1
141	Comprehensive Overview of Homogeneous Gold-Catalyzed Transformations of ï€-Systems for Application Scientists. Catalysts, 2023, 13, 921.	3.5	1
142	Gold-based enantioselective bimetallic catalysis. Chemical Communications, 2023, 59, 8007-8016.	4.1	2
143	1,3-Butadiynamides the Ethynylogous Ynamides: Synthesis, Properties and Applications in Heterocyclic Chemistry. Molecules, 2023, 28, 4564.	3.8	0
144	Recent Advances in the Gold-Catalyzed Reactions of Propargyl Esters. Accounts of Chemical Research, 2023, 56, 1406-1420.	15.6	10
145	Asymmetric Hydrative Aldol Reaction (HAR) via Vinylâ€Gold Promoted Intermolecular Ynamide Addition to Aldehydes. Angewandte Chemie, 2023, 135, .	2.0	0

#	Article	IF	CITATIONS
146	Homogeneous Gold Catalysis for Regioselective Carbocyclization of Alkynyl Precursors. ChemPlusChem, 2023, 88, .	2.8	2
147	Asymmetric Hydrative Aldol Reaction (HAR) via Vinylâ€Gold Promoted Intermolecular Ynamide Addition to Aldehydes. Angewandte Chemie - International Edition, 2023, 62, .	13.8	4
148	Gold(I)-Catalyzed Dearomatization–Allenene Reaction for the Construction of Polycycles with Excellent Diastereoselectivity. Synthesis, 0, , .	2.3	0
149	Enantioselective Desymmetrizing Hydroalkoxylation of 1,4- and 1,8-Diynes Enabled by Chiral BrÃ,nsted Acid Catalysis. ACS Catalysis, 2023, 13, 8803-8812.	11.2	2
150	Silver/chiral pyrrolidinopyridine relay catalytic cycloisomerization/(2 + 3) cycloadditions of enynamides to asymmetrically synthesize bispirocyclopentenes as PDE1B inhibitors. Communications Chemistry, 2023, 6, .	4.5	4
151	Hexafluoroisopropanol (HFIP) as a Multifunctional Agent in Gold-Catalyzed Cycloisomerizations and Sequential Transformations. ACS Catalysis, 2023, 13, 8845-8860.	11.2	10
152	Gold(I)-Catalyzed Regioselective Hydroarylation of Propiolic Acid with Arylboronic Acids. Organic Letters, 2023, 25, 4803-4807.	4.6	1
153	A Cascade Synthesis of Unsymmetrical Furanized Triarylmethanes via Gold Self-Relay Catalysis. Catalysts, 2023, 13, 1051.	3.5	1
154	Unlocking Migratory Insertion in Gold Redox Catalysis. Angewandte Chemie, 2023, 135, .	2.0	0
155	Enantioselective Catalysis with Pyrrolidinyl Gold(I) Complexes: DFT and NEST Analysis of the Chiral Binding Pocket. Jacs Au, 2023, 3, 1742-1754.	7.9	4
156	Shape Selectivity in the Goldâ€Catalyzed Hydration of Alkynes Using a Cavityâ€ S haped Phosphine. ChemPlusChem, 2023, 88, .	2.8	1
157	A Cavity-Shaped Gold(I) Fragment Enables CO ₂ Insertion into Au–OH and Au–NH Bonds. Inorganic Chemistry, 2023, 62, 10582-10591.	4.0	0
158	Spiroindoles as Intermediates/Products in Transition Metal-Catalyzed Dearomatization of Indoles. ACS Catalysis, 2023, 13, 9442-9475.	11.2	11
159	Heterogeneous gold-catalyzed Sandmeyer coupling of aryldiazonium salts with sodium bromide or thiols for constructing C–Br and C–S bonds. Dalton Transactions, 2023, 52, 10045-10057.	3.3	0
161	Novel Au(I)-Based Artificial Metallo-Cycloisomerase for Catalyzing the Cycloisomerization of γ-Alkynoic Acids. ACS Catalysis, 0, , 9918-9924.	11.2	1
162	Photosensitizer-free, visible light-mediated recyclable gold-catalyzed cross-coupling of aryldiazonium salts and alkynyltrimethylsilanes. New Journal of Chemistry, 0, , .	2.8	0
163	[Au(Np#)Cl]: Highly Reactive and Broadly Applicable Au(I)–NHC Catalysts for Alkyne pi-Activation Reactions. Catalysis Science and Technology, 0, , .	4.1	0
164	Gold-Catalyzed Divergent <i>N</i> / <i>O</i> -Vinylations of <i>trans</i> -2-Butene-1,4-amino Alcohols with Alkynes and the Cascade Rearrangements/Cyclizations to Dihydropyrroles and Dihydrofurans. Organic Letters, 0, , .	4.6	0

#	Article	IF	CITATIONS
165	Mechanistic insights of the copper(I)-catalysed reaction between chlorohydrazones and terminal alkynes. New Journal of Chemistry, 0, , .	2.8	0
166	Diastereoselective Halogenation Reactions. , 2023, , .		0
167	Metal complex catalysts broaden bioorthogonal reactions. Science China Chemistry, 2024, 67, 428-449.	8.2	1
168	Gold(I) atalyzed Ringâ€Closing Alkyne arbonyl Metathesis for the Synthesis of Butenolides. Chemistry - A European Journal, 2023, 29, .	3.3	1
169	Au(I) and HOTf atalyzed Cascade [5+1]â€Annulations between Allenylacetals and Diazo Esters To Form 1,3― and 2,3â€Disubstituted Naphthoates, Respectively. Advanced Synthesis and Catalysis, 2023, 365, 3902-3908.	4.3	1
170	Activation of alkynes by chalcogen bonding: a Seâ<ï€ interaction catalyzed intramolecular cyclization of 1,6-diynes. Chemical Communications, 2023, 59, 12278-12281.	4.1	1
171	Advances in Versatile Chiral Ligands for Asymmetric Gold Catalysis. Catalysts, 2023, 13, 1294.	3.5	1
172	The literature of heterocyclic chemistry, Part XXI, 2021. Advances in Heterocyclic Chemistry, 2024, , 139-226.	1.7	0
173	Carbon-Bonding Metal Catalysis (CBMC): A Supramolecular Complex Directs Structural-Isomer Selection in Gold-Catalyzed Reactions. Journal of the American Chemical Society, 2023, 145, 21554-21561.	13.7	1
174	Hydrogen-Bonded Matched Ion Pair Gold(I) Catalysis. ACS Catalysis, 2023, 13, 10217-10223.	11.2	1
175	Catalytic 4-exo-dig carbocyclization for the construction of furan-fused cyclobutanones and synthetic applications. Nature Communications, 2023, 14, .	12.8	2
176	Gold self-relay catalysis enabling Nazarov cyclization/1,6-addition cascade toward functionalized cyclopentenones. Tetrahedron, 2023, 147, 133661.	1.9	0
177	Synthesis of 2-(5H)-furanones by cyclization of alkyl allene carboxylates in triflic acid. Tetrahedron, 2023, 146, 133649.	1.9	0
178	Goldâ€Catalyzed Cyclization of Yndiamides with Isoxazoles via αâ€Imino Gold Fischer Carbenes. Chemistry - A European Journal, 2023, 29, .	3.3	0
179	Broadening the catalytic region from the cavity to windows by M ₆ L ₁₂ nanospheres in cyclizations. Chemical Science, 2023, 14, 11699-11707.	7.4	1
180	Catalyst―and Substrateâ€Controlled Regiodivergent Synthesis of Carbazoles through Goldâ€Catalyzed Cyclizations of Indoleâ€Functionalized Alkynols. ChemPlusChem, 2023, 88, .	2.8	0
181	Chiral Auxiliary Approach for Gold(I) $\hat{a}\in \mathbb{C}$ atalyzed Cyclizations. Angewandte Chemie, 0, , .	2.0	0
182	Construction of Cyclic Nitrones Enabled by Photodriven and Gold-Catalyzed 1,3-Azaprotio Transfer of Allenyloximes. Journal of Organic Chemistry, 2023, 88, 15395-15403.	3.2	1

#	Article	IF	CITATIONS
183	Chiral Auxiliary Approach for Gold(I) atalyzed Cyclizations. Angewandte Chemie - International Edition, 2023, 62, .	13.8	2
184	Regioselectivity Control in the Synthesis of Linear Conjugated Dienes Enabled by Manganese(I)-Catalyzed C–H Activation. ACS Catalysis, 2023, 13, 14523-14529.	11.2	0
185	Accessing Indenoazulenes <i>via</i> a Gold atalysed Cyclisation of Cycloheptatrienyl‣ubstituted 1,5â€Diynes. Advanced Synthesis and Catalysis, 0, , .	4.3	0
186	Base-assisted transmetalation enables gold-catalyzed oxidative Sonogashira coupling reaction. IScience, 2024, 27, 108531.	4.1	0
187	Enantioselectivity and Reactivity Enhancement by 1,1,3,3-Tetramethylguanidine in Bisguanidinium-Catalyzed Asymmetric Alkylation for Construction of Indole Alkaloid Marine Natural Products. ACS Catalysis, 0, , 15708-15714.	11.2	0
188	Total Synthesis of Laetevirenol A via Regioselective Goldâ€Catalyzed and Acidâ€Promoted Cyclizations. Advanced Synthesis and Catalysis, 2024, 366, 232-240.	4.3	0
189	Cascade hydroarylation/Diels–Alder cycloaddition of alkynylindoles with electron-deficient alkynes and alkenes. Chemical Communications, 2024, 60, 328-331.	4.1	1
190	Ferrocenyl Dinuclear Gold(I) Complexes. Study of their Structural Features and the Influence of Bridging and Phosphane Ligands in a Catalytic Cyclization Reaction. Chemistry - A European Journal, 2024, 30, .	3.3	0
191	Hydroamination of alkynes catalyzed by NHC-Gold(I) complexes: the non-monotonic effect of substituted arylamines on the catalyst activity. Frontiers in Chemistry, 0, 11, .	3.6	1
192	Synthesis of Spiro[4.5]decanes by Au(I) atalyzed Vinylogous Conia Ene Reaction. European Journal of Organic Chemistry, 0, , .	2.4	0
193	Accessing gold p-acid reactivity under electrochemical anode oxidation (EAO) through oxidation relay. Nature Communications, 2023, 14, .	12.8	0
194	Direct Synthesis of (<i>E</i>)â€ <i>β</i> â€{Thiocyanato)vinyl Sulfones by 1,2â€Difunctionalization of Alkynes with Sulfinic Acids and Potassium Thiocyanate. Advanced Synthesis and Catalysis, 2024, 366, 426-430.	4.3	0
195	Chiral NHC Ligands for Enantioselective Gold(I) Catalysis Under Aerobic Conditions: the Importance of Conformational Flexibility and Steric Hindrance of NHC Ligand on Reactivity. Chemistry - A European Journal, 0, , .	3.3	0
196	Chiral Bifunctional Phosphine Ligand Enables Asymmetric Trapping of Catalytic Vinyl Gold Carbene Species. Journal of the American Chemical Society, 2024, 146, 2308-2312.	13.7	1
197	Electronic and Steric Effects in a Gold(I) atalyzed Intramolecular C(<i>sp</i> ³)â^'H Bond Activation Reaction of 1â€Bromoalkynes. Advanced Synthesis and Catalysis, 2024, 366, 780-789.	4.3	0
198	Copper-catalyzed room-temperature cross-dehydrogenative coupling of secondary amides with terminal alkynes: a chemoselective synthesis of ynamides. Organic and Biomolecular Chemistry, 2024, 22, 1299-1309.	2.8	0
200	Ynones in dearomative spirocyclisation processes; a review. , 2024, 9, 100055.		0
201	Aurated Aryl Cations as Halogen Abstractors – Easy Access to 1-Halogenated Naphthalenes. ACS Catalysis, 2024, 14, 2107-2114.	11.2	0

#	Article	IF	CITATIONS
202	Goldâ€catalyzed <i>endo</i> â€selective Ringâ€opening of Epoxides and its Application in Construction of Polyâ€ethers. Chemistry - A European Journal, 2024, 30, .	3.3	0
203	Gold-Catalyzed <i>N</i> -Alkenylation of Isoxazolines and the Use of Alkenyl Gold Intermediates in the Synthesis of 2-Amino-1-pyrrolines. ACS Catalysis, 2024, 14, 2229-2234.	11.2	0
204	DFT-Enabled Development of Hemilabile (P ^{â^§} N) Ligands for Gold(I/III) RedOx Catalysis: Application to the Thiotosylation of Aryl Iodides. Journal of the American Chemical Society, 2024, 146, 3660-3674.	13.7	0
205	Photosensitizer-free, visible light-mediated heterogeneous gold-catalyzed cross-coupling of aryldiazonium salts with allyltrimethylsilane. Synthetic Communications, 2024, 54, 478-490.	2.1	0
206	Synthesis of Functionalized Tetrasubstituted Allenes by the Addition of Bis(trimethylsilyl)ketene Acetals to Ynones Catalyzed by Gold(I). Journal of Organic Chemistry, 2024, 89, 3092-3101.	3.2	0
207	Gold/Chiral Amine Relay Catalysis Enables Asymmetric Synthesis of C2-Quaternary Indolin-3-ones. Organic Letters, 2024, 26, 1792-1796.	4.6	Ο
208	Challenging Task of Ni-Catalyzed Highly Regio-/Enantioselective Semihydrogenation of Racemic Tetrasubstituted Allenes via a Kinetic Resolution Process. Journal of the American Chemical Society, 2024, 146, 7419-7430.	13.7	0
209	Gold-Catalyzed Cascade Cycloisomerization of 3-Allyloxy-1,6-diynes to Cyclopropyl- and Cyclobutyl-Fused Benzofurans and Chromen-3a(1 <i>H</i>)-ols. Organic Letters, 2024, 26, 2635-2640.	4.6	0
210	Synthesis of Alkenylgold(I) Complexes Relevant to Catalytic Carboxylative Cyclization of Unsaturated Amines and Alcohols. Molecules, 2024, 29, 1331.	3.8	0
212	Collective syntheses of five abietane-type diterpenoids using a polyene cyclization strategy. Tetrahedron Letters, 2024, 140, 155023.	1.4	0