Harnessing molecular rotations in plastic crystals: a hol of adaptive soft materials

Chemical Society Reviews 49, 8878-8896 DOI: 10.1039/d0cs00475h

Citation Report

#	Article	IF	CITATIONS
1	Nuclear magnetic resonance characterisation of ionic liquids and organic ionic plastic crystals: common approaches and recent advances. Chemical Communications, 2021, 57, 5609-5625.	2.2	16
2	Elastic Crystalline Fibers Composed of a Nickel(II) Complex. Inorganic Chemistry, 2021, 60, 1294-1298.	1.9	20
3	Understanding the elastic bending mechanism in a 9,10-anthraquinone crystal through thermal expansion study. CrystEngComm, 2021, 23, 5768-5773.	1.3	11
4	Statics and dynamics of ferroelectric domains in molecular multiaxial ferroelectric (Me ₃ NOH) ₂ [KCo(CN) ₆]. Journal of Materials Chemistry C, 2021, 9, 10741-10748.	2.7	15
5	Photomechanical response of sulfonylhydrazone molecular crystals. CrystEngComm, 2021, 23, 4910-4916.	1.3	10
6	Probing time dependent phase transformation in a flexible metal–organic framework with nanoindentation. Dalton Transactions, 2021, 50, 11380-11384.	1.6	2
7	Potential and challenges of engineering mechanically flexible molecular crystals. CrystEngComm, 2021, 23, 5711-5730.	1.3	33
8	Structural Origins of Elastic and 2D Plastic Flexibility of Molecular Crystals Investigated with Two Polymorphs of Conformationally Rigid Coumarin. Chemistry of Materials, 2021, 33, 1053-1060.	3.2	50
9	Electrotransport and thermal properties of tetrabutylammonium hydrogen sulfate. Ionics, 2021, 27, 2067-2071.	1.2	4
10	Elastic Molecular Crystals: From Serendipity to Design to Applications. Crystal Growth and Design, 2021, 21, 2566-2580.	1.4	56
11	Revisiting the Disorder–Order Transition in 1-X-Adamantane Plastic Crystals: Rayleigh Wing, Boson Peak, and Lattice Phonons. Journal of Physical Chemistry C, 2021, 125, 7384-7391.	1.5	9
12	Energy Conversion in Single rystalâ€ŧo‧ingleâ€Crystal Phase Transition Materials. Advanced Energy Materials, 2022, 12, 2100324.	10.2	25
13	Ultrafast Crystallization of AlPO ₄ -5 Molecular Sieve in a Deep Eutectic Solvent. Journal of Physical Chemistry C, 2021, 125, 8876-8889.	1.5	14
14	Stabilization of Ferroelectric Phase in Highly Oriented Quinuclidinium Perrhenate (HQReO4) Thin Films. Materials, 2021, 14, 2126.	1.3	3
15	Elucidating the Origins of a Range of Diverse Flexible Responses in Crystalline Coordination Polymers. Chemistry of Materials, 2021, 33, 3660-3668.	3.2	22
16	Mechanical Bending and Modulation of Photoactuation Properties in a One-Dimensional Pb(II) Coordination Polymer. Chemistry of Materials, 2021, 33, 4621-4627.	3.2	54
17	Autonomous self-repair in piezoelectric molecular crystals. Science, 2021, 373, 321-327.	6.0	72
18	Mechanical Motion in Crystals Triggered by Solid State Photochemical [2+2] Cycloaddition Reaction. Chemistry - an Asian Journal, 2021, 16, 2806-2816.	1.7	30

#	Article	IF	CITATIONS
19	Recent advances in molecular ferroelectrics. Journal Physics D: Applied Physics, 2022, 55, 033001.	1.3	11
20	Epimers with distinct mechanical behaviours. CrystEngComm, 2021, 23, 5848-5855.	1.3	1
21	Dynamic effects in crystalline coordination polymers. CrystEngComm, 2021, 23, 5738-5752.	1.3	22
22	Pseudo-solid-state electrolytes utilizing the ionic liquid family for rechargeable batteries. Energy and Environmental Science, 2021, 14, 5834-5863.	15.6	42
23	Phase-dependent dielectric properties and proton conduction of neopentyl glycol. RSC Advances, 2021, 11, 23228-23234.	1.7	2
24	Elastic deformability and luminescence of crystals of polyhalogenated platinum(<scp>ii</scp>)–bipyridine complexes. CrystEngComm, 2021, 23, 5891-5898.	1.3	12
25	Dynamics of proton, ion, molecule, and crystal lattice in functional molecular assemblies. Chemical Communications, 2021, 57, 8378-8401.	2.2	19
26	Exploring the diversity of elastic responses of crystalline cadmium(<scp>ii</scp>) coordination polymers: from elastic towards plastic and brittle responses. CrystEngComm, 2021, 23, 7072-7080.	1.3	8
27	Structure–mechanical property relationship of a pentapeptide crystal. CrystEngComm, 2021, 23, 8093-8098.	1.3	0
28	Orientational order and phase transitions in deuterated methane: a neutron total scattering and reverse Monte Carlo study. Journal of Physics Condensed Matter, 2022, 34, 015401.	0.7	4
29	Supercritical anomalies in liquid ODIC-forming cyclooctanol under the strong electric field. Journal of Molecular Liquids, 2022, 345, 117849.	2.3	7
30	Harnessing Noncovalent Interactions for a Directed Evolution of a Six-Component Molecular Crystal. Journal of Physical Chemistry B, 2021, 125, 12584-12591.	1.2	6
31	Effect of Strong Intermolecular Interaction in 2D Inorganic Molecular Crystals. Journal of the American Chemical Society, 2021, 143, 20192-20201.	6.6	9
32	Giant single-crystal-to-single-crystal transformations associated with chiral interconversion induced by elimination of chelating ligands. Nature Communications, 2021, 12, 6908.	5.8	20
33	Organic ionic plastic crystal enhanced interface compatibility of PEO-based solid polymer electrolytes for lithium-metal batteries. Solid State Ionics, 2021, 373, 115806.	1.3	11
34	Luminescent polymorphic crystals: mechanoresponsive and multicolor-emissive properties. CrystEngComm, 2022, 24, 1112-1126.	1.3	36
35	The bending behavior of an l-phenylalanine monohydrate soft crystal via reversible hydrogen bond rupture and remodeling. Physical Chemistry Chemical Physics, 2022, 24, 3216-3221.	1.3	2
36	The role of chirality and plastic crystallinity in the optical and mechanical properties of chlorosomes. IScience, 2022, 25, 103618.	1.9	3

CITATION REPORT

#	Article	IF	CITATIONS
37	The synthesis, structures, high thermal stability and photoluminescence of two new crown ether clathrates. Inorganica Chimica Acta, 2022, 535, 120842.	1.2	4
38	Organic soft crystals exhibiting spontaneously reversible mechano-responsive luminescence. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 51, 100479.	5.6	14
39	Discovering Crystal Forms of the Novel Molecular Semiconductor OEC-BTBT. Crystal Growth and Design, 2022, 22, 1680-1690.	1.4	6
40	Colossal Barocaloric Effect in Carboranes as a Performance Tradeoff. Advanced Functional Materials, 2022, 32, .	7.8	18
41	Tailoring the coercive field in ferroelectric metal-free perovskites by hydrogen bonding. Nature Communications, 2022, 13, 794.	5.8	24
42	Multiple Phase Transitions and Temperature Dependent Ionic Conductivity of the Plastic Crystal Trioctylammonium Triflate Studied by Dielectric Spectroscopy and Calorimetry. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, , 1-1.	1.8	1
43	Mesophase Transitions in [(C ₂ H ₅) ₄ N][FeBrCl ₃] and [(CH ₃) ₄ N][FeBrCl ₃] Ferroic Plastic Crystals. Chemistry of Materials, 2022, 34, 2585-2598.	3.2	5
44	Plastic/Ferroelectric Crystals with Distorted Molecular Arrangement: Ferroelectricity in Bulk Polycrystalline Films through Lattice Reorientation. Advanced Electronic Materials, 2022, 8, .	2.6	9
45	Altering elastic-plastic mechanical response of a series of isostructural metal-organic complex crystals. Science China Chemistry, 2022, 65, 710-718.	4.2	10
46	Temperatureâ€Reliant Dynamic Properties and Elastoâ€Plastic to Plastic Crystal (Rotator) Phase Transition in a Metal Oxyacid Salt. Angewandte Chemie, 2022, 134, .	1.6	1
47	Multistimuli-Responsive Dynamic Effects in a One-Dimensional Coordination Polymer. Chemistry of Materials, 2022, 34, 178-185.	3.2	31
48	Low Temperature and High-Pressure Study of Bending L-Leucinium Hydrogen Maleate Crystals. Crystals, 2021, 11, 1575.	1.0	5
49	Temperatureâ€Reliant Dynamic Properties and Elastoâ€Plastic to Plastic Crystal (Rotator) Phase Transition in a Metal Oxyacid Salt. Angewandte Chemie - International Edition, 2022, 61, .	7.2	16
50	Multicomponent Crystals with Two Fast Reorienting Constituents Over Perpendicular Noncovalent Axes. Crystal Growth and Design, 2022, 22, 673-680.	1.4	2
51	Structure directing roles of weak noncovalent interactions and charge-assisted hydrogen bonds in the self-assembly of solvated podands: Example of an anion-assisted dimeric water capsule. CrystEngComm, 0, , .	1.3	3
52	Engineering Plastic Phase Transitions via Solid Solutions: The Case of "Reordering Frustration―in Ionic Plastic Crystals of Hydroxyquinuclidinium Salts. Molecular Systems Design and Engineering, 0, ,	1.7	1
53	Premelting Anomalies in Pyromellitic Dianhydride: Negative Thermal Expansion, Accelerated Radiation Damage, and Polymorphic Phase Transition. Journal of Physical Chemistry C, 2022, 126, 7648-7659.	1.5	1
54	Nonâ€Globular Organic Ionic Plastic Crystal Containing a Crownâ€Ether Moiety – Tuning Its Behaviour Using Sodium Salts. ChemPhysChem, 2022, 23, .	1.0	4

#	Article	IF	CITATIONS
55	Isomer Selective Thermosalience and Luminescence Switching in Organic Crystals. ACS Applied Materials & Interfaces, 2022, 14, 22650-22657.	4.0	4
56	Multiple Mechanical Behaviors in One Crystal of 2,4-Dichlorophenoxyacetic Acid Form II: Thermomechanical Effect and Elastic Deformation. Crystal Growth and Design, 2022, 22, 3680-3687.	1.4	4
57	Orientational disorder in sulfur hexafluoride: a neutron total scattering and reverse Monte Carlo study. Journal of Physics Condensed Matter, 2022, 34, 295401.	0.7	2
58	Emerging Solidâ€ŧoâ€Solid Phaseâ€Change Materials for Thermalâ€Energy Harvesting, Storage, and Utilization. Advanced Materials, 2022, 34, .	11.1	59
59	Phase behaviour of ammonium-bromide-d ₄ under high pressure and low temperature; an average and local structure study. Journal of Physics Condensed Matter, 0, , .	0.7	1
60	Origin of the Large Entropy Change in the Molecular Caloric and Ferroelectric Ammonium Sulfate. Advanced Functional Materials, 2022, 32, .	7.8	4
61	Mechanical deformation and multiple thermal restoration of organic crystals: reversible multi-stage shape-changing effect with luminescence-color changes. Chemical Science, 2022, 13, 9544-9551.	3.7	4
62	Resonant phonon modes induced by molecular rotations in α-pentaerythritol crystals. Journal of Materials Chemistry C, 2022, 10, 14431-14438.	2.7	2
63	Design of Deep Eutectic Systems: Plastic Crystalline Materials as Constituents. Molecules, 2022, 27, 6210.	1.7	2
64	Further adventures of the perovskite family. IUCrJ, 2022, 9, 533-535.	1.0	0
64 65	Further adventures of the perovskite family. IUCrJ, 2022, 9, 533-535. The First Chiroâ€Inositol Organosilicon Ferroelectric Crystal. Angewandte Chemie - International Edition, 2022, 61, .	1.0 7.2	0
64 65 66	 Further adventures of the perovskite family. IUCrJ, 2022, 9, 533-535. The First Chiroâ€Inositol Organosilicon Ferroelectric Crystal. Angewandte Chemie - International Edition, 2022, 61, . The First Chiroâ€Inositol Organosilicon Ferroelectric Crystal. Angewandte Chemie, 2022, 134, . 	1.0 7.2 1.6	0 12 0
64 65 66 67	Further adventures of the perovskite family. IUCrJ, 2022, 9, 533-535. The First Chiroâ€Inositol Organosilicon Ferroelectric Crystal. Angewandte Chemie - International Edition, 2022, 61, . The First Chiroâ€Inositol Organosilicon Ferroelectric Crystal. Angewandte Chemie, 2022, 134, . Multi-faceted elastic flexibility of 1-naphthyl and 9-anthryl 2,2':6',2''-terpyridine crystals. CrystEngComm, 0, , .	1.0 7.2 1.6 1.3	0 12 0 3
 64 65 66 67 68 	Further adventures of the perovskite family. IUCrJ, 2022, 9, 533-535. The First Chiroâ€Inositol Organosilicon Ferroelectric Crystal. Angewandte Chemie - International Edition, 2022, 61, . The First Chiroâ€Inositol Organosilicon Ferroelectric Crystal. Angewandte Chemie, 2022, 134, . Multi-faceted elastic flexibility of 1-naphthyl and 9-anthryl 2,2':6',2''-terpyridine crystals. CrystEngComm, 0, , . Organic Crystals with Response to Multiple Stimuli: Mechanical Bending, Acidâ€Induced Bending and Heatingâ€Induced Jumping. Chemistry - A European Journal, 2023, 29, .	1.0 7.2 1.6 1.3 1.7	0 12 0 3
 64 65 66 67 68 69 	Further adventures of the perovskite family. IUCrJ, 2022, 9, 533-535. The First Chiroâ€hositol Organosilicon Ferroelectric Crystal. Angewandte Chemie - International Edition, 2022, 61, . The First Chiroâ€hositol Organosilicon Ferroelectric Crystal. Angewandte Chemie, 2022, 134, . Multi-faceted elastic flexibility of 1-naphthyl and 9-anthryl 2,2':6',2''-terpyridine crystals. CrystEngComm, 0, , . Organic Crystals with Response to Multiple Stimuli: Mechanical Bending, Acidâ€hoduced Bending and Heatingâ€hoduced Jumping. Chemistry - A European Journal, 2023, 29, . Sequence of phase transitions in a model of interacting rods. Physical Review E, 2022, 106, .	1.0 7.2 1.6 1.3 1.7 0.8	0 12 0 3 7 5
 64 65 66 67 68 69 70 	Further adventures of the perovskite family. IUCrJ, 2022, 9, 533-535. The First Chiroâ€hositol Organosilicon Ferroelectric Crystal. Angewandte Chemie - International Edition, 2022, 61, . The First Chiroâ€hositol Organosilicon Ferroelectric Crystal. Angewandte Chemie, 2022, 134, . Multi-faceted elastic flexibility of 1-naphthyl and 9-anthryl 2,2':6',2''-terpyridine crystals. CrystEngComm, 0, , . Organic Crystals with Response to Multiple Stimuli: Mechanical Bending, Acidâ€hduced Bending and Heatingâ€hduced Jumping. Chemistry - A European Journal, 2023, 29, . Sequence of phase transitions in a model of interacting rods. Physical Review E, 2022, 106, . Flexible metal complex crystals in response to external mechanical stimuli. Coordination Chemistry Reviews, 2023, 475, 214890.	1.0 7.2 1.6 1.3 1.7 0.8 9.5	0 12 0 3 3 7 5 16
 64 65 66 67 68 69 70 71 	Further adventures of the perovskite family. IUCrJ, 2022, 9, 533-535. The First Chiroâ€Inositol Organosilicon Ferroelectric Crystal. Angewandte Chemie - International Edition, 2022, 61, . The First Chiroâ€Inositol Organosilicon Ferroelectric Crystal. Angewandte Chemie, 2022, 134, . Multi-faceted elastic flexibility of 1-naphthyl and 9-anthryl 2,2';6',2''-terpyridine crystals. CrystEngComm, 0, , . Organic Crystals with Response to Multiple Stimuli: Mechanical Bending, Acidâ€Induced Bending and Heatingâ€Hnduced Jumping. Chemistry - A European Journal, 2023, 29, . Sequence of phase transitions in a model of interacting rods. Physical Review E, 2022, 106, . Flexible metal complex crystals in response to external mechanical stimuli. Coordination Chemistry Reviews, 2023, 475, 214880. Dynamic supramolecular cations in conductive and magnetic [Nii(dmit)2] crystals. Coordination Chemistry Chemistry Reviews, 2023, 475, 214881.	1.0 7.2 1.6 1.3 1.7 0.8 9.5	0 12 0 3 3 7 5 5 16

CITATION REPORT

#	Article	IF	CITATIONS
73	Plastically Bendable Organic Crystals for Monolithic and Hybrid Microâ€Optical Circuits. Advanced Optical Materials, 2023, 11, .	3.6	9
74	Crystal engineering studies of a series of pyridine-3,5-dicarboxamide ligands possessing alkyl ester arms, and their coordination chemistry. Results in Chemistry, 2022, 4, 100679.	0.9	1
75	A New Look at the Structure and Thermal Behavior of Polyvinylidene Fluoride–Camphor Mixtures. Polymers, 2022, 14, 5214.	2.0	3
76	Leveraging Crystalline and Amorphous States of a Metalâ€Organic Complex for Transformation of the Photosalient Effect and Positiveâ€Negative Photochromism. Angewandte Chemie, 2023, 135, .	1.6	2
77	Leveraging Crystalline and Amorphous States of a Metalâ€Organic Complex for Transformation of the Photosalient Effect and Positiveâ€Negative Photochromism. Angewandte Chemie - International Edition, 2023, 62, .	7.2	24
78	Ferroelectric Ionic Molecular Crystals with Significant Plasticity and a Low Melting Point: High Performance in Hotâ€Pressed Polycrystalline Plates and Meltâ€Grown Crystalline Sheets. Angewandte Chemie, 2023, 135, .	1.6	0
79	High-Tc Quadratic Nonlinear Optical and Dielectric Switchings in Fe-Based Plastic Crystalline Ferroelectric. Inorganic Chemistry, 2022, 61, 20608-20615.	1.9	9
80	Ferroelectric Ionic Molecular Crystals with Significant Plasticity and a Low Melting Point: High Performance in Hotâ€Pressed Polycrystalline Plates and Meltâ€Grown Crystalline Sheets. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
81	Piezoelectric Response of Plastic Ionic Molecular Crystals: Role of Molecular Rotation. Crystal Growth and Design, 2023, 23, 729-740.	1.4	6
82	Symmetry-Breaking Dendrimer Synthons in Colloidal Crystal Engineering with DNA. Journal of the American Chemical Society, 2023, 145, 841-850.	6.6	4
83	Stimuli-responsive flexible organic crystals. Journal of Materials Chemistry C, 2023, 11, 2026-2052.	2.7	14
84	Aromatic heterocyclic anion based ionic liquids and electrolytes. Physical Chemistry Chemical Physics, 2023, 25, 3502-3512.	1.3	7
85	Ethanol-Induced Condensation and Decondensation in DNA-Linked Nanoparticles: A Nucleosome-like Model for the Condensed State. Journal of the American Chemical Society, 2023, 145, 706-716.	6.6	4
86	Light-driven flagella-like motion of coordination compound single crystals. Chemical Communications, 2023, 59, 4384-4387.	2.2	3
87	Mechanistic View on the Order–Disorder Phase Transition in Amphidynamic Crystals. Journal of Physical Chemistry Letters, 2023, 14, 1570-1577.	2.1	2
88	Rotational Dynamics of Discoid Colloidal Particles in Attractive Quasi-Two-Dimensional Plastic Crystals. Journal of Physical Chemistry Letters, 2023, 14, 2402-2409.	2.1	0
89	Non-stoichiometric carbamazepine cocrystal hydrates of 3,4-/3,5-dihydroxybenzoic acids: coformer–water exchange. Chemical Communications, 2023, 59, 3902-3905.	2.2	1
90	Mechanical properties and peculiarities of molecular crystals. Chemical Society Reviews, 2023, 52, 3098-3169.	18.7	48

		CITATION REPORT	
#	Article	IF	CITATIONS
91	Elastic hydrogen-bonded ionic framework. Nano Research, 2023, 16, 10660-10665.	5.8	0
116	Superelastic Behaviors of Molecular Crystals. , 0, , .		0