Aggregationâ€Induced Emission (AIE): A Historical Pers

Angewandte Chemie - International Edition 59, 14192-14196

DOI: 10.1002/anie.202007525

Citation Report

#	Article	IF	Citations
1	Potential of Microfluidics and Lab-on-Chip Platforms to Improve Understanding of "prion-like― Protein Assembly and Behavior. Frontiers in Bioengineering and Biotechnology, 2020, 8, 570692.	2.0	5
2	Full Color Tunable Aggregation-Induced Emission Luminogen for Bioimaging Based on an Indolizine Molecular Framework. Bioconjugate Chemistry, 2020, 31, 2522-2532.	1.8	25
3	Two-Photon Absorbing AlEgens: Influence of Stereoconfiguration on Their Crystallinity and Spectroscopic Properties and Applications in Bioimaging. ACS Applied Materials & Interfaces, 2020, 12, 55157-55168.	4.0	12
4	Supramolecular assemblies of a 1,8-naphthalimide conjugate and its aggregation-induced emission property. Materials Advances, 2020, 1, 3532-3538.	2.6	8
5	Full Visible Spectrum and White Light Emission with a Single, Input-Tunable Organic Fluorophore. Journal of the American Chemical Society, 2020, 142, 20306-20312.	6.6	19
6	Dual Emission: Classes, Mechanisms, and Conditions. Angewandte Chemie - International Edition, 2021, 60, 22624-22638.	7.2	158
7	Emissive tetraphenylethylene (TPE) derivatives in a dissolved state tightly fastened by a short oligo(ethylene glycol) chain. Organic Chemistry Frontiers, 2020, 7, 2649-2656.	2.3	7
8	Photoâ€Responsive Fluorescent Materials with Aggregationâ€Induced Emission Characteristics. Advanced Optical Materials, 2020, 8, 2001362.	3.6	50
9	Morphological Evolution of Strongly Fluorescent Water Soluble AIEEgen-Triblock Copolymer Mixed Aggregates with Shape-Dependent Cell Permeability. Journal of Physical Chemistry B, 2020, 124, 10282-10291.	1,2	10
10	Duale Emission: Klassen, Mechanismen und Bedingungen. Angewandte Chemie, 2021, 133, 22804-22820.	1.6	10
11	Recent progress in utilizing near-infrared J-aggregates for imaging and cancer therapy. Materials Chemistry Frontiers, 2021, 5, 1076-1089.	3.2	61
12	More is different: how aggregation turns on the light. National Science Review, 2021, 8, nwaa266.	4.6	2
13	Phenylpyridylâ€Fused Boroles: A Unique Coordination Mode and Weak Bâ^'N Coordinationâ€Induced Dual Fluorescence. Angewandte Chemie - International Edition, 2021, 60, 4833-4840.	7.2	28
14	Phenylpyridylâ€Fused Boroles: A Unique Coordination Mode and Weak Bâ^'N Coordinationâ€Induced Dual Fluorescence. Angewandte Chemie, 2021, 133, 4883-4890.	1.6	9
15	Small molecular fluorescent probes for the detection of lead, cadmium and mercury ions. Coordination Chemistry Reviews, 2021, 429, 213691.	9.5	130
16	Combined effects of ion-pairing on multi-emissive properties of benzimidazolium salts. Journal of Materials Chemistry C, 2021, 9, 4182-4188.	2.7	2
17	DNA-templated control of chirality and efficient energy transport in supramolecular DNA architectures with aggregation-induced emission. Chemical Science, 2021, 12, 10048-10053.	3.7	3
18	Efficient artificial light-harvesting system constructed from supramolecular polymers with AIE property. RSC Advances, 2021, 11, 30041-30045.	1.7	14

#	Article	IF	Citations
19	Introducing the Dihydro-1,3-azaboroles: Convenient Entry by a Three-Component Reaction, Synthetic and Photophysical Application. Journal of the American Chemical Society, 2021, 143, 2059-2067.	6.6	16
20	Tuning the mechanistic pathways of peptide self-assembly by aromatic interactions. Chemical Communications, 2021, 57, 1603-1606.	2.2	24
21	A mitochondria-targeted dual-functional aggregation-induced emission luminogen for intracellular mitochondrial imaging and photodynamic therapy. Biomaterials Science, 2021, 9, 1232-1236.	2.6	13
22	Two-step anti-cooperative self-assembly process into defined π-stacked dye oligomers: insights into aggregation-induced enhanced emission. Chemical Science, 2021, 12, 12302-12314.	3.7	22
23	A highly selective AlEgen fluorescent probe for visualizing Cys in living cells and C. elegans. New Journal of Chemistry, 0 , , .	1.4	2
24	Mitochondrion-anchoring AlEgen with Large Stokes Shift for Imaging-guided Photodynamic Therapy. Chemical Research in Chinese Universities, 2021, 37, 137-142.	1.3	4
25	Supramolecular polymer-directed light-harvesting system based on a stepwise energy transfer cascade. Chemical Communications, 2021, 57, 5782-5785.	2.2	54
26	Redox-active tetraaryldibenzoquinodimethanes. Chemical Communications, 2021, 57, 7201-7214.	2.2	13
27	HAPPY Dyes as Light Amplification Media in Thin Films. Journal of Organic Chemistry, 2021, 86, 3213-3222.	1.7	2
28	The design of dihalogenated TPE monoboronate complexes as mechanofluorochromic crystals. CrystEngComm, 2021, 23, 5908-5917.	1.3	4
29	A new ESIPT-based fluorescent probe for the highly sensitive detection of amine vapors. New Journal of Chemistry, 2021, 45, 10735-10740.	1.4	31
30	Carbazole-modified thiazolo $[3,2-\langle i\rangle c\langle i\rangle][1,3,5,2]$ oxadiazaborinines exhibiting aggregation-induced emission and mechanofluorochromism. Organic and Biomolecular Chemistry, 2021, 19, 406-415.	1.5	6
31	A novel aggregation-induced enhanced emission aromatic molecule: 2-aminophenylboronic acid dimer. Chemical Science, 2021, 12, 12437-12444.	3.7	9
32	Revisiting an ancient inorganic aggregationâ€induced emission system: An enlightenment to clusteroluminescence. Aggregate, 2021, 2, e36.	5.2	40
33	Organic dye assemblies with aggregationâ€induced photophysical changes and their bioâ€applications. Aggregate, 2021, 2, e39.	5.2	79
34	Insights into Excimer Formation Factors from Detailed Structural and Photophysical Studies in the Solidâ€State. Advanced Optical Materials, 2021, 9, 2001814.	3.6	40
35	Aggregationâ€induced emission materials for nonlinear optics. Aggregate, 2021, 2, e28.	5.2	56
36	Near-Infrared Thienoisoindigos with Aggregation-Induced Emission: Molecular Design, Optical Performance, and Bioimaging Application. Analytical Chemistry, 2021, 93, 3378-3385.	3.2	28

#	Article	IF	CITATIONS
37	Computational Investigation on ESIPT-driven Luminescence of Imidazo[1,2-a]pyridine Derivatives Regulated by Inter/Intramolecular Hydrogen bonding. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 409, 113140.	2.0	2
38	Perspectives in Dye Chemistry: A Rational Approach toward Functional Materials by Understanding the Aggregate State. Journal of the American Chemical Society, 2021, 143, 4500-4518.	6.6	149
39	Ultrabright Fluorescent Organic Nanoparticles Based on Smallâ€Molecule Ionic Isolation Lattices**. Angewandte Chemie - International Edition, 2021, 60, 9450-9458.	7.2	29
40	Aggregation induced emission-active molecules bearing tunable singlet oxygen generation: The different length alkyl chain matters. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 248, 119233.	2.0	4
41	Aggregation-Induced Emission: From Small Molecules to Polymers—Historical Background, Mechanisms and Photophysics. Topics in Current Chemistry, 2021, 379, 15.	3.0	23
42	Ultrabright Fluorescent Organic Nanoparticles Based on Smallâ€Molecule Ionic Isolation Lattices**. Angewandte Chemie, 2021, 133, 9536-9544.	1.6	2
43	Luminescence in Crystalline Organic Materials: From Molecules to Molecular Solids. Advanced Optical Materials, 2021, 9, 2002251.	3.6	146
44	Polypseudorotaxanes Derived from Tetraphenylethylene: Preparation and Tandem-Activated Aggregation-Induced Emission. Biomacromolecules, 2021, 22, 2248-2255.	2.6	3
45	Reevaluating the Solution Photophysics of Tetraphenylethylene at the Origin of their Aggregationâ€Induced Emission Properties. Chemistry - A European Journal, 2021, 27, 8003-8007.	1.7	17
46	Bright Frenkel Excitons in Molecular Crystals: A Survey. Chemistry of Materials, 2021, 33, 3368-3378.	3.2	22
47	What Leads to Aggregation-Induced Emission?. Journal of Physical Chemistry Letters, 2021, 12, 4218-4226.	2.1	28
48	Broad Applications of Thiazole Orange in Fluorescent Sensing of Biomolecules and Ions. Molecules, 2021, 26, 2828.	1.7	27
49	Aggregationâ€Induced Emissionâ€Active Carbazolylâ€Modified Benzo[4,5]thiazolo[3,2â€ <i>c</i>]oxadiazaborinines as Mechanochromic Fluorescent Materials. European Journal of Organic Chemistry, 2021, 2021, 2772-2781.	1.2	5
50	The Unusual Photochromic and Hydrochromic Switching Behavior of Celluloseâ€Embedded 1,8â€Naphthalimideâ€Viologen Derivatives in the Solidâ€State. Chemistry - A European Journal, 2021, 27, 9360-9371.	1.7	8
51	Activityâ€based smart AlEgens for detection, bioimaging, and therapeutics: Recent progress and outlook. Aggregate, 2021, 2, e51.	5.2	112
52	An AIE-Active conjugated macrocyclic tetramaleimide for "Turn-On―far red/near-infrared fluorescent bioimaging. Dyes and Pigments, 2021, 190, 109324.	2.0	16
53	Luminescent Imidazolium Salts as Bright Multiâ€Faceted Tools for Biology. European Journal of Organic Chemistry, 2021, 2021, 4099-4106.	1.2	4
54	The role of inorganic electrolyte (salt) in cellulosic fibre dyeing: Part 2 theories of how inorganic electrolyte promotes dye uptake. Coloration Technology, 2021, 137, 547-586.	0.7	8

#	ARTICLE	IF	Citations
55	Luminescent solar concentrator utilizing energy transfer paired aggregationâ€induced emissive fluorophores. International Journal of Energy Research, 2021, 45, 17971-17981.	2.2	12
56	An Activatable Probe with Aggregationâ€Induced Emission for Detecting and Imaging Herbal Medicine Induced Liver Injury with Optoacoustic Imaging and NIRâ€II Fluorescence Imaging. Advanced Healthcare Materials, 2021, 10, e2100867.	3.9	37
57	Anthracene-induced formation of highly twisted metallacycle and its crystal structure and tunable assembly behaviors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	12
58	Aggregationâ€Induced Emissionâ€Based Platforms for the Treatment of Bacteria, Fungi, and Viruses. Advanced Healthcare Materials, 2021, 10, e2100736.	3.9	25
59	Supramolecular Assembly with Nearâ€Infrared Emission for Twoâ€Photon Mitochondrial Targeted Imaging. Small, 2021, 17, e2101185.	5.2	32
60	Stereodefined tetraarylethylenes: Synthesis and applications. Aggregate, 2021, 2, e60.	5.2	19
61	Bridged Aromatic Oxo―and Thioethers with Intense Emission in Solution and the Solid State. Chemistry - an Asian Journal, 2021, 16, 2307-2313.	1.7	14
62	Chemical sensing failed by aggregation-caused quenching? A case study enables liquid/solid two-phase determination of N2H4. Chemical Engineering Journal, 2021, 415, 128975.	6.6	26
63	An effective fluorescent sensor for ClOâ [^] in aqueous media based on thiophene-cyanostilbene Schiff-base. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 256, 119744.	2.0	16
64	Communication of Bichromophore Emission upon Aggregation – Aroylâ€∢i>S,Nà€ketene Acetals as Multifunctional Sensor Merocyanines. Chemistry - A European Journal, 2021, 27, 13426-13434.	1.7	10
65	PEGâ€Polymer Encapsulated Aggregationâ€Induced Emission Nanoparticles for Tumor Theranostics. Advanced Healthcare Materials, 2021, 10, e2101036.	3.9	41
66	Synthesis of New AIEE-Active Chalcones for Imaging of Mitochondria in Living Cells and Zebrafish In Vivo. International Journal of Molecular Sciences, 2021, 22, 8949.	1.8	4
67	A tetrazine-fused aggregation induced emission luminogen for bioorthogonal fluorogenic bioprobe. Sensors and Actuators B: Chemical, 2021, 340, 129966.	4.0	15
68	Inter- and Intra-Hydrogen Bonding Strategy to Control the Fluorescence of Acylhydrazone-Based Conjugated Microporous Polymers and Their Application to Nitroaromatics Detection. Macromol, 2021, 1, 234-242.	2.4	2
69	Solidâ€state emissive biphenylene bridged bisaroylâ€ <i>S,N</i> â€ketene acetals as distinct aggregationâ€induced enhanced emitters and fluorometric probes. Aggregate, 2021, 2, e105.	5.2	9
70	Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chemical Reviews, 2021, 121, 13454-13619.	23.0	657
71	Imidazole decorated dicyanomethylene-4H-pyran skeletons with aggregation induced emission effect and applications for sensing viscosity. Dyes and Pigments, 2021, 193, 109537.	2.0	12
72	Restriction of Twisted Intramolecular Charge Transfer Enables the Aggregation-Induced Emission of $1-(\langle i\rangle N \langle i\rangle \langle i\rangle -Dialkylamino)$ -naphthalene Derivatives. Journal of Physical Chemistry A, 2021, 125, 8397-8403.	1.1	19

#	ARTICLE	IF	Citations
73	Imidazole-based solid-state fluorophores with combined ESIPT and AIE features as self-absorption-free non-doped emitters for electroluminescent devices. Dyes and Pigments, 2021, 193, 109488.	2.0	38
74	Dual-State Emission (DSE) in Organic Fluorophores: Design and Applications. Chemistry of Materials, 2021, 33, 7160-7184.	3.2	119
75	Aggregation-induced emission of 4-formyl-3-hydroxybenzoic acid for the ratiometric fluorescence detection of tetracycline antibiotics. Dyes and Pigments, 2022, 197, 109841.	2.0	25
76	Glycopeptide-Conjugated Aggregation-Induced Emission Luminogen: A pH-Responsive Fluorescence Probe with Tunable Self-Assembly Morphologies for Cell Imaging. Journal of Physical Chemistry B, 2021, 125, 10224-10231.	1.2	6
77	Visual detection of viscosity through activatable molecular rotor with aggregation-induced emission. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 261, 120016.	2.0	12
78	The length effect and color tuning of tetraphenylethylene functionalized oligothiophenes for effective detection of explosives. Dyes and Pigments, 2021, 195, 109673.	2.0	1
79	Unprecedented natural mangiferin excimer induced aggregation-induced emission luminogens for highly selective bioimaging of cancer cells. Sensors and Actuators B: Chemical, 2021, 348, 130666.	4.0	15
80	An AIRE-active far-red ratiometric fluorescent chemosensor for specifically sensing Zn2+ and resultant Zn2+ complex for subsequent pyrophosphate detection in almost pure aqueous media. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 263, 120169.	2.0	8
81	Insight into the aggregation prospective of Schiff base AlEgens enabling an efficient hydrazine sensor in their aggregated state. Journal of Materials Chemistry C, 2021, 9, 8596-8605.	2.7	9
82	Oligoene and cyanine features of tetracyano quinoidal oligothiophenes. Journal of Materials Chemistry C, 2021, 9, 10727-10740.	2.7	6
83	Manipulation of dual fluorescence behavior in aggregation-induced emission enhancement of a tetraphenylethene-appended polymer by optical tweezers. Journal of Materials Chemistry C, 2021, 9, 7545-7554.	2.7	7
84	White-light emission from the quadruple-stranded dinuclear Eu(<scp>iii</scp>) helicate decorated with pendent tetraphenylethylene (TPE). New Journal of Chemistry, 2021, 45, 7196-7203.	1.4	12
85	Multicomponent reaction-based discovery of pyrimido $[2,1-\langle i\rangle b\langle i\rangle][1,3]$ benzothiazole (PBT) as a novel core for full-color-tunable AlEgens. Journal of Materials Chemistry C, 2021, 9, 10029-10036.	2.7	9
86	Tri-pillar[5]arene-Based Multifunctional Stimuli-Responsive Supramolecular Polymer Network with Conductivity, Aggregation-Induced Emission, Thermochromism, Fluorescence Sensing, and Separation Properties. Macromolecules, 2021, 54, 373-383.	2.2	36
87	A facile ligand-free route to calcium carbonate superstructures. New Journal of Chemistry, 0, , .	1.4	2
88	Solvatochromic Fluorescence of a GFP Chromophore-Containing Organogelator in Solutions and Organogels. Journal of Organic Chemistry, 2022, 87, 1723-1731.	1.7	5
89	Slipâ€Stacked Jâ€Aggregate Materials for Organic Solar Cells and Photodetectors. Advanced Materials, 2022, 34, e2104678.	11.1	77
90	Tetraphenylethene Functionalized Polyhedral Oligomeric Silsesquioxane Fluorescent Probe for Rapid and Selective Trifluralin Sensing in Vegetables and Fruits. Chemistry - an Asian Journal, 2021, 16, 3970-3977.	1.7	4

#	Article	IF	Citations
91	Fluorescent Liquid Tetrazines. Molecules, 2021, 26, 6047.	1.7	5
92	Ensuring food safety using fluorescent nanoparticles-based immunochromatographic test strips. Trends in Food Science and Technology, 2021, 118, 658-678.	7.8	41
93	Incorporating fluorescent nanomaterials in organically modified sol–gel materials – creating single composite optical pH sensors. Sensors & Diagnostics, 2022, 1, 185-192.	1.9	7
94	Patented AIE materials for biomedical applications. Progress in Molecular Biology and Translational Science, 2021, 185, 199-223.	0.9	2
95	Synthesis and Spectroscopic Characteristics of Ligands Based on Quinolin-8-Ol as Useful Precursors for Alq3 Type Complexes. Key Engineering Materials, 0, 903, 168-173.	0.4	0
96	Tyrosine-Decorated Gold Nanoclusters Chelated Cerium(III) for Fluorescence Detection of Dopamine. ACS Applied Nano Materials, 2021, 4, 13501-13509.	2.4	9
97	$1,1\hat{a}\in^2$ -Binaphthol annulated perylene diimides: Aggregation-induced emission enhancement and chirality inversion. Chinese Chemical Letters, 2022, 33, 2473-2476.	4.8	8
98	Current Topics in Ionic Liquid Crystals. ChemPlusChem, 2022, 87, .	1.3	47
99	Machineâ€Learningâ€Assisted Accurate Prediction of Molecular Optical Properties upon Aggregation. Advanced Science, 2022, 9, e2101074.	5.6	17
100	Light-Responsive Nanomaterials for Cancer Therapy. Engineering, 2022, 13, 18-30.	3.2	31
101	Novel bipyrazolo[1,5- <i>a</i>]pyridine luminogens with aggregation-induced emission enhancement properties. Chemical Communications, 2021, 57, 12281-12284.	2.2	5
102	Fluorescent supramolecular polymers of barbiturate dyes with thiophene-cored twisted π-systems. Chemical Science, 2022, 13, 1281-1287.	3.7	12
103	Molecular phosphonic acid-tethered tetraphenylethene AlEgen based highly selective fluorescent turn-on sensor for neomycin. Dyes and Pigments, 2022, 198, 110042.	2.0	4
104	Controllable self-assemblies of $2,2\hat{a}\in^2$ -bibenzimidazole derivative: Detection and adsorption of heavy metal ion. Dyes and Pigments, 2022, 198, 110021.	2.0	4
105	Packing-dependent polymorphism: A stimuli-responsive macrocyclic diketopyrrolopyrrole. Dyes and Pigments, 2022, 198, 110024.	2.0	2
106	An ultralow-acceptor-content supramolecular light-harvesting system for white-light emission. Chemical Communications, 2022, 58, 2343-2346.	2.2	36
107	Regioselective Fluorination of Acenes: Tailoring of Molecular Electronic Levels and Solidâ€State Properties. Chemistry - A European Journal, 2022, 28, .	1.7	12
108	Modification of the Second Harmonic Generation and Fluorescence Efficiency of D289 Dye Based on a Donor–Acceptor Structure. Journal of Physical Chemistry C, 2022, 126, 2234-2242.	1.5	6

#	Article	IF	CITATIONS
109	The light of carbon dots: From mechanism to applications. Matter, 2022, 5, 110-149.	5.0	374
110	Dynamic covalent chemistry constrained diphenylethenes: control over reactivity and luminescence both in solution and in the solid state. Organic Chemistry Frontiers, 0, , .	2.3	2
111	Anti-solvatochromic and highly emissive twisted D–A structure with intramolecular hydrogen bond. Materials Chemistry Frontiers, 2022, 6, 512-518.	3.2	4
112	Synthesis of Four-Membered BN ₃ Heterocycles by the Borylation of Triazenes. Inorganic Chemistry, 2022, 61, 1546-1551.	1.9	3
113	One-step light-up metabolic probes for <i>in situ</i> discrimination and killing of intracellular bacteria. Materials Chemistry Frontiers, 2022, 6, 450-458.	3.2	8
114	Antiâ€cooperative Selfâ€Assembly with Maintained Emission Regulated by Conformational and Steric Effects. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
115	Antiâ€cooperative Selfâ€Assembly with Maintained Emission Regulated by Conformational and Steric Effects. Angewandte Chemie, 0, , .	1.6	6
116	Identification of the donor-substitution effect of tetraphenylethylene AlEgen: Synthesis, photophysical property analysis, and bioimaging applications. Dyes and Pigments, 2022, 199, 110098.	2.0	2
117	Harnessing aggregation-induced emission property of indolizine derivative as a fluorogenic bioprobe for endoplasmic reticulum. Dyes and Pigments, 2022, 200, 110118.	2.0	5
118	Hypoxia degradable AIE photosensitizer with high efficiency of photodynamic therapy and improved biological safety. Dyes and Pigments, 2022, 200, 110122.	2.0	6
119	New horizons in the identification of circulating tumor cells (CTCs): An emerging paradigm shift in cytosensors. Biosensors and Bioelectronics, 2022, 203, 114043.	5.3	13
120	Synthesis and Optical Properties of Fluorinated Tetraphenylethylenes. ChemPhotoChem, 0, , .	1.5	3
121	A Ï€-conjugated α-cyanostilbene dimer emitting strongly red fluorescence with a large Stokes' shift of ca. 300Ānm and used as a probe for selective detection of Cu2+. Optical Materials, 2022, 125, 112059.	1.7	10
122	Single organic molecular systems for white light emission and their classification with associated emission mechanism. Applied Materials Today, 2022, 27, 101407.	2.3	9
123	Environmental protection based on the nanobiosensing of bacterial lipopolysaccharides (LPSs): material and method overview. RSC Advances, 2022, 12, 9704-9724.	1.7	8
124	Recent progress in thermally activated delayed fluorescence emitters for nondoped organic light-emitting diodes. Chemical Science, 2022, 13, 3625-3651.	3.7	90
125	Regiospecific construction of <i>m</i> -alkenyl benzaldehyde from <i>\hat{l}^2</i> -bromoenal and vinyl borate. Chemical Communications, 2022, , .	2.2	0
126	A new aggregation induced emission enhancement (AIEE) dye which self-assembles to panchromatic fluorescent flowers and has application in sensing dichromate ions. Soft Matter, 2022, 18, 3019-3030.	1.2	5

#	Article	IF	CITATIONS
127	Turn-on green fluorescence imaging for latent fingerprint applications. Materials Chemistry Frontiers, 2022, 6, 1188-1193.	3.2	13
128	AIE or AIE(P)E-active transition metal complexes for highly sensitive detection of nitroaromatic explosives. Results in Chemistry, 2022, 4, 100337.	0.9	7
129	A near-infrared intelligent molecular rotor with aggregation induced-emission for viscosity detection of liquids. Materials Advances, 2022, 3, 3545-3553.	2.6	3
130	A new cucurbit[10]uril-based AIE fluorescent supramolecular polymer for cellular imaging. Materials Chemistry Frontiers, 2022, 6, 1021-1025.	3.2	21
131	An artificial light-harvesting system based on the ESIPT–AIE–FRET triple fluorescence mechanism. Journal of Materials Chemistry A, 2022, 10, 8528-8534.	5.2	46
132	Tetraphenylethylene-Based Nanogels by Physical Encapsulation Technology: An AlEgen Transparent Film Thermometers. ACS Applied Polymer Materials, 2022, 4, 1974-1982.	2.0	2
133	Ligands for Abasic Site-containing DNA and their Use as Fluorescent Probes. Current Organic Synthesis, 2023, 20, 96-113.	0.7	2
134	The Pursuit of Shortwave Infrared-Emitting Nanoparticles with Bright Fluorescence through Molecular Design and Excited-State Engineering of Molecular Aggregates. ACS Nanoscience Au, 2022, 2, 253-283.	2.0	12
135	Covalent Attachment of Aggregation-Induced Emission Molecules to the Surface of Ultrasmall Gold Nanoparticles to Enhance Cell Penetration. Molecules, 2022, 27, 1788.	1.7	3
136	Fluorescent Polymers Conspectus. Polymers, 2022, 14, 1118.	2.0	16
137	Low-cost and stable SFX-based semiconductor materials in organic optoelectronics., 2023, 2, 100-109.		2
138	Transforming Dyes into Fluorophores: Excitonâ€Induced Emission with Chainâ€Iike Oligoâ€BODIPY Superstructures. Angewandte Chemie, 2022, 134, .	1.6	4
139	Transforming Dyes into Fluorophores: Excitonâ€Induced Emission with Chainâ€Iike Oligoâ€BODIPY Superstructures. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
140	Extended Conjugation Attenuates the Quenching of Aggregationâ€Induced Emitters by Photocyclization Pathways. Angewandte Chemie - International Edition, 2022, 61, .	7.2	12
141	$4\hat{a}\in^2$ -Nitrobiphenyl thioglucoside as the Smallest, fluorescent photosensitizer with cancer targeting ligand. Bioorganic and Medicinal Chemistry, 2022, 61, 116737.	1.4	3
142	Extended Conjugation Attenuates the Quenching of Aggregationâ€Induced Emitters by Photocyclization Pathways. Angewandte Chemie, 0, , .	1.6	0
143	Construction of Pyridine Ring Systems by Mn(OAc) ₂ â€Promoted Formal Dehydrative Dehydroaromatizing [4+2] Cycloaddition of Enamides with Maleimides. Advanced Synthesis and Catalysis, 2022, 364, 1683-1688.	2.1	10
144	A New Cationic Fluorescent Probe for HSO3â^' Based on Bisulfite Induced Aggregation Self-Assembly. Molecules, 2022, 27, 2378.	1.7	3

#	Article	IF	CITATIONS
145	A tunable artificial light-harvesting system based on host-guest interaction exhibiting ultrahigh antenna effect and narrowed emission band. Materials Today Chemistry, 2022, 24, 100833.	1.7	22
146	New donor–π–acceptor AlEgens: Influence of π bridge on luminescence properties and electroluminescence application. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 428, 113891.	2.0	6
147	Crystal structures and aggregation-induced emission of a series of three-photon absorption quinoline derivatives. Journal of Molecular Structure, 2022, 1261, 132964.	1.8	0
148	Structure-fluorescence relationships in pyrrole appended o-carborane crystalline materials. Chinese Chemical Letters, 2022, 33, 2532-2536.	4.8	7
149	Solidâ€State Fluorophores with Combined Excitedâ€State Intramolecular Proton Transferâ€Aggregationâ€Induced Emission as Efficient Emitters for Electroluminescent Devices. Advanced Photonics Research, 2022, 3, .	1.7	8
150	Synthesis, structures and fluorescence properties of <i>gem < li>linked cyclic tetraphenylethylenes and cyclic hexaphenylethylenes. Organic Chemistry Frontiers, 2022, 9, 2932-2938.</i>	2.3	5
151	Asymmetrically bridged aroyl- <i>S</i> , <i>N</i> -ketene acetal-based multichromophores with aggregation-induced tunable emission. Chemical Science, 2022, 13, 5374-5381.	3.7	10
152	A NIR Aggregation-Induced Emission Fluoroamphiphile as Visually Trackable and Serum-Tolerant Nonviral Gene Carrier. Bioconjugate Chemistry, 2022, 33, 929-937.	1.8	12
153	AIE-active organic resonance molecules for highly sensitive dynamic explosive detection. Journal of Materials Chemistry C, 2022, 10, 8241-8245.	2.7	6
154	Fluorescent Nanofibers Self-assembled from a Diphenylanthracene Scissor-shaped Dyad. Chemistry Letters, 2022, 51, 700-703.	0.7	0
155	Novel fluorescent chemosensor sensitively detect copper (II) through the collaboration of quinoline and coumarin groups. Applied Organometallic Chemistry, 2022, 36, .	1.7	6
156	Hostâ€Guest Assemblies of Cyanostilbenes and Cucurbit[8]uril: Luminescence Modulation, Photoreactivity Control and Energy Transfer Studies. ChemNanoMat, 2022, 8, .	1.5	1
157	A Fluorescent Cage for Supramolecular Sensing of 3â€Nitrotyrosine in Human Blood Serum. Angewandte Chemie - International Edition, 2022, 61, .	7.2	16
158	Synchronous Imaging in Golgi Apparatus and Lysosome Enabled by Amphiphilic Calixarene-Based Artificial Light-Harvesting Systems. ACS Applied Materials & Samp; Interfaces, 2022, 14, 22443-22453.	4.0	20
159	A Fluorescent Cage for Supramolecular Sensing of 3â€Nitrotyrosine in Human Blood Serum. Angewandte Chemie, 0, , .	1.6	2
160	Selfâ€assembled Fluorescent Nanoparticles with Tunable LCST Behavior in Water. Chemistry - an Asian Journal, 2022, 17, .	1.7	9
161	Self-Assembled Nonlinear Optical Crystals Based on an Asymmetric Fluorenone Derivative. Crystal Growth and Design, 2022, 22, 3998-4004.	1.4	8
162	Ratiometric fluorescent sensing and imaging of intracellular pH by an AIE-active luminogen with intrinsic phosphatase-like catalytic activity. Dyes and Pigments, 2022, 204, 110436.	2.0	8

#	Article	IF	CITATIONS
163	Dual-state emission <i>versus</i> no emission by manipulating the molecular structures of cyanovinylâ€"benzofuran derivatives. Molecular Systems Design and Engineering, 2022, 7, 1119-1128.	1.7	8
164	Dual Emission, Aggregation, and Redox Properties of Boron Difluoride Hydrazones Functionalized with Triphenylamines. ChemPhotoChem, 2022, 6, .	1.5	3
165	Visual Monitoring of Nucleic Acid Dynamic Structures during Cellular Ferroptosis Using Rationally Designed Carbon Dots with Robust Anti-Interference Ability to Reactive Oxygen Species. ACS Applied Bio Materials, 2022, 5, 2703-2711.	2.3	10
166	Rigid Schiff Base Complex Supermolecular Aggregates as a High-Performance pH Probe: Study on the Enhancement of the Aggregation-Caused Quenching (ACQ) Effect via the Substitution of Halogen Atoms. International Journal of Molecular Sciences, 2022, 23, 6259.	1.8	56
167	Rapid and high-throughput testing of antifungal susceptibility using an AlEgen-based analytical system. Biomaterials, 2022, 287, 121618.	5.7	4
168	Fluorescence enhancement induced by sulfuric acid intercalation on melem-based polymer. Inorganic Chemistry Communication, 2022, 142, 109600.	1.8	0
169	Phosphorescence Induction by Hostâ€Guest Complexation with Cyclodextrins – The Role of Regioisomerism and Affinity. Chemistry - A European Journal, 2022, 28, .	1.7	4
170	Insight into the Clustering-Triggered Emission and Aggregation-Induced Emission Exhibited by an Adamantane-Based Molecular System. Journal of Physical Chemistry Letters, 2022, 13, 5358-5364.	2.1	7
171	Coumarin-based two-photon AIE fluorophores: Photophysical properties and biological application. Chinese Chemical Letters, 2023, 34, 107674.	4.8	2
172	Quantitative Energy Transfer in Organic Nanoparticles Based on Small-Molecule Ionic Isolation Lattices for UV Light Harvesting. ACS Applied Nano Materials, 2022, 5, 13887-13893.	2.4	6
173	Mitochondria MicroRNA Spatial Imaging via pH-Responsive Exonuclease-Assisted AIE Nanoreporter. Analytical Chemistry, 2022, 94, 10669-10675.	3.2	4
174	From 498 to 1300Ânm: The exceptional large emission shift of a cycloplatinated(II) complex caused by molecular aggregation. Dyes and Pigments, 2022, 205, 110567.	2.0	3
175	Cage-Confinement Induced Emission Enhancement. Journal of Physical Chemistry Letters, 2022, 13, 6604-6611.	2.1	7
176	Red-emitting IrIII(C^N)2(P-donor ligand)Cl-type complexes showing aggregation-induced phosphorescent emission (AIPE) behavior for both red and white OLEDs. Dyes and Pigments, 2022, 205, 110538.	2.0	5
177	Highly efficient indoor/outdoor light harvesting luminescent solar concentrator employing aggregation-induced emissive fluorophore. Dyes and Pigments, 2022, 205, 110563.	2.0	6
178	Optimizing Molecular Aggregation-Induced Emission (Aie) Behavior of Phosphoryl Center Î-Conjugated Heterocycles by Tuning Chemical Features of the Tether Groups. SSRN Electronic Journal, 0, , .	0.4	0
179	Molecular Engineering of Noncovalent Dimerization. Journal of the American Chemical Society, 2022, 144, 14962-14975.	6.6	27
180	Aggregationâ€Induced Emission and Circularly Polarized Luminescence Duality in Tetracationic Binaphthylâ€Based Cyclophanes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15

#	Article	IF	Citations
181	Dual liquid Crystalline/Gel behavior with AIE effect promoted by Self-assembly of pyrazole dendrons. Journal of Molecular Liquids, 2022, 365, 120109.	2.3	2
182	Multicolor-Luminescence Including White Light by Photomodulation of Supramolecular Assemblies in Aqueous Media. ACS Applied Materials & Samp; Interfaces, 2022, 14, 36936-36946.	4.0	14
183	Synthesis and study on aggregation behaviours in liquid phase of three prepared cyanine dyes. Luminescence, 0, , .	1.5	1
184	Approaches for Fabricating Tri―and Tetraphenyletheneâ€Based Blue Organic Lightâ€Emitting Diodes Using Donor–Acceptor and Nonâ€Donor–Acceptor Molecular Architectures. Physica Status Solidi - Rapid Research Letters, 0, , 2200206.	1.2	1
185	Tuning the Emission Behaviour of Halogenated Bridged Ethers in Solution, as Solids and as Aggregates by Chalcogen Substitution. ChemPhotoChem, 0, , .	1.5	2
186	Aggregationâ€Induced Emission and Circularly Polarized Luminescence Duality in Tetracationic Binaphthylâ€Based Cyclophanes. Angewandte Chemie, 0, , .	1.6	0
187	Recent advances in on-site monitoring of heavy metal ions in the environment. Microchemical Journal, 2022, 182, 107894.	2.3	11
188	Molecularly Engineered Unparalleled Strength and Supertoughness of Poly(ureaâ€urethane) with Shape Memory and Clusterizationâ€√riggered Emission. Advanced Materials, 2022, 34, .	11.1	31
189	Lighting up Micro-/Nanorobots with Fluorescence. Chemical Reviews, 2023, 123, 3944-3975.	23.0	33
190	Ordered heterogeneity in dual-ligand MOF to enable high electrochemiluminescence efficiency for bioassay with DNA triangular prism as signal switch. Biosensors and Bioelectronics, 2022, 217, 114713.	5. 3	11
191	Luminescence color change of [3,4-difluoro-2,6-bis(5-methyl-2-pyridyl)phenyl-κ ³ <i>N</i> , <i>C</i> ¹ , <i>N</i> ê²]cyar by aggregation. Dalton Transactions, 2022, 51, 15830-15841.	nid o p latinu	ım≴ <scp>ii<!--</td--></scp>
192	Pyrene and triphenylamine substituted cyanostyrene and cyanostilbene derivatives with dual-state emission for high-contrast mechanofluorochromism and cell imaging. Organic Chemistry Frontiers, 2022, 9, 5118-5124.	2.3	25
193	Ordered Heterogeneity in Dual-Ligand Mof to Enable Intense Electrochemiluminescence for Bioassay with DNA Triangular Prism as Signal Switch. SSRN Electronic Journal, 0, , .	0.4	0
194	AIE-active iridium(<scp>iii</scp>) complex integrated with upconversion nanoparticles for NIR-irradiated photodynamic therapy. Chemical Communications, 2022, 58, 10056-10059.	2.2	19
195	Synthesis and Complexing Properties of New Luminescent Hydroquinone–Formaldehyde Hexamers. Russian Journal of Organic Chemistry, 2022, 58, 1131-1140.	0.3	0
196	A family of oligo(pâ€phenylenevinylene) derivative aggregationâ€induced emission probes: Ultrasensitive, rapid, and antiâ€interfering fluorescent sensing of perchlorate via precise alkyl chain length modulation. Aggregate, 2023, 4, .	5.2	13
197	Recent advances in HDAC-targeted imaging probes for cancer detection. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188788.	3.3	2
198	Solidâ€State Emission and Aggregate Emission of Aroyl― <i>S</i> , <i>N</i> ,	1.7	7

#	Article	IF	Citations
199	Design Concepts for Solution and Solidâ€State Emitters – A Modern Viewpoint on Classical and Nonâ€Classical Approaches. Chemistry - A European Journal, 2023, 29, .	1.7	17
200	AlE-active Ir(<scp>iii</scp>) complexes functionalised with a cationic Schiff base ligand: synthesis, photophysical properties and applications in photodynamic therapy. Dalton Transactions, 2022, 51, 16119-16125.	1.6	9
201	Highly efficient dual-state emission and two-photon absorption of novel naphthalimide functionalized cyanostilbene derivatives with finely tuned terminal alkoxyl groups. Materials Chemistry Frontiers, 2022, 6, 3522-3530.	3.2	9
202	Fluorinated Tetraarylethenes: Universal Tags for the Synthesis of Solid State Luminogens. Angewandte Chemie, 2022, 134, .	1.6	1
203	Stimuli-Responsible SNARF Derivatives as a Latent Ratiometric Fluorescent Probe. Molecules, 2022, 27, 7181.	1.7	3
204	A Precipitationâ€Enhanced Emission (PEE) Strategy for Increasing the Brightness and Reducing the Liver Retention of NIRâ€I Fluorophores. Small, 2022, 18, .	5.2	4
205	Novel <i>Meso</i> -Benzothiazole-Substituted BODIPY-Based AIE Fluorescent Rotor for Imaging Lysosomal Viscosity and Monitoring Autophagy. Analytical Chemistry, 2022, 94, 14707-14715.	3.2	31
206	Polydopamine Copolymers for Stable Drug Nanoprecipitation. International Journal of Molecular Sciences, 2022, 23, 12420.	1.8	4
207	Fluorinated Tetraarylethenes: Universal Tags for the Synthesis of Solid State Luminogens. Angewandte Chemie - International Edition, 2022, 61, .	7.2	3
208	Polymersomes with Red/Nearâ€Infrared Emission and Reactive Oxygen Species Generation. Macromolecular Rapid Communications, 2023, 44, .	2.0	4
209	Universal Concept for Bright, Organic, Solid-State Emitters─Doping of ⟨i⟩Small-Molecule Ionic Isolation Lattices⟨/i⟩ with FRET Acceptors. Journal of the American Chemical Society, 2022, 144, 19981-19989.	6.6	13
210	Hypochlorite Detection by Fluorescent Sensors Bearing Long Alkyl Chains: The Role of Chain Length in Sensing Properties. ChemPlusChem, 0, , .	1.3	O
211	Biosensors for the Detection of Enzymes Based on Aggregation-Induced Emission. Biosensors, 2022, 12, 953.	2.3	8
212	A ruthenium-based aggregation-induced enhanced emission luminophore as efficient protein staining agent. Journal of Organometallic Chemistry, 2023, 983, 122540.	0.8	1
213	Planar chiral AIEgens based on [2.2]paracyclophane as efficient solid-state deep red circularly polarized luminescent emitters. Dyes and Pigments, 2023, 209, 110915.	2.0	1
214	A novel 3-acetyl coumarin based AIE luminophore for colorimetric recognition of Cu2+ and Fâ^' ions. Journal of Molecular Structure, 2023, 1273, 134317.	1.8	3
215	Stimuliâ€Responsive Electrospun Fluorescent Fibers Augmented with Aggregationâ€Induced Emission (AIE) for Smart Applications. Advanced Science, 2023, 10, .	5.6	23
216	Twoâ€Factor Fluorogenicity of Tetrazineâ€Modified Cyanineâ€Styryl Dyes for Bioorthogonal Labelling of DNA. Chemistry - A European Journal, 2023, 29, .	1.7	5

#	Article	IF	CITATIONS
217	Multi Stimuli Responsive Nonâ€Doped Red Emitting AIEE Active Phenothiazineâ€Based Chalcones: Crystal Structure, Solvatochromism, Turnâ€on Mechanofluorochromism and Acidochromism. European Journal of Organic Chemistry, 2022, 2022, .	1.2	1
218	Practical Design of 3,6-Di- <i>tert</i> -butyldiphenyldibenzofulvene Derivatives with Enhanced Aggregation-Induced Emission., 2023, 1, 340-353.		2
219	Pillar[5]arene-based light-harvesting assemblies with sequential energy-transfer for tunable emission and photocatalysis. Dyes and Pigments, 2023, 210, 110958.	2.0	13
220	AIPE-active cationic Ir(<scp>iii</scp>) complexes for efficient detection of 2,4,6-trinitrophenol and oxygen. Dalton Transactions, 2022, 52, 128-135.	1.6	11
221	Internal acylation-induced AIE/AIEE switch of pyrimido[2,1-b][1,3]benzothiazoles (PBTs): Restriction of access to dark state caused by distortion of 4H-pyrimidine ring. Dyes and Pigments, 2023, 210, 110982.	2.0	2
222	Optimizing molecular aggregation-induced emission (AIE) behavior of phosphoryl center π-conjugated heterocycles by tuning chemical features of the tether groups. Organic Electronics, 2023, 113, 106706.	1.4	2
223	An unexpected fluorescent emission of anthracene derivatives in the solid state. Dyes and Pigments, 2023, 210, 110991.	2.0	3
224	Fluorescent Nanoassemblies in Water Exhibiting Tunable LCST Behavior and Responsive Light Harvesting Ability. Chemistry - A European Journal, 2023, 29, .	1.7	11
225	Spectroscopic characterization and assessment of microbiological potential of 1,3,4-thiadiazole derivative showing ESIPT dual fluorescence enhanced by aggregation effects. Scientific Reports, 2022, 12, .	1.6	6
226	Non-Covalent Dimer as Donor Chromophore for Constructing Artificial Light-Harvesting System in Water. Molecules, 2022, 27, 8876.	1.7	6
227	Emerging Trends of Jâ€Aggregate Formation within Polymeric Nanoassemblies. Macromolecular Chemistry and Physics, 0, , 2200414.	1.1	0
228	As Fiber Meets with AIE: Opening a Wonderland for Smart Flexible Materials. Advanced Materials, 2023, 35, .	11.1	18
229	Theranostic FRET Gate to Visualize and Quantify Bacterial Membrane Breaching. Biomacromolecules, 2023, 24, 739-755.	2.6	4
230	Organosilicon Fluorescent Materials. Polymers, 2023, 15, 332.	2.0	8
231	Aggregation-induced emission enhancement (AIEE) of tetrarhenium(<scp>i</scp>) metallacycles and their application as luminescent sensors for nitroaromatics and antibiotics. Dalton Transactions, 2023, 52, 1939-1949.	1.6	2
232	<i>In Vivo</i> Fluorescence Imagingâ€Guided Development of Nearâ€Infrared AlEgens. Chemistry - an Asian Journal, 2023, 18, .	1.7	4
233	Boron difluoride hydrazone (BODIHY) complexes: A new class of fluorescent molecular rotors. Journal of Physical Organic Chemistry, 2023, 36, .	0.9	7
234	Chemical fuel-driven gelation with dissipative assembly-induced emission. Organic Chemistry Frontiers, 2023, 10, 1380-1385.	2.3	8

#	ARTICLE	IF	CITATIONS
235	<scp>Emissionâ€Tunable</scp> Nanofluorophores through Selfâ€assembly of Amphiphilic Block Copolymers: toward Application in Cell Imaging. Chinese Journal of Chemistry, 2023, 41, 931-938.	2.6	1
236	Structural and optical variation of pseudoisocyanine aggregates nucleated on DNA substrates. Methods and Applications in Fluorescence, 2023, 11, 014003.	1.1	3
237	Luminescent organic molecular frameworks from tetraphenylethylene-based building blocks. Journal of Materials Chemistry C, 2023, 11 , $3675-3691$.	2.7	6
238	A Bloodâ€Responsive AIE Bioprobe for the Ultrasensitive Detection and Assessment of Subarachnoid Hemorrhage. Advanced Science, 2023, 10, .	5.6	7
239	Rapid construction of bicyclic triazoline skeletons with dual-state emission <i>via</i> cycloaddition reaction of 4-phenyl-1,2,4-triazoline-3,5-dione with vinyl azides. Organic Chemistry Frontiers, 2023, 10, 1495-1504.	2.3	2
240	Application of a Dual-Probe Coloading Nanodetection System in the Process Monitoring and Efficacy Assessment of Photodynamic Therapy: An <i>In Vitro</i> Study. ACS Biomaterials Science and Engineering, 2023, 9, 1089-1103.	2.6	1
241	Fluorescent Flippers: Smallâ€Molecule Probes to Image Membrane Tension in Living Systems. Angewandte Chemie, 2023, 135, .	1.6	1
242	A salicylaldoximate-based AIE probe for the detection of the nerve agent simulant DCP. Journal of Materials Chemistry C, 2023, 11 , 4025-4032.	2.7	7
243	Fluorescent cellulose nanocrystals/waterborne polyurethane nanocomposites for anti-counterfeiting applications. Physical Chemistry Chemical Physics, 2023, 25, 9492-9499.	1.3	1
244	Aggregationâ€Dependent Thermally Activated Delayed Fluorescence Emitters: AIE or ACQ?. Advanced Optical Materials, 2023, 11, .	3.6	7
245	Effect of bulky side groups on photophysical properties and electroluminescent performance of oligo(styryl)benzenes. Dyes and Pigments, 2023, 213, 111179.	2.0	2
246	Solid-state fluorescent 3,3-diarylallylidene indolinones by pseudo-five-component synthesis. Dyes and Pigments, 2023, 213, 111139.	2.0	1
247	Novel fluorescent probes based on NBD-substituted imidazole amino to sequentially detect H2S and Zn2+. Dyes and Pigments, 2023, 214, 111211.	2.0	9
248	Novel electro-fluorescent materials with hybridized local and charge transfer (HLCT) excited state for highly efficient deep red to near-infrared OLEDs. Dyes and Pigments, 2023, 215, 111306.	2.0	6
249	Supramolecular artificial light-harvesting systems for photocatalysis. Current Opinion in Green and Sustainable Chemistry, 2023, 41, 100823.	3.2	7
250	Activatable fluorescent probes for real-time imaging-guided tumor therapy. Advanced Drug Delivery Reviews, 2023, 196, 114793.	6.6	31
251	2-(2-Hydroxyphenyl)benzoazole-based AlEgens with interesting photoresponse property. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 441, 114710.	2.0	0
252	Control over rotary motion and multicolour switching in 3-hydroxyphthalimide fluorophores: An interplay between AIE and ESIPT. Dyes and Pigments, 2023, 215, 111279.	2.0	6

#	Article	IF	CITATIONS
253	Antibiotic quantitative fluorescence chemical sensor based on Zn-MOF aggregation-induced emission characteristics. Microchemical Journal, 2023, 190, 108626.	2.3	2
254	Aggregationâ€Induced Emission in a Flexible Phosphine Oxide and its Zn(II) Complexes—A Simple Approach to Blue Luminescent Materials. Advanced Functional Materials, 2023, 33, 2212436.	7.8	1
255	A Phenolic Schiff Based AlEâ€Active Quinoxalineâ€Based Receptor for Selective Sensing of Fluoride Ions. ChemistrySelect, 2023, 8, .	0.7	2
256	Fluorescent Flippers: Smallâ€Molecule Probes to Image Membrane Tension in Living Systems. Angewandte Chemie - International Edition, 2023, 62, .	7.2	14
257	Discriminative †Turn-on†Metection of Al3+ and Ga3+ Ions as Well as Aspartic Acid by Two Fluorescent Chemosensors. Sensors, 2023, 23, 1798.	2.1	4
258	Design of Auroneâ€Based Dualâ€State Emissive (DSE) Fluorophores. Chemistry - A European Journal, 2023, 29, .	1.7	7
259	Anion-Complexation-Induced Emission Based on Aggregation-Induced Emission Fluorophore. Chemistry, 2023, 5, 242-254.	0.9	2
260	Clusteroluminescence in Organic, Inorganic, and Hybrid Systems: A Review. Theoretical and Experimental Chemistry, 2022, 58, 297-327.	0.2	4
261	A simple strategy for the efficient design of mitochondria-targeting NIR-II phototheranostics. Journal of Materials Chemistry B, 2023, 11, 2700-2705.	2.9	5
262	A Versatile Theranostic Nanoplatform with Aggregationâ€Induced Emission Properties: Fluorescence Monitoring, Cellular Organelle Targeting, and Imageâ€Guided Photodynamic Therapy. Small, 2023, 19, .	5.2	4
263	Structural Engineering of Red Luminogens to Realize High Emission Efficiency through ACQâ€toâ€AlE Transformation. Chemistry - A European Journal, 2023, 29, .	1.7	4
264	Photoluminescence Behaviors in Self-Assembly Supramolecular Pyridinium Salts. Crystal Growth and Design, 2023, 23, 2106-2119.	1.4	0
265	Bis(triarylmethylium)â€ŧype Macrocyclic Dications: Mechanochromic Emission Extending to the Red Region. ChemPlusChem, 2023, 88, .	1.3	0
266	The Efficiency of Metabolic Labeling of DNA by Diels–Alder Reactions with Inverse Electron Demand: Correlation with the Size of Modified 2′-Deoxyuridines. ACS Chemical Biology, 2023, 18, 1054-1059.	1.6	2
267	Heparinâ€Induced Dual Mode Luminescence Modulation of Organic Nanoparticles and Efficient Energy Transfer. Chemistry - an Asian Journal, 2023, 18, .	1.7	1
268	Fluorescent Silk Obtained by Feeding Silkworms with Fluorescent Materials < sup > †< /sup > . Chinese Journal of Chemistry, 2023, 41, 2035-2046.	2.6	1
269	Machine-learning screening of luminogens with aggregation-induced emission characteristics for fluorescence imaging. Journal of Nanobiotechnology, 2023, 21, .	4.2	1
270	Aggregation-Induced Emission Luminogen-Encapsulated Fluorescent Hydrogels Enable Rapid and Sensitive Quantitative Detection of Mercury Ions. Biosensors, 2023, 13, 421.	2.3	0

#	Article	IF	CITATIONS
271	Aggregationâ€Induced Emission by Molecular Design: A Route to Highâ€Performance Lightâ€Emitting Electrochemical Cells. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
272	Aggregationâ€Induced Emission by Molecular Design: A Route to Highâ€Performance Lightâ€Emitting Electrochemical Cells. Angewandte Chemie, 0, , .	1.6	1
273	In situ orderly self-assembly strategy affording NIR-II-J-aggregates for in vivo imaging and surgical navigation. Nature Communications, 2023, 14 , .	5.8	14
274	A novel red AIE fluorescent probe for ratiometric detection of carbon monoxide <i>in vitro</i> and <i>in vivo</i> . Journal of Materials Chemistry B, 2023, 11, 3871-3876.	2.9	2
275	Highly efficient sequential light-harvesting system constructed by macrocycle-based nanoparticles for tunable photoluminescence. Dyes and Pigments, 2023, 215, 111289.	2.0	5
276	Cationic Solution and Solid‧tate Emitters – Robust Imaging Agents for Cells, Bacteria, and Protists. Chemistry - A European Journal, 2023, 29, .	1.7	2
277	An Alkaline Phosphatase-Responsive Aggregation-Induced Emission Photosensitizer for Selective Imaging and Photodynamic Therapy of Cancer Cells. ACS Nano, 2023, 17, 7145-7156.	7.3	18
278	Efficiently enhancing aqueous fluorescence of diketopyrrolopyrrole-derived dye via facile cucurbit[8]uril inclusion. Dyes and Pigments, 2023, 216, 111315.	2.0	4
279	Natural Coumarin Isomers with Dramatically Different AIE Properties: Mechanism and Application. ACS Central Science, 2023, 9, 883-891.	5.3	11
280	Functional supramolecular aggregates based on BODIPY and aza-BODIPY dyes: control over the pathway complexity. Organic Chemistry Frontiers, 2023, 10, 2581-2602.	2.3	5
295	Real-time visualization of sulfatase in living cells and $\langle i \rangle$ in vivo $\langle i \rangle$ with a ratiometric AIE fluorescent probe. Chemical Communications, 0, , .	2.2	0
331	Recent advances in small-molecule fluorescent photoswitches with photochromism in diverse states. Journal of Materials Chemistry C, 2023, 11, 15393-15411.	2.7	7
340	Recent Advancements in Sensing of Silver ions by Different Host Molecules: An Overview (2018–2023). Journal of Fluorescence, 0, , .	1.3	O
356	[Au ₁₄ (2-SAdm) ₉ (Dppe) ₂] ⁺ : a gold nanocluster with a crystallization-induced emission enhancement phenomenon. Chemical Communications, 2024, 60, 1337-1340.	2.2	0
372	Tunable emission from H-type supramolecular polymers in optical nanocavities. Chemical Communications, 2024, 60, 2812-2815.	2.2	0