Cellulose Nanofibrils Enhanced, Strong, Stretchable, Fre Organohydrogel for Multiâ€Functional Sensors

Advanced Functional Materials 30, 2003430 DOI: 10.1002/adfm.202003430

Citation Report

#	Article	IF	CITATIONS
1	Synthesis Antifreezing and Antidehydration Organohydrogels: One-Step In-Situ Gelling versus Two-Step Solvent Displacement. Polymers, 2020, 12, 2670.	2.0	12
2	Facile Preparation of Eco-Friendly, Flexible Starch-Based Materials with Ionic Conductivity and Strain-Responsiveness. ACS Sustainable Chemistry and Engineering, 2020, 8, 19117-19128.	3.2	27
3	The new generation of soft and wearable electronics for health monitoring in varying environment: From normal to extreme conditions. Materials Today, 2020, 41, 219-242.	8.3	125
4	High-performance ionic conductive poly(vinyl alcohol) hydrogels for flexible strain sensors based on a universal soaking strategy. Materials Chemistry Frontiers, 2021, 5, 315-323.	3.2	51
5	Electrostatic self-assembly enabled flexible paper-based humidity sensor with high sensitivity and superior durability. Chemical Engineering Journal, 2021, 404, 127105.	6.6	105
6	Emerging cellulose-derived materials: a promising platform for the design of flexible wearable sensors toward health and environment monitoring. Materials Chemistry Frontiers, 2021, 5, 2051-2091.	3.2	54
7	Freezing-tolerant, widely detectable and ultra-sensitive composite organohydrogel for multiple sensing applications. Journal of Materials Chemistry C, 2021, 9, 10127-10137.	2.7	46
8	Bioinspired, nucleobase-driven, highly resilient, and fast-responsive antifreeze ionic conductive hydrogels for durable pressure and strain sensors. Journal of Materials Chemistry A, 2021, 9, 20703-20713.	5.2	55
9	Recent advances in polysaccharideâ€based hydrogels for synthesis and applications. Aggregate, 2021, 2, e21.	5.2	102
10	Biosafe, self-adhesive, recyclable, tough, and conductive hydrogels for multifunctional sensors. Biomaterials Science, 2021, 9, 5884-5896.	2.6	25
11	Recent progress in flexible nanocellulosic structures for wearable piezoresistive strain sensors. Journal of Materials Chemistry C, 2021, 9, 11001-11029.	2.7	26
12	Fully-physically crosslinked silk fibroin/poly(hydroxyethyl acrylamide) hydrogel with high transparency and adhesive properties for wireless sensing and low-temperature strain sensing. Journal of Materials Chemistry C, 2021, 9, 1880-1887.	2.7	34
13	A DNA-inspired hydrogel mechanoreceptor with skin-like mechanical behavior. Journal of Materials Chemistry A, 2021, 9, 1835-1844.	5.2	48
14	A highly conductive hydrogel driven by phytic acid towards a wearable sensor with freezing and dehydration resistance. Journal of Materials Chemistry A, 2021, 9, 22615-22625.	5.2	80
15	3D Printable, Highly Stretchable, Superior Stable Ionogels Based on Poly(ionic liquid) with Hyperbranched Polymers as Macro-cross-linkers for High-Performance Strain Sensors. ACS Applied Materials & Interfaces, 2021, 13, 5614-5624.	4.0	76
16	Elastic, Conductive, and Mechanically Strong Hydrogels from Dual-Cross-Linked Aramid Nanofiber Composites. ACS Applied Materials & Interfaces, 2021, 13, 7539-7545.	4.0	25
17	An anti-freezing/drying, adhesive and self-healing motion sensor with humidity-enhanced conductivity. Polymer, 2021, 214, 123354.	1.8	19
18	Ultra‧ensitive and Stretchable Ionic Skins for Highâ€Precision Motion Monitoring. Advanced Functional Materials, 2021, 31, 2010199.	7.8	60

#	Article	IF	CITATIONS
19	Topologically Enhanced Dual-Network Hydrogels with Rapid Recovery for Low-Hysteresis, Self-Adhesive Epidemic Electronics. ACS Applied Materials & Interfaces, 2021, 13, 12531-12540.	4.0	53
20	Ultraâ€Stretchable, Variable Modulus, Shape Memory Multiâ€Purpose Low Hysteresis Hydrogel Derived from Solventâ€Induced Dynamic Micelle Seaâ€Island Structure. Advanced Functional Materials, 2021, 31, 2011259.	7.8	49
21	Simple preparation of carboxymethyl cellulose-based ionic conductive hydrogels for highly sensitive, stable and durable sensors. Cellulose, 2021, 28, 4253-4265.	2.4	15
22	Stretchable and self-healing polyvinyl alcohol/cellulose nanofiber nanocomposite hydrogels for strain sensors with high sensitivity and linearity. Composites Communications, 2021, 24, 100677.	3.3	46
23	Self-Adhesive, Stretchable, Biocompatible, and Conductive Nonvolatile Eutectogels as Wearable Conformal Strain and Pressure Sensors and Biopotential Electrodes for Precise Health Monitoring. ACS Applied Materials & Interfaces, 2021, 13, 20735-20745.	4.0	86
24	An environment-stable hydrogel with skin-matchable performance for human-machine interface. Science China Materials, 2021, 64, 2313-2324.	3.5	33
25	Environment Tolerant Conductive Nanocomposite Organohydrogels as Flexible Strain Sensors and Power Sources for Sustainable Electronics. Advanced Functional Materials, 2021, 31, 2101696.	7.8	179
26	Ionic Conductive Organohydrogels with Dynamic Pattern Behavior and Multiâ€Environmental Stability. Advanced Functional Materials, 2021, 31, 2101464.	7.8	105
27	Wearable Antifreezing Fiber-Shaped Zn/PANI Batteries with Suppressed Zn Dendrites and Operation in Sweat Electrolytes. ACS Applied Materials & amp; Interfaces, 2021, 13, 17608-17617.	4.0	37
28	Strong, elastic, and tough high internal phase emulsions stabilized solely by cod myofibers for multidisciplinary applications. Chemical Engineering Journal, 2021, 412, 128724.	6.6	37
29	Colorimetric Ionic Organohydrogels Mimicking Human Skin for Mechanical Stimuli Sensing and Injury Visualization. ACS Applied Materials & Interfaces, 2021, 13, 26490-26497.	4.0	23
30	Highly Transparent, Stretchable, and Conductive Supramolecular Ionogels Integrated with Three-Dimensional Printable, Adhesive, Healable, and Recyclable Character. ACS Applied Materials & Interfaces, 2021, 13, 25365-25373.	4.0	45
31	Environmentally Compatible Wearable Electronics Based on Ionically Conductive Organohydrogels for Health Monitoring with Thermal Compatibility, Antiâ€Dehydration, and Underwater Adhesion. Small, 2021, 17, e2101151.	5.2	70
32	A green all-polysaccharide hydrogel platform for sensing and electricity harvesting/storage. Journal of Power Sources, 2021, 493, 229711.	4.0	18
33	Multiâ€functional magnetic hydrogel: Design strategies and applications. Nano Select, 2021, 2, 2291-2307.	1.9	9
34	In Situ Synthesis of Mechanically Robust, Transparent Nanofiberâ€Reinforced Hydrogels for Highly Sensitive Multiple Sensing. Advanced Functional Materials, 2021, 31, 2103117.	7.8	100
35	Selected Phase Separation Renders High Strength and Toughness to Polyacrylamide/Alginate Hydrogels with Large-Scale Cross-Linking Zones. ACS Applied Materials & Interfaces, 2021, 13, 25383-25391.	4.0	17
36	Block Copolymerâ€Based Supramolecular Ionogels for Accurate Onâ€Skin Motion Monitoring. Advanced Functional Materials, 2021, 31, 2102386.	7.8	60

#	Article	IF	CITATIONS
37	Transparent, Conductive Hydrogels with High Mechanical Strength and Toughness. Polymers, 2021, 13, 2004.	2.0	13
38	Ambiently and Mechanically Stable Ionogels for Soft Ionotronics. Advanced Functional Materials, 2021, 31, 2102773.	7.8	95
39	Fabrication of capacitive pressure sensor with extraordinary sensitivity and wide sensing range using PAM/BIS/GO nanocomposite hydrogel and conductive fabric. Composites Part A: Applied Science and Manufacturing, 2021, 145, 106373.	3.8	50
40	Berberine carried gelatin/sodium alginate hydrogels with antibacterial and EDTA-induced detachment performances. International Journal of Biological Macromolecules, 2021, 181, 1039-1046.	3.6	35
41	Deep eutectic solvents eutectogels: progress and challenges. Green Chemical Engineering, 2021, 2, 359-367.	3.3	54
42	Fast-Recoverable, Self-Healable, and Adhesive Nanocomposite Hydrogel Consisting of Hybrid Nanoparticles for Ultrasensitive Strain and Pressure Sensing. Chemistry of Materials, 2021, 33, 6146-6157.	3.2	67
43	Digital Light Processing 4D Printing of Transparent, Strong, Highly Conductive Hydrogels. ACS Applied Materials & Interfaces, 2021, 13, 36286-36294.	4.0	52
44	An Ultra-Stretchable Sensitive Hydrogel Sensor for Human Motion and Pulse Monitoring. Micromachines, 2021, 12, 789.	1.4	10
45	Multiâ€Functional Hydrogels for Flexible Zincâ€Based Batteries Working under Extreme Conditions. Advanced Energy Materials, 2021, 11, 2101749.	10.2	116
46	Mechanically Strong and Multifunctional Hybrid Hydrogels with Ultrahigh Electrical Conductivity. Advanced Functional Materials, 2021, 31, 2104536.	7.8	113
47	Ultraâ€Sensitive and Ultraâ€Stretchable Strain Sensors Based on Emulsion Gels with Broad Operating Temperature. Chemistry - A European Journal, 2021, 27, 13161-13171.	1.7	5
48	Stretchable and Conductive Composite Structural Color Hydrogel Films as Bionic Electronic Skins. Advanced Science, 2021, 8, e2102156.	5.6	111
49	Muscleâ€Inspired MXene Conductive Hydrogels with Anisotropy and Lowâ€Temperature Tolerance for Wearable Flexible Sensors and Arrays. Advanced Functional Materials, 2021, 31, 2105264.	7.8	171
50	Hybrid double-network hydrogel for highly stretchable, excellent sensitive, stabilized, and transparent strain sensors. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 1548-1563.	1.9	8
51	Lowâ€Molecularâ€Weight Supramolecularâ€Polymer Doubleâ€Network Eutectogels for Selfâ€Adhesive and Bidirectional Sensors. Advanced Functional Materials, 2021, 31, 2104963.	7.8	91
52	Transparent, flexible, and multifunctional starch-based double-network hydrogels as high-performance wearable electronics. Carbohydrate Polymers, 2021, 267, 118198.	5.1	73
53	Wood Ionic Cable. Small, 2021, 17, e2008200.	5.2	10
54	Double Network Glycerol Gel: A Robust, Highly Sensitive, and Adaptive Temperature Sensor. Macromolecular Materials and Engineering, 2021, 306, 2100465.	1.7	3

#	Article	IF	CITATIONS
55	Sustainable isolation of nanocellulose from cellulose and lignocellulosic feedstocks: Recent progress and perspectives. Carbohydrate Polymers, 2021, 267, 118188.	5.1	75
56	Recent Progress in Bionic Skin Based on Conductive Polymer Gels. Macromolecular Rapid Communications, 2021, 42, e2100480.	2.0	29
57	Skinâ€Integrated Devices with Soft, Holey Architectures for Wireless Physiological Monitoring, With Applications in the Neonatal Intensive Care Unit. Advanced Materials, 2021, 33, e2103974.	11.1	35
58	A Highly Robust Ionotronic Fiber with Unprecedented Mechanomodulation of Ionic Conduction. Advanced Materials, 2021, 33, e2103755.	11.1	55
59	Waterâ€Resistant Ionogel Electrode with Tailorable Mechanical Properties for Aquatic Ambulatory Physiological Signal Monitoring. Advanced Functional Materials, 2021, 31, 2107226.	7.8	83
60	A General Crosslinker Strategy to Realize Intrinsic Frozen Resistance of Hydrogels. Advanced Materials, 2021, 33, e2104006.	11.1	82
61	Strategy of Fabricating Flexible Strain Sensor via Layer-by-Layer Assembly of Conductive Hydrogels. ACS Applied Electronic Materials, 2021, 3, 3889-3897.	2.0	10
62	Flexible organohydrogel ionic skin with Ultra-Low temperature freezing resistance and Ultra-Durable moisture retention. Journal of Colloid and Interface Science, 2022, 608, 396-404.	5.0	37
63	Direct-ink-writing (DIW) 3D printing functional composite materials based on supra-molecular interaction. Composites Science and Technology, 2021, 215, 109013.	3.8	28
64	Bioinspired interface engineering of soybean meal-based adhesive incorporated with biomineralized cellulose nanofibrils and a functional aminoclay. Chemical Engineering Journal, 2021, 421, 129820.	6.6	57
65	Flexible, transparent, and antibacterial ionogels toward highly sensitive strain and temperature sensors. Chemical Engineering Journal, 2021, 424, 130418.	6.6	119
66	Flexible, multi-functional sensor based on all-carbon sensing medium with low coupling for ultrahigh-performance strain, temperature and humidity sensing. Chemical Engineering Journal, 2021, 426, 130364.	6.6	30
67	Enhanced sensing and electrical performance of hierarchical porous ionic polymer-metal nanocomposite via minimizing cracks in electrode. Journal of Colloid and Interface Science, 2022, 606, 837-847.	5.0	3
68	Mimicking skin cellulose hydrogels for sensor applications. Chemical Engineering Journal, 2022, 427, 130921.	6.6	64
69	Protein-assisted freeze-tolerant hydrogel with switchable performance toward customizable flexible sensor. Chemical Engineering Journal, 2022, 428, 131171.	6.6	34
70	One-pot freezing-thawing preparation of cellulose nanofibrils reinforced polyvinyl alcohol based ionic hydrogel strain sensor for human motion monitoring. Carbohydrate Polymers, 2022, 275, 118697.	5.1	54
71	Lignin promoted the fast formation of a robust and highly conductive deep eutectic solvent ionic gel at room temperature for a flexible quasi-solid-state supercapacitor and strain sensors. Green Chemistry, 2021, 23, 5120-5128.	4.6	47
72	Flexible, self-healable, adhesive and wearable hydrogel patch for colorimetric sweat detection. Journal of Materials Chemistry C, 2021, 9, 14938-14945.	2.7	65

#	Article	IF	Citations
73	Preparation of multifunctional hydrogels with pore channels using agarose sacrificial templates and its applications. Polymers for Advanced Technologies, 2021, 32, 1752-1762.	1.6	7
74	Stretchable, healable, adhesive, transparent, anti-drying and anti-freezing organohydrogels toward multi-functional sensors and information platforms. Journal of Materials Chemistry C, 2021, 9, 15530-15541.	2.7	16
75	Towards conductive hydrogels in e-skins: a review on rational design and recent developments. RSC Advances, 2021, 11, 33835-33848.	1.7	14
76	Multifunctional flexible polyvinyl alcohol nanocomposite hydrogel for stress and strain sensor. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	12
77	Honeycombâ€Inspired Robust Hygroscopic Nanofibrous Cellular Networks. Small Methods, 2021, 5, e2101011.	4.6	11
78	Waterborne Polyurethane Enhanced, Adhesive, and Ionic Conductive Hydrogel for Multifunctional Sensors. Macromolecular Rapid Communications, 2021, 42, e2100457.	2.0	22
79	Rational Design of Polycationic Hydrogel with Excellent Combination Functions for Flexible Wearable Electronic Devices. Macromolecular Materials and Engineering, 2022, 307, 2100593.	1.7	4
80	Supramolecular-induced 2.40ÂV 130°C working-temperature-range supercapacitor aqueous electrolyte of lithium bis(trifluoromethanesulfonyl) imide in dimethyl sulfoxide-water. Journal of Colloid and Interface Science, 2022, 608, 1162-1172.	5.0	12
81	Superelastic, Antifreezing, Antidrying, and Conductive Organohydrogels for Wearable Strain Sensors. ACS Applied Materials & Interfaces, 2021, 13, 51546-51555.	4.0	35
82	Heat- and freeze-tolerant organohydrogel with enhanced ionic conductivity over a wide temperature range for highly mechanoresponsive smart paint. Journal of Colloid and Interface Science, 2022, 608, 2158-2168.	5.0	8
83	Nanocellulose composite gel with high ionic conductivity and long service life for flexible zinc-air battery. Polymer Testing, 2021, 104, 107380.	2.3	12
84	Solvent-induced in-situ self-assembly lignin nanoparticles to reinforce conductive nanocomposite organogels as anti-freezing and anti-dehydration flexible strain sensors. Chemical Engineering Journal, 2022, 433, 133202.	6.6	54
85	Robust conductive organohydrogel strain sensors with wide range linear sensing, UV filtering, anti-freezing and water-retention properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632, 127823.	2.3	17
86	Preparation and characterization of anti-freezing conductive organohydrogel based on carboxyl modified polyvinyl alcohol and polypyrrole. Reactive and Functional Polymers, 2022, 170, 105089.	2.0	4
87	Multifunctional bacterial cellulose-based organohydrogels with long-term environmental stability. Journal of Colloid and Interface Science, 2022, 608, 820-829.	5.0	21
88	Superstretchable electrode based on hierarchical assembly of triblock copolymer fiber membrane. Chemical Engineering Journal, 2022, 430, 132911.	6.6	9
89	Natural glycyrrhizic acid-tailored hydrogel with in-situ gradient reduction of AgNPs layer as high-performance, multi-functional, sustainable flexible sensors. Chemical Engineering Journal, 2022, 430, 132779.	6.6	21
90	Cooking inspired tough, adhesive, and low-temperature tolerant gluten-based organohydrogels for high performance strain sensors. Journal of Materials Chemistry A, 2021, 9, 25104-25113.	5.2	24

#	Article	IF	Citations
91	Biomineral calcium-ion-mediated conductive hydrogels with high stretchability and self-adhesiveness for sensitive iontronic sensors. Cell Reports Physical Science, 2021, 2, 100623.	2.8	49
92	Multifunctional Organohydrogel-Based Ionic Skin for Capacitance and Temperature Sensing toward Intelligent Skin-like Devices. Chemistry of Materials, 2021, 33, 8623-8634.	3.2	49
93	Ultrastretchable and Self-Healing Conductors with Double Dynamic Network for Omni-Healable Capacitive Strain Sensors. Nano Letters, 2022, 22, 1433-1442.	4.5	24
94	Phase-selective cellulose nanofibril-based oil gelling agent for oil spill recovery. Environmental Science: Nano, 2022, 9, 489-498.	2.2	5
95	A UV-filtering, environmentally stable, healable and recyclable ionic hydrogel towards multifunctional flexible strain sensor. Composites Part B: Engineering, 2022, 230, 109528.	5.9	46
96	Reversible switching of polymeric gel structure and property by solvent exchange. Science China Materials, 2022, 65, 547-552.	3.5	9
97	A self-healing water-dissolvable and stretchable cellulose-hydrogel for strain sensor. Cellulose, 2022, 29, 341-354.	2.4	18
98	Poly(vinyl alcohol) Hydrogels: The Old and New Functional Materials. International Journal of Polymer Science, 2021, 2021, 1-16.	1.2	43
99	Design and performance of an ultra-sensitive and super-stretchable hydrogel for artificial skin. Journal of Materials Chemistry C, 2021, 9, 17042-17049.	2.7	16
100	Stretchable, adhesive, antifreezing and 3D printable double-network hydrogel for flexible strain sensors. European Polymer Journal, 2022, 164, 110977.	2.6	19
101	Freeze-thaw and solvent-exchange strategy to generate physically cross-linked organogels and hydrogels of curdlan with tunable mechanical properties. Carbohydrate Polymers, 2022, 278, 119003.	5.1	29
102	Mechanically toughened conductive hydrogels with shape memory behavior toward self-healable, multi-environmental tolerant and bidirectional sensors. Chemical Engineering Journal, 2022, 432, 134406.	6.6	32
103	Stretchable, freezing-tolerant conductive hydrogel for wearable electronics reinforced by cellulose nanocrystals toward multiple hydrogen bonding. Carbohydrate Polymers, 2022, 280, 119018.	5.1	47
104	Poly (HBA-co-AMPS) based Hydrogel by Pî¼SL 3D Printing for Robotic Sensor. , 2021, , .		1
105	High Performance of PVA Nanocomposite Reinforced by Janus-like Asymmetrically Oxidized Graphene: Synergetic Effect of H-bonding Interaction and Interfacial Crystallization. Chinese Journal of Polymer Science (English Edition), 2022, 40, 373-383.	2.0	9
106	One-step hydrolysis for the preparation of carboxylated cellulose nanofibrils with highly stable dispersibility from pomelo peel. Cellulose, 2022, 29, 1609-1621.	2.4	8
107	Stretchable Unsymmetrical Piezoelectric BaTiO ₃ Composite Hydrogel for Triboelectric Nanogenerators and Multimodal Sensors. ACS Nano, 2022, 16, 1661-1670.	7.3	104
108	Strategies for interface issues and challenges of neural electrodes. Nanoscale, 2022, 14, 3346-3366.	2.8	18

#	Article	IF	CITATIONS
109	A wide-temperature-range sensor based on wide-strain-range self-healing and adhesive organogels. New Journal of Chemistry, 2022, 46, 4334-4342.	1.4	4
110	Stretchable, sensitive, and environment-tolerant ionic conductive organohydrogel reinforced with cellulose nanofibers for human motion monitoring. Cellulose, 2022, 29, 1897-1909.	2.4	10
111	An environmentally tolerant, highly stable, cellulose nanofiber-reinforced, conductive hydrogel multifunctional sensor. Carbohydrate Polymers, 2022, 284, 119199.	5.1	66
112	Biocompatible Lignin-Containing Hydrogels with Self-Adhesion, Conductivity, UV Shielding, and Antioxidant Activity as Wearable Sensors. ACS Applied Polymer Materials, 2022, 4, 1448-1456.	2.0	26
113	Environment tolerant, adaptable and stretchable organohydrogels: preparation, optimization, and applications. Materials Horizons, 2022, 9, 1356-1386.	6.4	75
114	Adhesive Ionohydrogels Based on Ionic Liquid/Water Binary Solvents with Freezing Tolerance for Flexible Ionotronic Devices. Chemistry of Materials, 2022, 34, 1065-1077.	3.2	66
115	Highly Tough, Stretchable, and Solventâ€Resistant Cellulose Nanocrystal Photonic Films for Mechanochromism and Actuator Properties. Small, 2022, 18, e2107105.	5.2	32
116	Stretchable, self-adhesive, conductive, anti-freezing sodium polyacrylate-based composite hydrogels for wearable flexible strain sensors. Reactive and Functional Polymers, 2022, 172, 105197.	2.0	15
117	Polyethylene glycol grafted chitin nanocrystals enhanced, stretchable, freezing-tolerant ionic conductive organohydrogel for strain sensors. Composites Part A: Applied Science and Manufacturing, 2022, 155, 106813.	3.8	18
118	Stretchable freezing-tolerant triboelectric nanogenerator and strain sensor based on transparent, long-term stable, and highly conductive gelatin-based organohydrogel. Nano Energy, 2022, 95, 106967.	8.2	115
119	Nanoarchitectonics of Stretchable Organic Electronics Materials. RSC Nanoscience and Nanotechnology, 2022, , 518-545.	0.2	0
120	Tough, Antifreezing, and Conductive Hydrogel Based on Gelatin and Oxidized Dextran. Advanced Materials Technologies, 2022, 7, .	3.0	26
121	Colorâ€Customizable, Stretchable, Selfâ€Healable and Degradable Ionic Gel for Variable Humanâ€Motion Detection via Strain, Pressure, and Torsion. Advanced Materials Interfaces, 2022, 9, .	1.9	11
122	Nanocomposite Hybrid Biomass Hydrogels as Flexible Strain Sensors with Self-Healing Ability in Harsh Environments. ACS Applied Polymer Materials, 2022, 4, 1626-1635.	2.0	16
123	Self-Healing, Anti-Fatigue, antimicrobial ionic conductive hydrogels based on Choline-Amino acid polyionic liquids for Multi-Functional sensors. Chemical Engineering Journal, 2022, 435, 135168.	6.6	51
124	Tough, Repeatedly Adhesive, Cyclic Compression-Stable, and Conductive Dual-Network Hydrogel Sensors for Human Health Monitoring. Industrial & Engineering Chemistry Research, 2021, 60, 18373-18383.	1.8	87
125	Self-Healing, Anti-Freezing Hydrogels and Its Application in Diversified Skin-Like Electronic Sensors. IEEE Sensors Journal, 2022, 22, 12588-12594.	2.4	8
126	Cellulose based flexible and wearable sensors for health monitoring. Materials Advances, 2022, 3, 3766-3783.	2.6	15

#	Article	IF	CITATIONS
127	Research Progress of Flexible Piezoresistive Sensors Prepared by Solution-Based Processing. Acta Chimica Sinica, 2022, 80, 214.	0.5	1
128	Highly transparent, mechanical, and self-adhesive zwitterionic conductive hydrogels with polyurethane as a cross-linker for wireless strain sensors. Journal of Materials Chemistry B, 2022, 10, 2933-2943.	2.9	17
129	A self-healing, recyclable and conductive gelatin/nanofibrillated cellulose/Fe ³⁺ hydrogel based on multi-dynamic interactions for a multifunctional strain sensor. Materials Horizons, 2022, 9, 1412-1421.	6.4	53
130	Ultra-antifreeze, ultra-stretchable, transparent, and conductive hydrogel for multi-functional flexible electronics as strain sensor and triboelectric nanogenerator. Nano Research, 2022, 15, 5461-5468.	5.8	42
131	Highly Conductive and Mechanically Robust Cellulose Nanocomposite Hydrogels with Antifreezing and Antidehydration Performances for Flexible Humidity Sensors. ACS Applied Materials & Interfaces, 2022, 14, 10886-10897.	4.0	87
132	Hierarchical Nanocelluloseâ€Based Gel Polymer Electrolytes for Stable Na Electrodeposition in Sodium Ion Batteries. Small, 2022, 18, e2107183.	5.2	35
133	Freezeâ€Tolerant Hydrogel Electrolyte with High Strength for Stable Operation of Flexible Zincâ€lon Hybrid Supercapacitors. Small, 2022, 18, e2200055.	5.2	67
134	Sustainable Macromolecular Materials in Flexible Electronics. Macromolecular Materials and Engineering, 2022, 307, .	1.7	4
135	Synthesis and Characterization of Novel Ionochromic Tricyanofuran-Based Phenothiazine Fluorophore: Cellulose-Based Xerogel for Colorimetric Detection of Toxic Cyanides. Journal of Polymers and the Environment, 2022, 30, 3107-3118.	2.4	2
136	Highly Flexible and Broad-Range Mechanically Tunable All-Wood Hydrogels with Nanoscale Channels via the Hofmeister Effect for Human Motion Monitoring. Nano-Micro Letters, 2022, 14, 84.	14.4	31
137	Nanocellulose-templated carbon nanotube enhanced conductive organohydrogel for highly-sensitive strain and temperature sensors. Cellulose, 2022, 29, 3829-3844.	2.4	18
138	A Bilayer Skin-Inspired Hydrogel with Strong Bonding Interface. Nanomaterials, 2022, 12, 1137.	1.9	5
139	Eutectic Electrolytes Chemistry for Rechargeable Zn Batteries. Small, 2022, 18, e2200550.	5.2	40
140	Ultradurable Noncovalent Cross-Linked Hydrogels with Low Hysteresis and Robust Elasticity for Flexible Electronics. Chemistry of Materials, 2022, 34, 3311-3322.	3.2	46
141	Freeze-Resistant, Conductive, and Robust Eutectogels of Metal Salt-Based Deep Eutectic Solvents with Poly(vinyl alcohol). ACS Applied Polymer Materials, 2022, 4, 2057-2064.	2.0	22
142	Multifunctional Superelastic, Superhydrophilic, and Ultralight Nanocelluloseâ€Based Composite Carbon Aerogels for Compressive Supercapacitor and Strain Sensor. Advanced Functional Materials, 2022, 32, .	7.8	199
143	A Wearable Strain Sensor Based on Electroconductive Hydrogel Composites for Human Motion Detection. Macromolecular Materials and Engineering, 2022, 307, .	1.7	12
144	Superstrong yet water-detachable eutectogel adhesives. Chemical Engineering Journal, 2022, 442, 136289.	6.6	20

#	Article	IF	CITATIONS
145	Tough and extremely temperature-tolerance nanocomposite organohydrogels as ultrasensitive wearable sensors for wireless human motion monitoring. Composites Part A: Applied Science and Manufacturing, 2022, 157, 106905.	3.8	13
146	A solvent-exchange strategy to develop stiff and tough hydrogel electrolytes for flexible and stable supercapacitor. Journal of Power Sources, 2022, 532, 231326.	4.0	22
147	Ultra-stretchable and anti-freezing conductive organohydrogel reinforced with ionic clusters for wearable strain sensors. Sensors and Actuators B: Chemical, 2022, 362, 131796.	4.0	11
148	Ultra-stretchable, adhesive, and self-healing MXene/polyampholytes hydrogel as flexible and wearable epidermal sensors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 645, 128897.	2.3	32
149	High-strain sensitive zwitterionic hydrogels with swelling-resistant and controllable rehydration for sustainable wearable sensor. Journal of Colloid and Interface Science, 2022, 620, 14-23.	5.0	16
150	Mutually Noninterfering Flexible Pressure–Temperature Dual-Modal Sensors Based on Conductive Metal–Organic Framework for Electronic Skin. ACS Nano, 2022, 16, 473-484.	7.3	49
151	Highly Strong, Tough, and Stretchable Conductive Hydrogels Based on Silk Sericin-Mediated Multiple Physical Interactions for Flexible Sensors. ACS Applied Polymer Materials, 2022, 4, 618-626.	2.0	29
152	Ultrastretchable, Adhesive, Fast Self-Healable, and Three-Dimensional Printable Photoluminescent Ionic Skin Based on Hybrid Network Ionogels. ACS Applied Materials & Interfaces, 2022, 14, 2029-2037.	4.0	54
153	Anionic organo-hydrogel electrolyte with enhanced ionic conductivity and balanced mechanical properties for flexible supercapacitors. Journal of Materials Chemistry A, 2022, 10, 11277-11287.	5.2	33
154	Plant-inspired conductive adhesive organohydrogel with extreme environmental tolerance as a wearable dressing for multifunctional sensors. Colloids and Surfaces B: Biointerfaces, 2022, 215, 112509.	2.5	22
155	Highly mechanical properties, anti-freezing, and ionic conductive organohydrogel for wearable sensors. Reactive and Functional Polymers, 2022, 175, 105267.	2.0	5
156	Ultrastretchable, self-healable and adhesive composite organohydrogels with a fast response for human–machine interface applications. Journal of Materials Chemistry C, 2022, 10, 8266-8277.	2.7	36
157	Transparent stretchable hydrogel sensors: materials, design and applications. Journal of Materials Chemistry C, 2022, 10, 13351-13371.	2.7	42
158	Nanocage Ferritin Reinforced Polyacrylamide Hydrogel for Wearable Flexible Strain Sensors. ACS Applied Materials & Interfaces, 2022, 14, 21278-21286.	4.0	30
159	Recent developments in biomass derived cellulose aerogel materials for thermal insulation application: a review. Cellulose, 2022, 29, 4805-4833.	2.4	39
160	Tough and Ultrastretchable Liquidâ€Free Ion Conductor Strengthened by Deep Eutectic Solvent Hydrolyzed Cellulose Microfibers. Advanced Functional Materials, 2022, 32, .	7.8	48
161	All-Starch-Based Hydrogel for Flexible Electronics: Strain-Sensitive Batteries and Self-Powered Sensors. ACS Sustainable Chemistry and Engineering, 2022, 10, 6724-6735.	3.2	34
162	Ionically conductive gelatin-based hybrid composite hydrogels with high mechanical strength, self-healing, and freezing-tolerant properties. European Polymer Journal, 2022, 172, 111230.	2.6	10

#	Article	IF	CITATIONS
163	Skin-Inspired Packaging of Injectable Hydrogel Sensors Enabled by Photopolymerizable and Swellable Hydrogels toward Sustainable Electronics. ACS Sustainable Chemistry and Engineering, 2022, 10, 6657-6666.	3.2	12
164	Highly stretchable, durable, and transient conductive hydrogel for multi-functional sensor and signal transmission applications. Nano Energy, 2022, 99, 107374.	8.2	53
165	Mechanically Robust, Antifatigue, and Temperature-Tolerant Nanocomposite Ionogels Enabled by Hydrogen Bonding as Wearable Sensors. ACS Applied Polymer Materials, 2022, 4, 4189-4198.	2.0	10
166	A multiscale biomimetic strategy to design strong, tough hydrogels by tuning the self-assembly behavior of cellulose. Journal of Materials Chemistry A, 2022, 10, 13685-13696.	5.2	46
167	A flexible supercapacitor with high capacitance retention at an ultra-low temperature of -65.0°C. Electrochimica Acta, 2022, 424, 140644.	2.6	11
168	Low-temperature resistant gel polymer electrolytes for zinc–air batteries. Journal of Materials Chemistry A, 2022, 10, 19304-19319.	5.2	31
169	Super Stretchable, Selfâ€Healing, Adhesive Ionic Conductive Hydrogels Based on Tailorâ€Made Ionic Liquid for Highâ€Performance Strain Sensors. Advanced Functional Materials, 2022, 32, .	7.8	148
170	Autonomous Self-Healing of Highly Stretchable Supercapacitors at All Climates. Nano Letters, 2022, 22, 6444-6453.	4.5	15
171	Superior, Environmentally Tolerant, Flexible, and Adhesive Poly(ionic liquid) Gel as a Multifaceted Underwater Sensor. ACS Applied Materials & Interfaces, 2022, 14, 29273-29283.	4.0	28
172	Patterned Magnetofluids via Magnetic Printing and Photopolymerization for Multifunctional Flexible Electronic Sensors. ACS Applied Materials & amp; Interfaces, 2022, 14, 30332-30342.	4.0	1
173	A high-conductive, anti-freezing, antibacterial and anti-swelling starch-based physical hydrogel for multifunctional flexible wearable sensors. International Journal of Biological Macromolecules, 2022, 213, 791-803.	3.6	28
174	A hydrogel sensor driven by sodium carboxymethyl starch with synergistic enhancement of toughness and conductivity. Journal of Materials Chemistry B, 2022, 10, 5743-5752.	2.9	11
175	Anti-freezing, conductive and shape memory ionic glycerol-hydrogels with synchronous sensing and actuating properties for soft robotics. Journal of Materials Chemistry A, 2022, 10, 16095-16105.	5.2	23
176	Progress in the mechanical enhancement of hydrogels: Fabrication strategies and underlying mechanisms. Journal of Polymer Science, 2022, 60, 2525-2542.	2.0	45
177	Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel. Advanced Composites and Hybrid Materials, 2022, 5, 1976-1987.	9.9	112
178	Ultraâ€stretchable, selfâ€healable, and reprocessable ionic conductive hydrogels enabled by dual dynamic networks. Journal of Polymer Science, 2022, 60, 2817-2827.	2.0	5
179	A cellulose nanofibril-reinforced hydrogel with robust mechanical, self-healing, pH-responsive and antibacterial characteristics for wound dressing applications. Journal of Nanobiotechnology, 2022, 20, .	4.2	36
180	Strong–Weak Response Network-Enabled Ionic Conductive Hydrogels with High Stretchability, Self-Healability, and Self-Adhesion for Ionic Sensors. ACS Applied Materials & Interfaces, 2022, 14, 32551-32560.	4.0	16

#	Article	IF	CITATIONS
181	A strong, ultrastretchable, antifreezing and high sensitive strain sensor based on ionic conductive fiber reinforced organohydrogel. Composites Part B: Engineering, 2022, 243, 110116.	5.9	23
182	In situ synthesis of highly stretchable, freeze-tolerant silk-polyelectrolyte double-network hydrogels for multifunctional flexible sensing. Chemical Engineering Journal, 2022, 446, 137405.	6.6	35
183	Dual-network polyacrylamide/carboxymethyl chitosan-grafted-polyaniline conductive hydrogels for wearable strain sensors. Carbohydrate Polymers, 2022, 295, 119848.	5.1	49
184	Luminescent composite organohydrogels with Fe3+, pH, and glucose-dependent shape memory behavior accompanied with diverse fluorescence variation. Chemical Engineering Journal, 2022, 450, 137930.	6.6	3
185	Antifreezing, Ionically Conductive, Transparent, and Antidrying Carboxymethyl Chitosan Self-Healing Hydrogels as Multifunctional Sensors. ACS Biomaterials Science and Engineering, 2022, 8, 3633-3643.	2.6	12
186	High-Sensitivity and Extreme Environment-Resistant Sensors Based on PEDOT:PSS@PVA Hydrogel Fibers for Physiological Monitoring. ACS Applied Materials & Interfaces, 2022, 14, 35114-35125.	4.0	29
187	Selfâ€healable, recyclable, ultrastretchable, and highâ€performance NO ₂ sensors based on an organohydrogel for room and subâ€zeroÂtemperature and wireless operation. SmartMat, 2023, 4, .	6.4	36
188	Strong Tough Conductive Hydrogels via the Synergy of Ionâ€Induced Crossâ€Linking and Saltingâ€Out. Advanced Functional Materials, 2022, 32, .	7.8	89
189	A cellulose-based self-healing composite eutectogel with reversibility and recyclability for multi-sensing. Composites Science and Technology, 2022, 229, 109696.	3.8	8
190	Highly Conductive, Transparent, Adhesive, and Selfâ€Healable Ionogel Based on a Deep Eutectic Solvent with Widely Adjustable Mechanical Strength. Macromolecular Rapid Communications, 2022, 43, .	2.0	7
191	Bioinspired Freezeâ€Tolerant Soft Materials: Design, Properties, and Applications. Small, 2022, 18, .	5.2	29
192	Strong and Tough Physical Eutectogels Regulated by the Spatiotemporal Expression of Nonâ€Covalent Interactions. Advanced Functional Materials, 2022, 32, .	7.8	45
193	From carbon nanotubes to ultra-sensitive, extremely-stretchable and self-healable hydrogels. European Polymer Journal, 2022, 178, 111485.	2.6	12
194	Multiple hydrogen bonds reinforced conductive hydrogels with robust elasticity and ultra-durability as multifunctional ionic skins. Chemical Engineering Journal, 2023, 451, 138525.	6.6	33
195	Preparation and properties of cellulose nanofibers/αâ€zirconium phosphate nanosheets composite polyvinyl alcohol ionâ€conductive organohydrogel and its application in strain sensors. Journal of Applied Polymer Science, 2022, 139, .	1.3	3
196	HNTs@HKUST-1 strengthened PAAm hydrogel for strain sensing and antibacterial application. Microporous and Mesoporous Materials, 2022, 344, 112207.	2.2	7
197	Design of co-continuous structure of cellulose/PAA-based alkaline solid polyelectrolyte for flexible zinc-air battery. International Journal of Biological Macromolecules, 2022, 221, 446-455.	3.6	8
198	Highly tough and ionic conductive starch/poly(vinyl alcohol) hydrogels based on a universal soaking strategy. International Journal of Biological Macromolecules, 2022, 221, 1002-1011.	3.6	14

	CITATION	Report	
#	Article	IF	CITATIONS
199	Mechanically ductile, ionically conductive and low-temperature tolerant hydrogel enabled by high-concentration saline towards flexible strain sensor. Nano Energy, 2022, 103, 107789.	8.2	52
200	Tough, antifreezing, and conductive double network zwitterionic-based hydrogel for flexible sensors. Chemical Engineering Journal, 2023, 452, 139314.	6.6	40
201	MXene reinforced organohydrogels with ultra-stability, high sensitivity and anti-freezing ability for flexible strain sensors. Journal of Materials Chemistry C, 2022, 10, 11914-11923.	2.7	26
202	A multifunctional sustainable ionohydrogel with excellent low-hysteresis-driven mechanical performance, environmental tolerance, multimodal stimuli-responsiveness, and power generation ability for wearable electronics. Journal of Materials Chemistry A, 2022, 10, 17464-17476.	5.2	25
203	Materials development in stretchable iontronics. Soft Matter, 2022, 18, 6487-6510.	1.2	8
204	Cellulose nanocrystal reinforced conductive hydrogels with anti-freezing properties for strain sensors. New Journal of Chemistry, 2022, 46, 20900-20908.	1.4	5
205	Ultrahigh ionic conductivity and alkaline tolerance of poly(amidoxime)-based hydrogel for high performance piezoresistive sensor. Chemical Engineering Journal, 2023, 452, 139208.	6.6	14
206	Stretchable and tough tannic acid-modified graphene oxide/ polyvinyl alcohol conductive hydrogels for strain and pressure sensors. AIP Advances, 2022, 12, .	0.6	4
207	Alginate Fiber-Enhanced Poly(vinyl alcohol) Hydrogels with Superior Lubricating Property and Biocompatibility. Polymers, 2022, 14, 4063.	2.0	7
208	Anti-Freezing Nanocomposite Organohydrogels with High Strength and Toughness. Polymers, 2022, 14, 3721.	2.0	1
209	Bioinspired Chromotropic Ionic Skin with Inâ€Plane Strain/Temperature/Pressure Multimodal Sensing and Ultrahigh Stimuli Discriminability. Advanced Functional Materials, 2022, 32, .	7.8	33
210	A <scp>Roomâ€Temperature</scp> <scp>Chlorideâ€Conducting</scp> Metal–Organic Crystal [Al(<scp>DMSO</scp>) ₆]Cl ₃ for Potential <scp>Solidâ€State Chlorideâ€Shuttle</scp> Batteries. Energy and Environmental Materials, 2024, 7, .	7.3	3
211	High strength, antiâ€freezing, and conductive poly(vinyl alcohol)/urea ionic hydrogels as soft sensor. Polymer Engineering and Science, 2022, 62, 3985-3993.	1.5	8
212	From grape seed extracts to extremely stable strain sensors with freezing tolerance, drying resistance and anti-oxidation properties. Materials Today Communications, 2022, 33, 104551.	0.9	2
213	A recyclable, adhesive and fast self-healable ionic conducting elastomer based on a poly-zwitterionic liquid for soft iontronics. Journal of Materials Chemistry A, 2022, 10, 24581-24589.	5.2	6
214	Carbon nanotube-enhanced nanocomposite organohydrogel based on a physically cross-linked double network for sensitive wearable sensors. Journal of Materials Chemistry C, 2022, 10, 16546-16555.	2.7	2
215	High lignin-containing nanocelluloses prepared <i>via</i> TEMPO-mediated oxidation and polyethylenimine functionalization for antioxidant and antibacterial applications. RSC Advances, 2022, 12, 30030-30040.	1.7	3
216	An energy-saving, bending sensitive, and self-healing PVA-borax-IL ternary hydrogel electrolyte for visual flexible electrochromic strain sensors. Journal of Materials Chemistry A, 2022, 10, 25118-25128.	5.2	14

#	Article	IF	CITATIONS
217	Tunable and Self-Healing Properties of Polysaccharide-Based Hydrogels through Polymer Architecture Modulation. ACS Sustainable Chemistry and Engineering, 2022, 10, 14053-14063.	3.2	16
218	Recent developments of polysaccharideâ€based doubleâ€network hydrogels. Journal of Polymer Science, 2023, 61, 7-43.	2.0	20
219	A κ-Carrageenan-Containing Organohydrogel with Adjustable Transmittance for an Antifreezing, Nondrying, and Solvent-Resistant Strain Sensor. Biomacromolecules, 2022, 23, 4872-4882.	2.6	9
220	Molecular Design and Preparation of Protein-Based Soft Ionic Conductors with Tunable Properties. ACS Applied Materials & Interfaces, 2022, 14, 48061-48071.	4.0	0
221	High Performance Conductive Hydrogel for Strain Sensing Applications and Digital Image Mapping. ACS Applied Materials & Interfaces, 2022, 14, 51341-51350.	4.0	15
222	Ultrastretchable Ionogel with Extreme Environmental Resilience through Controlled Hydration Interactions. Advanced Functional Materials, 2023, 33, .	7.8	54
223	Gelatin/polyacrylamide ionic conductive hydrogel with skin temperature-triggered adhesion for human motion sensing and body heat harvesting. Nano Energy, 2022, 104, 107977.	8.2	43
224	Acetylated Distarch Phosphate-Mediated Tough and Conductive Hydrogel for Antibacterial Wearable Sensors. ACS Applied Materials & Interfaces, 2022, 14, 51420-51428.	4.0	11
225	A high-strength, environmentally stable, self-healable, and recyclable starch/PVA organohydrogel for strain sensor. European Polymer Journal, 2022, 181, 111650.	2.6	17
226	A toughened, transparent, anti-freezing and solvent-resistant hydrogel towards environmentally tolerant strain sensor and soft connection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656, 130390.	2.3	8
227	Hydrogel electrolyte based on sodium polyacrylate/KOH hydrogel reinforced with bacterial cellulose aerogel for flexible supercapacitors. Chemical Engineering Journal, 2023, 454, 140090.	6.6	4
228	Biopolymer – A sustainable and efficacious material system for effluent removal. Journal of Hazardous Materials, 2023, 443, 130168.	6.5	41
229	Toughened, self-healing and self-adhesive conductive gels with extraordinary temperature adaptability for dual-responsive sensors. Journal of Materials Chemistry A, 2022, 10, 25527-25538.	5.2	10
230	Hydrogel-based printing strategy for high-performance flexible thermoelectric generators. Nanoscale, 2022, 14, 16857-16864.	2.8	2
231	Stretchable strain sensor of composite hydrogels with high fatigue resistance and low hysteresis. Journal of Materials Chemistry A, 2022, 10, 25564-25574.	5.2	21
232	Bioinspired Gradient Poly(ionic liquid) Ionogels for Ionic Skins with an Ultrawide Pressure Detection Range. , 2022, 4, 2459-2468.		12
233	Advances and challenges of cellulose functional materials in sensors. Journal of Bioresources and Bioproducts, 2023, 8, 15-32.	11.8	14
234	Highly Stretchable, Selfâ€Healing, and Low Temperature Resistant Double Network Hydrogel Ionic Conductor as Flexible Sensor and Quasiâ€Solid Electrolyte. Macromolecular Rapid Communications, 2023–44	2.0	7

#	Article	IF	CITATIONS
235	Rarely negative-thermovoltage cellulose ionogel with simultaneously boosted mechanical strength and ionic conductivity <i>via</i> ion-molecular engineering. Journal of Materials Chemistry A, 2023, 11, 2145-2154.	5.2	16
236	Skin-mimicking strategy to fabricate strong and highly conductive anti-freezing cellulose-based hydrogels as strain sensors. International Journal of Biological Macromolecules, 2023, 227, 462-471.	3.6	16
237	A cellulose/bentonite grafted polyacrylic acid hydrogel for highly-efficient removal of Cd(II). Journal of Water Process Engineering, 2023, 51, 103414.	2.6	12
238	Perspective Chapter: Tissue-Electronics Interfaces. , 0, , .		5
239	Wood Robot with Magnetic Anisotropy for Programmable Locomotion. Advanced Functional Materials, 2023, 33, .	7.8	5
240	Transparent, Ultra-Stretching, Tough, Adhesive Carboxyethyl Chitin/Polyacrylamide Hydrogel Toward High-Performance Soft Electronics. Nano-Micro Letters, 2023, 15, .	14.4	38
241	Structural Color Ionic Hydrogel Patches for Wound Management. ACS Nano, 2023, 17, 1437-1447.	7.3	19
242	Ultrastretchable Composite Organohydrogels with Dual Cross-Links Enabling Multimodal Sensing. ACS Applied Materials & Interfaces, 2022, 14, 55143-55154.	4.0	13
243	High Multi-Environmental Mechanical Stability and Adhesive Transparent Ionic Conductive Hydrogels Used as Smart Wearable Devices. Polymers, 2022, 14, 5316.	2.0	4
244	Stretchable One-Dimensional Conductors for Wearable Applications. ACS Nano, 2022, 16, 19810-19839.	7.3	21
245	Three-dimensional printing of soft hydrogel electronics. Nature Electronics, 2022, 5, 893-903.	13.1	51
246	3D Printing of Mechanically Elastic, Selfâ€Adhesive, and Biocompatible Organohydrogels for Wearable and Breathable Strain Sensors. Advanced Materials Technologies, 2023, 8, .	3.0	5
247	Highâ€Performance Strain Sensors Based on Organohydrogel Microsphere Film for Wearable Human–Computer Interfacing. Advanced Science, 2023, 10, .	5.6	43
248	Wide temperature range- and damage-tolerant microsupercapacitors from salt-tolerant, anti-freezing and self-healing organohydrogel via dynamic bonds modulation. Journal of Energy Chemistry, 2023, 78, 283-293.	7.1	5
249	Humanoid Ionotronic Skin for Smart Object Recognition and Sorting. , 2023, 5, 189-201.		13
250	Simultaneously Stretchable and Compressible Flexible Strain Sensors Based on Carbon Nanotube Composites for Motion Monitoring and Human–Computer Interactions. ACS Applied Nano Materials, 2022, 5, 18427-18437.	2.4	11
251	Environmentally Stable, Stretchable, Adhesive, and Conductive Organohydrogels with Multiple Dynamic Interactions as High-Performance Strain and Temperature Sensors. ACS Applied Materials & Interfaces, 2022, 14, 55075-55087.	4.0	10
252	Balancing the Overall Performance of Poly(vinyl alcohol)/MXene Composite Organohydrogels for Flexible Strain Sensors. ACS Applied Polymer Materials, 2023, 5, 370-380.	2.0	4

#	Article	IF	CITATIONS
253	Bioinspired robust yet regenerable nanofibrous polymer brushes for broad-spectrum antifouling. Chemical Engineering Journal, 2023, 458, 141475.	6.6	4
254	Construction and characterization of highly stretchable ionic conductive hydrogels for flexible sensors with good anti-freezing performance. European Polymer Journal, 2023, 186, 111827.	2.6	7
255	One-step coaxial spinning of core-sheath hydrogel fibers for stretchable ionic strain sensors. Chemical Engineering Journal, 2023, 458, 141393.	6.6	11
256	Self-healing and wide temperature tolerant flexible supercapacitor based on ternary-network organo-hydrogel electrolyte. International Journal of Hydrogen Energy, 2023, 48, 13264-13275.	3.8	4
257	High-Performance Zwitterionic Organohydrogel Fiber in Bioelectronics for Monitoring Bioinformation. Biosensors, 2023, 13, 115.	2.3	0
258	3D-printable and multifunctional conductive nanocomposite with tunable mechanics inspired by sesame candy. Nano Energy, 2023, 108, 108166.	8.2	3
259	Tough hydrogel–elastomer hybrids hydrophobically regulated by an MXene for motion monitoring in harsh environments. Journal of Materials Chemistry C, 2023, 11, 2688-2694.	2.7	5
260	Hofmeister Effect Assisted Dualâ€Dynamicâ€Bond Crossâ€Linked Organohydrogels with Enhanced Ionic Conductivity and Balanced Mechanical Properties for Flexible Sensors. Advanced Functional Materials, 2023, 33, .	7.8	21
261	Super-anti-freezing, tough and adhesive titanium carbide and L-ornithine-enhanced hydrogels. Journal of Bioresources and Bioproducts, 2023, 8, 136-145.	11.8	4
262	Porous Scaffolds Based on Polydopamine/Chondroitin Sulfate/Polyvinyl Alcohol Composite Hydrogels. Polymers, 2023, 15, 271.	2.0	9
263	A multifunctional structural coloured electronic skin monitoring body motion and temperature. Soft Matter, 2023, 19, 361-365.	1.2	3
264	Mixed solvent exchange enabled high-performance polymeric gels. Polymer, 2023, 267, 125661.	1.8	5
265	Highly stretchable, adhesive, and biocompatible hydrogel platforms of tannic acid functionalized spherical nanocellulose for strain sensors. International Journal of Biological Macromolecules, 2023, 229, 105-122.	3.6	7
266	A flexible Zn-ion capacitor based on wood derived porous carbon and polyacrylamide/cellulose nanofiber hydrogel. Industrial Crops and Products, 2023, 193, 116216.	2.5	10
267	A Review on Thermal Properties of Hydrogels for Electronic Devices Applications. Gels, 2023, 9, 7.	2.1	10
268	Mechanically Strong, Freezeâ€Resistant, and Ionically Conductive Organohydrogels for Flexible Strain Sensors and Batteries. Advanced Science, 2023, 10, .	5.6	32
269	Multifunctional Antifreezing Organogel Polyelectrolyte for a Flexible Supercapacitor. ACS Applied Energy Materials, 2023, 6, 1501-1510.	2.5	5
270	Dialcohol Cellulose Nanocrystals Enhanced Polymerizable Deep Eutectic Solventâ€Based Selfâ€Healing Ion Conductors with Ultraâ€Stretchability and Sensitivity. , 2023, 2, .		3

#	Article	IF	CITATIONS
271	Mechanically Robust and Transparent Organohydrogelâ€Based Eâ€5kin Nanoengineered from Natural Skin. Advanced Functional Materials, 2023, 33, .	7.8	45
272	Key approaches and challenges in fabricating advanced flexible zinc-ion batteries with functional hydrogel electrolytes. Energy Storage Materials, 2023, 56, 351-393.	9.5	32
273	3D Printed Ionogels In Sensors. Polymer-Plastics Technology and Materials, 2023, 62, 632-654.	0.6	1
274	Muscle Contraction-Inspired Tough Hydrogels. ACS Applied Materials & Interfaces, 2023, 15, 8462-8470.	4.0	8
275	Biomimetic Spun Silk Ionotronic Fibers for Intelligent Discrimination of Motions and Tactile Stimuli. Advanced Materials, 2023, 35, .	11.1	8
276	Stretchable, conductive and anti-freezing poly (vinyl alcohol)-based organo-hydrogels for strain sensors. Sensors and Actuators A: Physical, 2023, 353, 114223.	2.0	3
277	Ionic Flexible Mechanical Sensors: Mechanisms, Structural Engineering, Applications, and Challenges. , 2023, 2, .		0
278	Correlation between solvent composition and materials properties of organohydrogels prepared by solvent displacement. Macromolecular Research, 2023, 31, 615-623.	1.0	1
279	Sustainable, Insoluble, and Photonic Cellulose Nanocrystal Patches for Calcium Ion Sensing in Sweat. Small, 2023, 19, .	5.2	3
280	Polyacrylamide-Chitosan based magnetic hydrogels with high stiffness and ultra-toughness. Composites Part A: Applied Science and Manufacturing, 2023, 168, 107478.	3.8	5
281	Super tough, stretchable and transparent ionic conductive hydrogel for flexible sensor with excellent temperature tolerance. Reactive and Functional Polymers, 2023, 186, 105572.	2.0	5
282	High strength, anti-freezing and conductive silkworm excrement cellulose-based ionic hydrogel with physical-chemical double cross-linked for pressure sensing. International Journal of Biological Macromolecules, 2023, 236, 123936.	3.6	8
283	Stretchable conductive hydrogel with super resistance-strain stability and ultrahigh durability enabled by specificity crosslinking strategy for high-performance flexible electronics. Chemical Engineering Journal, 2023, 465, 142828.	6.6	6
284	All-solid-state Ti3C2Tx neutral symmetric fiber supercapacitors with high energy density and wide temperature range. Journal of Colloid and Interface Science, 2023, 643, 92-101.	5.0	6
285	Self-healing, self-adhesive, and stretchable conductive hydrogel for multifunctional sensor prepared by catechol modified nanocellulose stabilized poly(α-thioctic acid). Carbohydrate Polymers, 2023, 313, 120813.	5.1	20
286	A super-tough ionic conductive hydrogel with anti-freezing, water retention, and self-regenerated properties for self-powered flexible sensor. Applied Materials Today, 2023, 32, 101820.	2.3	6
287	Facile fabrication of strong and conductive cellulose hydrogels with wide temperature tolerance for flexible sensors. International Journal of Biological Macromolecules, 2023, 240, 124438.	3.6	10
288	Polyacrylamide gel electrolyte for high-performance quasi-solid-state electrochromic devices. Solar Energy Materials and Solar Cells, 2023, 256, 112310.	3.0	9

#	Article	IF	CITATIONS
289	Highly conductive and anti-freezing cellulose hydrogel for flexible sensors. International Journal of Biological Macromolecules, 2023, 230, 123425.	3.6	24
290	Electrolytes in Organic Batteries. Chemical Reviews, 2023, 123, 1712-1773.	23.0	57
291	Electrically Detaching Behavior and Mechanism of Ionic Conductive Adhesives. Chinese Journal of Polymer Science (English Edition), 0, , .	2.0	1
292	Tough, Healable, and Sensitive Strain Sensor Based on Multiphysically Cross-Linked Hydrogel for Ionic Skin. Biomacromolecules, 2023, 24, 1287-1298.	2.6	17
293	Rapid room-temperature polymerization strategy to prepare organic/inorganic hybrid conductive organohydrogel for terahertz wave responsiveness. Chemical Engineering Journal, 2023, 461, 141856.	6.6	5
294	Nanomaterials-enhanced, stretchable, self-healing, temperature-tolerant and adhesive tough organohydrogels with long-term durability as flexible sensors for intelligent motion-speech recognition. Chemical Engineering Journal, 2023, 461, 141905.	6.6	16
295	Dual Physically Crosslinked Silk Fibroin Ionoelastomer with Ultrahigh Stretchability and Low Hysteresis. Chemistry of Materials, 2023, 35, 1752-1761.	3.2	3
296	Advanced Flexible Materials from Nanocellulose. Advanced Functional Materials, 2023, 33, .	7.8	24
297	Cellulose Gel Mechanoreceptors – Principles, Applications and Prospects. Advanced Functional Materials, 2023, 33, .	7.8	9
298	Environmentâ€ŧolerant ionic hydrogel–elastomer hybrids with robust interfaces, high transparence, and biocompatibility for a mechanical–thermal multimode sensor. InformaÄnÃ-Materiály, 2023, 5, .	8.5	39
299	Ionic skin: from imitating natural skin to beyond. , 2023, 1, 224-239.		10
300	Celluloseâ€based Conductive Gels and Their Applications. ChemNanoMat, 2023, 9, .	1.5	6
301	Multi-physics coupling reinforced polyvinyl alcohol/cellulose nanofibrils based multifunctional hydrogel sensor for human motion monitoring. International Journal of Biological Macromolecules, 2023, 235, 123841.	3.6	5
302	Anisotropic double-network hydrogels integrated superior performance of strength, toughness and conductivity for flexible multi-functional sensors. Chemical Engineering Journal, 2023, 462, 142226.	6.6	16
303	Nanocomposite conductive hydrogels with Robust elasticity and multifunctional responsiveness for flexible sensing and wound monitoring. Materials Horizons, 2023, 10, 2096-2108.	6.4	18
304	Ultra-stretchable, high-adhesive, self-healable and remoldable hydrogel sensor with dynamic multi-interactions for multiscale motion detection, Braille transmission and temperature monitoring. Chemical Engineering Journal, 2023, 462, 142305.	6.6	13
305	Entanglement in Smart Hydrogels: Fast Response Time, Antiâ€Freezing and Antiâ€Drying. Advanced Functional Materials, 2023, 33, .	7.8	18
306	Dual Network Hydrogel with High Mechanical Properties, Electrical Conductivity, Water Retention and Frost Resistance, Suitable for Wearable Strain Sensors. Gels, 2023, 9, 224.	2.1	1

#	Article	IF	CITATIONS
307	Development of Antifreezing, Printable, Adhesive, Tough, Biocompatible, High-Water Content Hydrogel for Versatile Applications. ACS Applied Materials & Interfaces, 2023, 15, 16034-16045.	4.0	6
308	An Antiâ€Freezing Hydrogel Electrolyte for Flexible Zincâ€Ion Batteries Operating at â^'70°C. Advanced Functional Materials, 2023, 33, .	7.8	30
309	Recent Progress of Biomaterials-Based Epidermal Electronics for Healthcare Monitoring and Human–Machine Interaction. Biosensors, 2023, 13, 393.	2.3	8
310	Functional Enhancement of Guar Gumâ^'Based Hydrogel by Polydopamine and Nanocellulose. Foods, 2023, 12, 1304.	1.9	1
311	Designing Superhydrophilic Hydrogels as Binder-Free Catalysts for Enhanced Oxygen Evolution Performance. Industrial & Engineering Chemistry Research, 2023, 62, 5543-5551.	1.8	0
312	Strong and Tough Cellulose Hydrogels via Solution Annealing and Dual Crossâ€Linking. Small, 2023, 19, .	5.2	5
313	Dialdehyde Cellulose Solution as Reducing Agent: Preparation of Uniform Silver Nanoparticles and In Situ Synthesis of Antibacterial Composite Films with High Barrier Properties. Molecules, 2023, 28, 2956.	1.7	2
314	Anhydrous Thermogalvanic Gel for Simultaneous Waste Heat Recovery and Thermal Management of Electronics. ACS Applied Polymer Materials, 2023, 5, 4628-4635.	2.0	5
315	Hydrogen bond regulating in hydrogel electrolytes for enhancing the antifreeze ability of a flexible zinc-ion hybrid supercapacitor. Sustainable Energy and Fuels, 0, , .	2.5	1
316	Reinforcement of Nanocomposite Hydrogel with Dialdehyde Cellulose Nanofibrils via Physical and Double Network Crosslinking Synergies. Polymers, 2023, 15, 1765.	2.0	4
317	Ultrastretchable High-Conductivity MXene-Based Organohydrogels for Human Health Monitoring and Machine-Learning-Assisted Recognition. ACS Applied Materials & Interfaces, 2023, 15, 19435-19446.	4.0	22
318	Skin-Inspired Ultra-Tough Supramolecular Multifunctional Hydrogel Electronic Skin for Human–Machine Interaction. Nano-Micro Letters, 2023, 15, .	14.4	31
319	Construction of MXene functionalized wood-based hydrogels using ZnCl ₂ aqueous solution for flexible electronics. Journal of Materials Chemistry A, 2023, 11, 10337-10345.	5.2	6
320	Construction of Alkaline Gel Polymer Electrolytes with a Double Cross-Linked Network for Flexible Zinc–Air Batteries. ACS Applied Polymer Materials, 2023, 5, 3622-3631.	2.0	2
321	Environmentally adaptive polysaccharide-based hydrogels and their applications in extreme conditions: A review. International Journal of Biological Macromolecules, 2023, 241, 124496.	3.6	2
338	Highly adhesive chitosan/poly(vinyl alcohol) hydrogels <i>via</i> the synergy of phytic acid and boric acid and their application as highly sensitive and widely linear strain sensors. Materials Horizons, 2023, 10, 3488-3498.	6.4	6
347	Cellulose-Based Ionic Conductor: An Emerging Material toward Sustainable Devices. Chemical Reviews, 2023, 123, 9204-9264.	23.0	30
358	Recent progress in structural modification of polymer gel electrolytes for use in solid-state zinc-ion batteries. Dalton Transactions, 2023, 52, 11780-11796.	1.6	3

#	Article	IF	CITATIONS
374	Sustainable zinc–air battery chemistry: advances, challenges and prospects. Chemical Society Reviews, 2023, 52, 6139-6190.	18.7	24
403	Liquid Metal-Gel (LM-Gel) with Conductivity and Deformability. Journal of Materials Chemistry C, 0, , .	2.7	0
405	Anti-freezing Multifunctional Conductive Hydrogels: From Structure Design to Flexible Electronic Devices. Materials Chemistry Frontiers, 0, , .	3.2	0
434	Water vapor assisted aramid nanofiber reinforcement for strong, tough and ionically conductive organohydrogels as high-performance strain sensors. Materials Horizons, 2024, 11, 1272-1282.	6.4	1
441	Cold-resistant, highly stretchable ionic conductive hydrogels for intelligent motion recognition in winter sports. Materials Horizons, 2024, 11, 1234-1250.	6.4	2
446	Ultra-strong, nonfreezing, and flexible strain sensors enabled by biomass-based hydrogels through triple dynamic bond design. Materials Horizons, 2024, 11, 1588-1596.	6.4	0