Massive MIMO Transmission for LEO Satellite Commun

IEEE Journal on Selected Areas in Communications 38, 1851-1865 DOI: 10.1109/jsac.2020.3000803

Citation Report

#	Article	IF	CITATIONS
1	Satellite-Aided Consensus Protocol for Scalable Blockchains. Sensors, 2020, 20, 5616.	2.1	11
2	Network Massive MIMO Transmission Over Millimeter-Wave and Terahertz Bands: Mobility Enhancement and Blockage Mitigation. IEEE Journal on Selected Areas in Communications, 2020, 38, 2946-2960.	9.7	32
3	A Pragmatic Approach to Massive MIMO for Broadband Communication Satellites. IEEE Access, 2020, 8, 132212-132236.	2.6	44
4	Energy-Efficient RIS-Assisted Satellites for IoT Networks. IEEE Internet of Things Journal, 2022, 9, 14891-14899.	5.5	22
5	A Network-Flows-Based Satellite Handover Strategy for LEO Satellite Networks. IEEE Wireless Communications Letters, 2021, 10, 2669-2673.	3.2	8
6	The Radiation Effect on Low Noise Amplifier Implemented in the Space-Aerial–Terrestrial Integrated 5G Networks. IEEE Access, 2021, 9, 46641-46651.	2.6	4
7	Rate-Splitting Multiple Access for Multi-Antenna Broadcast Channels with Statistical CSIT. , 2021, , .		14
8	6G Enabled Smart Infrastructure for Sustainable Society: Opportunities, Challenges, and Research Roadmap. Sensors, 2021, 21, 1709.	2.1	120
9	Data Detection in Large MIMO Satellite Communication Systems. IEEE Wireless Communications Letters, 2021, 10, 1032-1035.	3.2	6
10	Lowâ€complexity detection method based on channel matrix periodic N â€diagonal equivalence for uplink MUâ€MIMO of multiâ€beam satellite communication systems. International Journal of Satellite Communications and Networking, 2021, 39, 509-523.	1.2	2
11	Throughput Analysis with Dynamic Spectrum Access Control in Space-Air-Ground Integrated Networks. , 2021, , .		0
12	Robust Design for Integrated Satellite–Terrestrial Internet of Things. IEEE Internet of Things Journal, 2021, 8, 9072-9083.	5.5	21
13	Future Ultra-Dense LEO Satellite Networks: A Cell-Free Massive MIMO Approach. , 2021, , .		18
14	Broadband Non-Geostationary Satellite Communication Systems: Research Challenges and Key Opportunities. , 2021, , .		17
15	Intermittent Jamming against Telemetry and Telecommand of Satellite Systems and A Learning-driven Detection Strategy. , 2021, , .		6
16	Location-Based Timing Advance Estimation for 5G Integrated LEO Satellite Communications. IEEE Transactions on Vehicular Technology, 2021, 70, 6002-6017.	3.9	20
17	Hybrid A/D Precoding for Downlink Massive MIMO in LEO Satellite Communications. , 2021, , .		13
18	Smart Beamforming for Direct LEO Satellite Access of Future IoT. Sensors, 2021, 21, 4877.	2.1	11

#	Article	IF	CITATIONS
19	LEO Satellite Constellations for 5G and Beyond: How Will They Reshape Vertical Domains?. IEEE Communications Magazine, 2021, 59, 30-36.	4.9	63
20	Learning to Localize: A 3D CNN Approach to User Positioning in Massive MIMO-OFDM Systems. IEEE Transactions on Wireless Communications, 2021, 20, 4556-4570.	6.1	26
21	Resource Efficiency Optimization for Robust Beamforming in Multi-Beam Satellite Communications. IEEE Transactions on Vehicular Technology, 2021, 70, 6958-6968.	3.9	22
22	Broad Coverage Precoder Design for Synchronization in Satellite Massive MIMO Systems. IEEE Transactions on Communications, 2021, 69, 5531-5545.	4.9	5
23	Deep Learning-Based Channel Prediction for LEO Satellite Massive MIMO Communication System. IEEE Wireless Communications Letters, 2021, 10, 1835-1839.	3.2	31
24	Sum Rate Maximization of Massive MIMO NOMA in LEO Satellite Communication System. IEEE Wireless Communications Letters, 2021, 10, 1667-1671.	3.2	30
25	A Hybrid Beamforming Design for Massive MIMO LEO Satellite Communications. Frontiers in Space Technologies, 2021, 2, .	0.8	17
26	Hybrid Beamforming, User Scheduling, and Resource Allocation for Integrated Terrestrial-Satellite Communication. IEEE Transactions on Vehicular Technology, 2021, 70, 8868-8882.	3.9	22
27	Joint Beamforming for Integrated Mmwave Satellite-Terrestrial Self-Backhauled Networks. IEEE Transactions on Vehicular Technology, 2021, 70, 9103-9117.	3.9	16
28	Reconfigurable Intelligent Surfaces-Assisted Multiuser MIMO Uplink Transmission With Partial CSI. IEEE Transactions on Wireless Communications, 2021, 20, 5613-5627.	6.1	46
29	Earth Rotation-Aware Non-Stationary Satellite Communication Systems: Modeling and Analysis. IEEE Transactions on Wireless Communications, 2021, 20, 5942-5956.	6.1	9
30	Joint Optimization of Transmission and Computation Resources for Satellite and High Altitude Platform Assisted Edge Computing. IEEE Transactions on Wireless Communications, 2022, 21, 1362-1377.	6.1	40
31	HF Skywave Massive MIMO Communication. IEEE Transactions on Wireless Communications, 2022, 21, 2769-2785.	6.1	14
32	Direct-to-Satellite IoT Slotted Aloha Systems with Multiple Satellites and Unequal Erasure Probabilities. Sensors, 2021, 21, 7099.	2.1	10
33	Location-Based Timing Advance Estimation for 5G Integrated LEO Satellite Communications. , 2020, , .		3
34	A Multi-objective Satellite Handover Strategy Based on Entropy in LEO Satellite Communications. , 2020, , .		16
35	Sum-Rate Maximization for UAV Aided Wireless Power Transfer in Space-Air-Ground Networks. IEEE Access, 2020, 8, 216231-216244.	2.6	8
36	Grant-Free Random Access in Massive MIMO Based LEO Satellite Internet of Things. , 2021, , .		3

#	Article	IF	CITATIONS
37	Joint Active User Detection and Channel Estimation for Grant-Free NOMA-OTFS in LEO Constellation Internet-of-Things. , 2021, , .		5
38	Downlink Transmit Design for Massive MIMO LEO Satellite Communications. IEEE Transactions on Communications, 2022, 70, 1014-1028.	4.9	38
39	Files Delivery and Share Optimization in LEO Satellite-Terrestrial Integrated Networks: A NOMA Based Coalition Formation Game Approach. IEEE Transactions on Vehicular Technology, 2022, 71, 831-843.	3.9	7
40	Energy Efficiency Optimization Algorithm for Single Station Multi-satellite MIMO Uplink System. Lecture Notes in Electrical Engineering, 2021, , 298-306.	0.3	0
41	Multi-Layer Space Information Networks: Access Design and Softwarization. IEEE Access, 2021, 9, 158587-158598.	2.6	15
42	Joint power allocation and cooperative analog beamforming for ultraâ€dense low Earth orbit satellite constellation networks. International Journal of Satellite Communications and Networking, 0, , .	1.2	2
43	A Low-Sidelobe-Level Variable Inclination Continuous Transverse Stub Antenna with a Nonlinear Slow-Wave Structure. International Journal of Antennas and Propagation, 2021, 2021, 1-10.	0.7	1
44	Heuristic Radio Resource Management for Massive MIMO in Satellite Broadband Communication Networks. IEEE Access, 2021, 9, 147164-147190.	2.6	12
45	Satellite-Based Non-Terrestrial Networks in 5G: Insights and Challenges. IEEE Access, 2022, 10, 11274-11283.	2.6	9
46	Toward 6G Non-Terrestrial Networks. IEEE Network, 2022, 36, 113-120.	4.9	44
47	Novel Distributed Beamforming Algorithms for Heterogeneous Space Terrestrial Integrated Network. IEEE Internet of Things Journal, 2022, 9, 11351-11364.	5.5	3
48	Satellite-Assisted UAV Trajectory Control in Hostile Jamming Environments. IEEE Transactions on Vehicular Technology, 2022, 71, 3760-3775.	3.9	9
49	Satellite- and Cache-Assisted UAV: A Joint Cache Placement, Resource Allocation, and Trajectory Optimization for 6G Aerial Networks. IEEE Open Journal of Vehicular Technology, 2022, 3, 40-54.	3.4	24
50	Flexible Quasi-Omnidirectional precoding for Full-Dimension massive MIMO systems. AEU - International Journal of Electronics and Communications, 2022, 144, 154062.	1.7	1
51	PAPR Analysis for Faster-Than-Nyquist Signaling in Satellite Communications. , 2020, , .		4
52	Massive MIMO Downlink Transmission for LEO Satellite Communications. , 2021, , .		6
53	Application of HBF with Adaptive Port Mapping for LEO Satellite Communication Systems. , 2021, , .		1
54	MIMO Throughput Performance Analysis in LEO Communication Scenario. , 2021, , .		3

#	Article	IF	CITATIONS
55	Adaptive Sub-carrier Spacing OFDM Waveform in LEO Satellite Communication System. , 2021, , .		0
56	Outage Probability for OTFS Based Downlink LEO Satellite Communication. IEEE Transactions on Vehicular Technology, 2022, 71, 3355-3360.	3.9	14
57	A Satellite Handover Strategy Based on Heuristic Algorithm for LEO Satellite Networks. IEICE Transactions on Communications, 2022, E105.B, 876-884.	0.4	2
58	A Road towards 6G Communication—A Review of 5G Antennas, Arrays, and Wearable Devices. Electronics (Switzerland), 2022, 11, 169.	1.8	65
59	Hybrid Analog/Digital Precoding for Downlink Massive MIMO LEO Satellite Communications. IEEE Transactions on Wireless Communications, 2022, 21, 5962-5976.	6.1	18
60	A Spatial Resource Allocation Method in Massive MIMO-LEO Satellite Communications. , 2021, , .		2
61	A Learning Approach for Efficient Multicast Beamforming Based on Determinantal Point Process. IEEE Transactions on Wireless Communications, 2022, 21, 7427-7442.	6.1	1
62	Non-Orthogonal Multiple Access-Based Average Age of Information Minimization in LEO Satellite-Terrestrial Integrated Networks. IEEE Transactions on Green Communications and Networking, 2022, 6, 1793-1805.	3.5	11
63	Robust Downlink Transmission for 6G LEO-MIMO Satellite Systems. Wireless Communications and Mobile Computing, 2022, 2022, 1-10.	0.8	1
64	Closed-Form Power Normalization Methods for a Satellite MIMO System. Sensors, 2022, 22, 2586.	2.1	0
65	Performance analysis of spatial multiplexing MIMO-MFSK based on energy detection for fast-fading environments. Eurasip Journal on Wireless Communications and Networking, 2022, 2022, .	1.5	2
66	Computing Offloading-based Task Scheduling for Space-based Cloud-fog Networks. , 2021, , .		2
67	Induced electron radiation effect on the performance of inter-satellite optical wireless communication. PLoS ONE, 2021, 16, e0259649.	1.1	1
68	Massive MIMO Communication Over HF Skywave Channels. , 2021, , .		1
69	Channel Modeling for UAV-Aided LEO Satellite Communication. , 2021, , .		2
70	Twin-Resolution Phase Shifters Based Massive MIMO Hybrid Precoding for LEO SATCOM with Nonlinear PAs. , 2021, , .		1
71	Grant Free Age-Optimal Random Access Protocol for Satellite-Based Internet of Things. IEEE Transactions on Communications, 2022, 70, 3947-3961.	4.9	8
72	Design and Analysis of High-Capacity MIMO System in Line-of-Sight Communication. Sensors, 2022, 22, 3669.	2.1	0

#	Article	IF	CITATIONS
73	Beamspace MIMO for Satellite Swarms. , 2022, , .		10
74	Centralized, Distributed, and Module-Integrated Electric Power System Schemes in CubeSats: Performance Assessment. IEEE Access, 2022, 10, 55396-55407.	2.6	4
75	Rate-Splitting Multiple Access and Its Interplay with Intelligent Reflecting Surfaces. IEEE Communications Magazine, 2022, 60, 52-57.	4.9	8
76	Cooperative multigroup multicast beamforming for cacheâ€enabled ultraâ€dense low earth orbit satellite constellation networks. International Journal of Satellite Communications and Networking, 0, , .	1.2	1
77	Joint Bayesian Channel Estimation and Data Detection for OTFS Systems in LEO Satellite Communications. IEEE Transactions on Communications, 2022, 70, 4386-4399.	4.9	4
78	Robust Energy-Efficient Hybrid Beamforming Design for Massive MIMO LEO Satellite Communication Systems. IEEE Access, 2022, 10, 63085-63099.	2.6	7
79	Age-Optimal Network Coding HARQ Scheme for Satellite-Based Internet of Things. IEEE Internet of Things Journal, 2022, 9, 21984-21998.	5.5	6
80	Adapting to Dynamic LEO-B5G Systems: Meta-Critic Learning Based Efficient Resource Scheduling. IEEE Transactions on Wireless Communications, 2022, 21, 9582-9595.	6.1	9
81	Massive MIMO Hybrid Precoding for LEO Satellite Communications With Twin-Resolution Phase Shifters and Nonlinear Power Amplifiers. IEEE Transactions on Communications, 2022, 70, 5543-5557.	4.9	6
83	Robust Downlink Precoding for LEO Satellite Systems With Per-Antenna Power Constraints. IEEE Transactions on Vehicular Technology, 2022, 71, 10694-10711.	3.9	2
84	Deep Learning (DL)-Based Channel Prediction and Hybrid Beamforming for LEO Satellite Massive MIMO System. IEEE Internet of Things Journal, 2022, 9, 23705-23715.	5.5	8
85	Joint Communications and Sensing for Hybrid Massive MIMO LEO Satellite Systems With Beam Squint. , 2022, , .		6
86	Location-assisted precoding in 5G LEO systems: architectures and performances. , 2022, , .		9
87	Position, Navigation, and Timing (PNT) Through Low Earth Orbit (LEO) Satellites: A Survey on Current Status, Challenges, and Opportunities. IEEE Access, 2022, 10, 83971-84002.	2.6	41
88	Research trends, challenges, future prospects of Satellite Communications. , 2022, , .		4
89	Deep Reinforcement Learning-Assisted NOMA Age-Optimal Power Allocation for S-IoT Network. , 2022, ,		Ο
90	Efficient Resource Scheduling and Optimization for Over-Loaded LEO-Terrestrial Networks. , 2022, , .		0
91	QoS-Aware Uplink NOMA with Multi-Type Service Coexistence for LEO Satellite Constellation. , 2022, , .		0

#	Article	IF	CITATIONS
92	Random Access With Massive MIMO-OTFS in LEO Satellite Communications. IEEE Journal on Selected Areas in Communications, 2022, 40, 2865-2881.	9.7	15
93	Beam Squint-Aware Integrated Sensing and Communications for Hybrid Massive MIMO LEO Satellite Systems. IEEE Journal on Selected Areas in Communications, 2022, 40, 2994-3009.	9.7	19
94	Holographic MIMO for LEO Satellite Communications Aided by Reconfigurable Holographic Surfaces. IEEE Journal on Selected Areas in Communications, 2022, 40, 3071-3085.	9.7	10
95	Rate-Splitting Multiple Access-Enabled Security Analysis in Cognitive Satellite Terrestrial Networks. IEEE Transactions on Vehicular Technology, 2022, 71, 11756-11771.	3.9	11
96	Covert Downlink mmWave Communication forÂMassive MIMO LEO Satellite. Lecture Notes in Electrical Engineering, 2022, , 653-664.	0.3	0
97	Intelligent Massive MIMO Systems for Beyond 5G Networks: An Overview and Future Trends. IEEE Access, 2022, 10, 102532-102563.	2.6	12
98	A Survey on Nongeostationary Satellite Systems: The Communication Perspective. IEEE Communications Surveys and Tutorials, 2023, 25, 101-132.	24.8	35
99	3D City Map Reconstruction from LEO Communication Satellite SNR Measurements. , 2022, , .		Ο
100	Joint channel estimation and beam selection NOMA system for satellite-based Internet of Things. Science China Information Sciences, 2022, 65, .	2.7	3
101	Joint User Scheduling and Hybrid Beamforming Design for Massive MIMO LEO Satellite Multigroup Multicast Communication Systems. Sensors, 2022, 22, 6858.	2.1	1
102	Physical random access signal design for 5G mobile satellite communication systems. Physical Communication, 2022, , 101908.	1.2	3
103	Intelligent Reflecting Surface-Aided Integrated Terrestrial-Satellite Networks. IEEE Transactions on Wireless Communications, 2023, 22, 2507-2522.	6.1	3
104	Robust Secure Transmission for Satellite Communications. IEEE Transactions on Aerospace and Electronic Systems, 2022, , 1-15.	2.6	4
105	Evaluation of MU-MIMO Digital Beamforming Algorithms in B5G/6G LEO Satellite Systems. , 2022, , .		4
106	Joint Graph-based User Scheduling and Beamforming in LEO-MIMO Satellite Communication Systems. , 2022, , .		3
107	Constellation Encryption Design Based on Chaotic Sequence and the RSA Algorithm. Electronics (Switzerland), 2022, 11, 3346.	1.8	2
109	Distributed Massive MIMO for LEO Satellite Networks. IEEE Open Journal of the Communications Society, 2022, 3, 2162-2177.	4.4	8
110	Multitype Services Coexistence in Uplink NOMA for Dual-Layer LEO Satellite Constellation. IEEE Internet of Things Journal, 2023, 10, 2693-2707.	5.5	5

#	Article	IF	CITATIONS
111	Active Terminal Identification, Channel Estimation, and Signal Detection for Grant-Free NOMA-OTFS in LEO Satellite Internet-of-Things. IEEE Transactions on Wireless Communications, 2023, 22, 2847-2866.	6.1	14
112	Doppler Analysis and Compensation for Distributed LEO-MIMO Satellite Communications. , 2022, , .		0
113	Effect of Intelligent Multi-Association in Civil Aircraft-Augmented SAGIN. IEEE Transactions on Cognitive Communications and Networking, 2023, 9, 223-238.	4.9	1
114	Block-Based Kalman Channel Tracking for LEO Satellite Communication With Massive MIMO. IEEE Communications Letters, 2023, 27, 645-649.	2.5	1
115	RF Fingerprinting Identification Based on Spiking Neural Network for LEO–MIMO Systems. IEEE Wireless Communications Letters, 2023, 12, 287-291.	3.2	3
116	Space-Terrestrial Cooperation Over Spatially Correlated Channels Relying on Imperfect Channel Estimates: Uplink Performance Analysis and Optimization. IEEE Transactions on Communications, 2023, 71, 773-791.	4.9	1
117	A Spatial Delay Domain-Based Prony Channel Prediction Method for Massive MIMO LEO Communications. IEEE Systems Journal, 2022, , 1-12.	2.9	0
118	Exploiting Tensor-Based Bayesian Learning for Massive Grant-Free Random Access in LEO Satellite Internet of Things. IEEE Transactions on Communications, 2023, 71, 1141-1152.	4.9	2
119	Double-Layer Precoder and Cluster-Based Power Allocation Design for LEO Satellite Communication With Massive MIMO. IEEE Communications Letters, 2023, 27, 650-654.	2.5	0
120	ATG spectrum analysis and interference mitigation for intelligent UAV IoT. Eurasip Journal on Wireless Communications and Networking, 2022, 2022, .	1.5	0
121	Two Stage Beamforming in Massive MIMO: A Combinatorial Multi-Armed Bandit Based Approach. IEEE Transactions on Vehicular Technology, 2023, 72, 6794-6799.	3.9	2
122	A Broadband 1-Bit Single-Layer Reconfigurable Reflectarray Unit Cell Based on PIN Diode Model. IEEE Access, 2023, 11, 6477-6489.	2.6	3
123	Joint Linear Precoding and DFT Beamforming Design for Massive MIMO Satellite Communication. , 2022, , ,		3
124	Power Allocation for Space-Terrestrial Cooperation Systems with Statistical CSI. , 2022, , .		0
125	Zero-Shot Recurrent Graph Neural Networks for Beam Prediction in Non-Terrestrial Networks. , 2022, , ,		0
126	LoS-Aware Handover Uplink NOMA Transmissions for Multi-Layer LEO Satellite Constellation. , 2022, , .		0
127	Transmit Power Optimization and Precoding Design in Multiuser Satellite MIMO Downlink With SINR Constraints. IEEE Internet of Things Journal, 2023, 10, 10547-10558.	5.5	2
128	A LEO Satellite Handover Strategy Based on Graph and Multiobjective Multiagent Path Finding. International Journal of Aerospace Engineering, 2023, 2023, 1-16.	0.5	0

#	ARTICLE	IF	CITATIONS
129	Multigroup Multicast Beamforming for High Throughput GEO Satellite Communications Under Power-Consumption Outage Constraints. IEEE Communications Letters, 2023, 27, 941-945.	2.5	1
130	Joint User Grouping and Resource Allocation for LEO Satellite Multicast. IEEE Systems Journal, 2023, 17, 4695-4702.	2.9	1
131	On the Road to 6G: Visions, Requirements, Key Technologies, and Testbeds. IEEE Communications Surveys and Tutorials, 2023, 25, 905-974.	24.8	151
132	Resource Allocation for Cognitive LEO Satellite Systems: Facilitating IoT Communications. Sensors, 2023, 23, 3875.	2.1	3
133	A review on orthogonal time–frequency space modulation: State-of-art, hotspots and challenges. Computer Networks, 2023, 224, 109597.	3.2	4
134	Rate-Splitting Multiple Access-Based Satellite–Vehicular Communication System: A Noncooperative Game Theoretical Approach. IEEE Open Journal of the Communications Society, 2023, 4, 430-441.	4.4	1
135	Pilot spoofing detection for massive MIMO mmWave communication systems with a cooperative relay. Computer Communications, 2023, 202, 33-41.	3.1	3
136	Handover-Aware Downlink Beamforming Design for LEO Multibeam Satellite Communications. IEEE Wireless Communications Letters, 2023, 12, 947-951.	3.2	1
137	Dynamic Transmission and Computation Resource Optimization for Dense LEO Satellite Assisted Mobile-Edge Computing. IEEE Transactions on Communications, 2023, 71, 3087-3102.	4.9	1
138	Broadband Connectivity for Handheld Devices via LEO Satellites: Is Distributed Massive MIMO the Answer?. IEEE Open Journal of the Communications Society, 2023, 4, 713-726.	4.4	2
139	Channel Estimation for LEO Satellite Massive MIMO OFDM Communications. IEEE Transactions on Wireless Communications, 2023, 22, 7537-7550.	6.1	1
140	Satellite Swarm-Based Antenna Arrays for 6G Direct-to-Cell Connectivity. IEEE Access, 2023, 11, 36907-36928.	2.6	8
141	Matrix Factorization Based Low-Feedback Precoding for Satellite Mobile Communications. , 2022, , .		0
142	QoS-Aware Precoding in Downlink Massive MIMO LEO Satellite Communications. IEEE Communications Letters, 2023, , 1-1.	2.5	0
143	Age-Optimal Downlink NOMA Resource Allocation for Satellite-Based IoT Network. IEEE Transactions on Vehicular Technology, 2023, 72, 11575-11589.	3.9	2
144	Rate Splitting Multiple Access for Next Generation Cognitive Radio Enabled LEO Satellite Networks. IEEE Transactions on Wireless Communications, 2023, 22, 8423-8435.	6.1	9
145	Energy-Efficient Service-Aware Multi-Connectivity Scheduler for Uplink Multi-Layer Non-Terrestrial Networks. IEEE Transactions on Green Communications and Networking, 2023, 7, 1326-1341.	3.5	1
146	Hybrid Precoding for Multicast Downlink Transmit in LEO Satellite Communications. Lecture Notes in Electrical Engineering, 2023, , 294-301.	0.3	0

		15	City
#	ARTICLE Maximizing weighted sum of SLNR and SINR for LEO satellite communications with massive	IF	CITATIONS
151	MIMO-NOMA., 2022, , .		0
153	A Robust Beamforming Algorithm forÂSatellite Communication. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2023, , 94-105.	0.2	0
158	SatAlOps: Revamping the Full Life-Cycle Satellite Network Operations. , 2023, , .		0
169	Graph-Based User Scheduling Algorithms for LEO-MIMO Non-Terrestrial Networks. , 2023, , .		2
172	Channel Estimation with DnCNN in Massive MISO LEO Satellite Systems. , 2023, , .		0
174	Compact Dual Linear Polarized Antenna Feed for LEO Satellites Based on Quad Ridge Waveguide. , 2023, , .		0
175	Integrated Space Domain Awareness and Communication System. , 2023, , .		0
178	Low Latency and High-Speed Communication Service with LEO Satellite Constellation. , 2023, , .		0
180	Frequency Asynchronous NOMA In LEO Satellite Communication Systems. , 2023, , .		0
181	Energy-Efficient RIS-Enabled NOMA Communication for 6G LEO Satellite Networks. , 2023, , .		5
186	A Ku-Band Omnidirectional High-Gain Printed Antenna Based on Continuous Transverse Stub and Dipole Configuration. , 2023, , .		0
191	RIS-Aided Hotspot Capacity Enhancement for Multibeam Satellite Systems. , 2023, , .		0
192	Quantum Optimization Algorithm for LEO Satellite Communications based on Cell-Free Massive MIMO. , 2023, , .		0
193	Joint Beamforming and Resource Allocation for Integrated Satellite-Terrestrial Networks. , 2023, , .		0
194	Continent-Wide Efficient and Fair Downlink Resource Allocation in LEO Satellite Constellations. , 2023, , .		0
195	Robust Precoding via Characteristic Functions for VSAT to Multi-Satellite Uplink Transmission. , 2023, , .		0
196	Angle of Arrival Estimation in Multi-User Massive MIMO LEO Satellite Networks. , 2023, , .		0
197	Hybrid Precoding for Integrated Communications and Localization in Massive MIMO LEO Satellite Systems. , 2023, , .		0

#	Article	IF	CITATIONS
198	A Sparse Bayesian Learning Method of Joint Activity Detection and Channel Estimation for LEO Grant-Free Random Access. , 2023, , .		0
199	Non-terrestrial Network. Signals and Communication Technology, 2024, , 687-717.	0.4	0
200	Hybrid Beamforming Design for ITS-aided THz Wideband Massive MIMO Non-terrestrial Communication. , 2023, , .		0
203	Spectrum Suppressed Transmission Applied by Higher Coding Rate FEC. , 2023, , .		0
204	Reflecting Intelligent Surface Aided Downlink Transmission in Ultra-Dense LEO Satellite Networks. , 2023, , .		0