Modern enabling techniques and adsorbents based dye concerns in textile industrial sector -A comprehensive

Journal of Cleaner Production 272, 122636

DOI: 10.1016/j.jclepro.2020.122636

Citation Report

#	Article	IF	CITATIONS
1	Scalable fabrication of chitosan-grafted silica bionanocomposite for the superb sequestration of anionic dye from aqueous solution. Emergent Materials, 2020, 3, 871-879.	3.2	10
2	Sustainable Evaluation of Using Nano Zero-Valent Iron and Activated Carbon for Real Textile Effluent Remediation. Arabian Journal for Science and Engineering, 2021, 46, 10365-10380.	1.7	25
3	Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review. Materials Advances, 2021, 2, 4497-4531.	2.6	421
4	Activation of persulfate by transition substituted Wells-Dawson-type heteropoltungstomolybdates to degrade a toxic dye in aqueous solution. Arabian Journal for Science and Engineering, 2021, 46, 6519-6530.	1.7	1
5	Managing the Impact of COVID-19 on the Education Plans and Activities of South African Schools. World Sustainability Series, 2021, , 371-388.	0.3	O
6	Novel Fe ₃ O ₄ –poly(methacryloxyethyltrimethyl ammonium chloride) adsorbent for the ultrafast and efficient removal of anionic dyes. RSC Advances, 2021, 11, 1172-1181.	1.7	11
7	Bio-management of Textile Industrial Wastewater Sludge Using Earthworms: A Doable Strategy Toward Sustainable Environment., 2021,, 1-19.		O
8	Platform-based servitization and business model adaptation by established manufacturers. Technovation, 2022, 118, 102222.	4.2	52
9	Potential of Scenedesmus-fabricated ZnO nanorods in photocatalytic reduction of methylene blue under direct sunlight: kinetics and mechanism. Environmental Science and Pollution Research, 2021, 28, 28234-28250.	2.7	19
10	Citric acid modified waste cigarette filters for adsorptive removal of methylene blue dye from aqueous solution. Journal of Applied Polymer Science, 2021, 138, 50655.	1.3	12
11	Adsorption of chemical oxygen demand from textile industrial wastewater through locally prepared bentonite adsorbent. International Journal of Environmental Science and Technology, 2022, 19, 1893-1906.	1.8	28
12	Nitrogen-Enhanced Charge Transfer Efficacy on the Carbon Sheet: A Theoretical Insight Into the Adsorption of Anionic Dyes. Arabian Journal for Science and Engineering, 2022, 47, 419-427.	1.7	7
13	Removal of Remazol Black B dye using bacterial cellulose as an adsorbent. Scientia Plena, 2021, 17, .	0.1	3
14	Study of the potential use of rainwater as clean water with simple media gravity filters: A review. IOP Conference Series: Earth and Environmental Science, 2021, 733, 012147.	0.2	3
15	Facile one step green synthesis of iron nanoparticles using grape leaves extract: textile dye decolorization and wastewater treatment. Water Science and Technology, 2021, 83, 2242-2258.	1.2	15
16	Optimization of a cationic dye desorption from a loaded-lignocellulosic biomass: factorial design experiments and investigation of mechanisms. Comptes Rendus Chimie, 2021, 24, 71-84.	0.2	7
17	Improved Catalytic Activity of Composite Beads Calcium Alginate@MIL-101@Fe3O4 Towards Reduction Toxic Organic Dyes. Journal of Polymers and the Environment, 2021, 29, 3813-3826.	2.4	25
18	Impact of pH on Pollutional Parameters of Textile Industry Wastewater with Use of Chlorella pyrenoidosa at Labâ€Scale: A Green Approach. Bulletin of Environmental Contamination and Toxicology, 2022, 108, 485-490.	1.3	7

#	ARTICLE	IF	CITATIONS
19	Environmental friendly sustainable application of plant-based mordants for cotton dyeing using Arjun bark-based natural colorant. Environmental Science and Pollution Research, 2021, 28, 54041-54047.	2.7	40
20	Using Rice Bran Hydrogel Beads to Remove Dye from Aqueous Solutions. Sustainability, 2021, 13, 5640.	1.6	15
21	Photocatalytic decomposition of methylene blue by persulfate-assisted Ag/Mn3O4 and Ag/Mn3O4/graphene composites and the inhibition effect of inorganic ions. Environmental Nanotechnology, Monitoring and Management, 2021, 15, 100408.	1.7	9
22	Carbon-Silica Composite as Adsorbent for Removal of Hazardous C.I. Basic Yellow 2 and C.I. Basic Blue 3 Dyes. Materials, 2021, 14, 3245.	1.3	13
23	Study Into Dynamic Behaviour of the Methylene Blue Adsorption on Activated Carbon. Research Papers Faculty of Materials Science and Technology Slovak University of Technology in Trnava, 2021, 29, 105-113.	0.4	0
24	Ecofriendly application of coconut coir (Cocos nucifera) extract for silk dyeing. Environmental Science and Pollution Research, 2022, 29, 564-572.	2.7	35
25	Wastewater treatment using nano bimetallic iron/copper, adsorption isotherm, kinetic studies, and artificial intelligence neural networks. Emergent Materials, 2021, 4, 1455-1463.	3.2	23
26	Degradation of recalcitrant textile azo-dyes by fenton-based process followed by biochar polishing. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2021, 56, 1019-1029.	0.9	8
28	Factors Affecting Synthetic Dye Adsorption; Desorption Studies: A Review of Results from the Last Five Years (2017–2021). Molecules, 2021, 26, 5419.	1.7	136
29	Azo-dye derived oxidized-nitrogen rich carbon sheets with high adsorption capability for dye effluent under both batch and continuous conditions. Chemosphere, 2021, 279, 130463.	4.2	17
31	Green Synthesis of Nano-Zero-Valent Iron Using <i>Ricinus Communis</i> Seeds Extract: Characterization and Application in the Treatment of Methylene Blue-Polluted Water. ACS Omega, 2021, 6, 25397-25411.	1.6	60
32	Removal of textile dyes by benefited marine shells wastes: From circular economy to multi-phenomenological modeling. Journal of Environmental Management, 2021, 296, 113222.	3.8	13
33	Adsorptive removal of nitro- or sulfonate-containing dyes by a functional metal–organic framework: Quantitative contribution of hydrogen bonding. Chemical Engineering Journal, 2021, 425, 130598.	6.6	33
34	Environmental technology and wastewater treatment: Strategies to achieve environmental sustainability. Chemosphere, 2022, 286, 131532.	4.2	68
35	The Performance of Yeast, Fungi, and Algae Biomass in Dye Elimination. Sustainable Textiles, 2021, , 217-236.	0.4	2
36	Application of a polymer-magnetic-algae based nano-composite for the removal of methylene blue – Characterization, parametric and kinetic studies. Environmental Pollution, 2022, 292, 118376.	3.7	27
37	A review on adsorbent parameters for removal of dye products from industrial wastewater. Water Quality Research Journal of Canada, 2021, 56, 181-193.	1.2	32
38	Cross-Linked Polymer-Based Adsorbents and Membranes for Dye Removal. Sustainable Textiles, 2022, , 263-289.	0.4	1

3

#	ARTICLE	IF	Citations
39	Adsorption of an anionic dye from aqueous solution on a treated clay. Groundwater for Sustainable Development, 2021, 15, 100688.	2.3	17
40	Efficient removal and recycle of acid blue 93 dye from aqueous solution by acrolein crosslinked chitosan hydrogel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632, 127825.	2.3	17
41	Valorization of food waste as adsorbents for toxic dye removal from contaminated waters: A review. Journal of Hazardous Materials, 2022, 424, 127432.	6.5	62
42	Preparation of CuO/γAl2O3 catalyst for degradation of azo dyes (reactive brilliant red X–3B): An optimization study. Journal of Cleaner Production, 2021, 328, 129624.	4.6	11
43	Degradation mechanism of Direct Red 23 dye by advanced oxidation processes: a comparative study. Toxin Reviews, 2022, 41, 38-47.	1.5	19
44	Knowledge extraction of sonophotocatalytic treatment for acid blue 113 dye removal by artificial neural networks. Environmental Research, 2022, 204, 112359.	3.7	5
45	Recent Advances in Sensor-Based Detection of Toxic Dyes for Bioremediation Application: a Review. Applied Biochemistry and Biotechnology, 2022, 194, 4745-4764.	1.4	17
47	Environmental friendly application of ultrasonic rays for extraction of natural colorant from Harmal (<i>Pharmala (i) for dyeing of bio-mordanted silk. Journal of Engineered Fibers and Fabrics, 2021, 16, 155892502110638.</i>	0.5	8
48	Production and Optimization of Bio-Based Silica Nanoparticle from Teff Straw (Eragrostis tef) Using RSM-Based Modeling, Characterization Aspects, and Adsorption Efficacy of Methyl Orange Dye. Journal of Chemistry, 2022, 2022, 1-15.	0.9	19
49	Fabrication of CuO nanoparticles immobilized nanofiltration composite membrane for dye/salt fractionation: Performance and antibiofouling. Journal of Environmental Chemical Engineering, 2022, 10, 106960.	3.3	21
50	Aproveitamento do bagaço de malte como adsorvente para a remoção do corante azul de metileno. Research, Society and Development, 2020, 9, e730997781.	0.0	2
51	Recycling of Labada (Rumex) biowaste as a value-added biosorbent for rhodamine B (Rd-B) wastewater treatment: biosorption study with experimental design optimisation. Biomass Conversion and Biorefinery, 2023, 13, 2413-2425.	2.9	5
52	Cellulose Nanofiber-Based Aerogels from Wheat Straw: Influence of Surface Load and Lignin Content on Their Properties and Dye Removal Capacity. Biomolecules, 2022, 12, 232.	1.8	28
53	Intelligence decision mechanism for prediction of compressive strength of self-compaction green concrete via neural network. Journal of Cleaner Production, 2022, 340, 130580.	4.6	6
54	A comprehensive assessment of the method for producing biochar, its characterization, stability, and potential applications in regenerative economic sustainability – A review. Cleaner Materials, 2022, 3, 100045.	1.9	44
55	Flexible, large-area, multi-layered graphene/cellulose composite for dye filtration applications. Materials Today Communications, 2022, 30, 103134.	0.9	5
56	Improved performance of Mn3O4-based nanocomposites in photocatalytic removal of methylene blue. Journal of Alloys and Compounds, 2022, 902, 163729.	2.8	8
57	Bio-management of Textile Industrial Wastewater Sludge Using Earthworms: A Doable Strategy Toward Sustainable Environment., 2022, , 1337-1355.		0

#	Article	IF	Citations
58	Impact of MW rays on extraction and application of <i>Ficus religiosa </i> bark based natural colourant for cotton dyeing. Journal of Engineered Fibers and Fabrics, 2022, 17, 155892502210789.	0.5	4
59	Tuning the photocatalytic activity of ZnO nanoparticles by the annihilation of intrinsic defects provoked by the thermal annealing. Journal of Nanoparticle Research, 2022, 24, 1.	0.8	5
60	Adsorption Behavior and Dynamic Interactions of Anionic Acid Blue 25 on Agricultural Waste. Molecules, 2022, 27, 1718.	1.7	9
61	Evaluation of Original and Enzyme-Modified Fique Fibers as an Azo Dye Biosorbent Material. Water (Switzerland), 2022, 14, 1035.	1.2	3
62	Ultra-Highly permeable loose nanofiltration membrane containing PG/PEI/Fe3+ ternary coating for efficient dye/salt separation. Separation and Purification Technology, 2022, 292, 121020.	3.9	6
63	Coupling Adsorption-Photocatalytic Degradation of Methylene Blue and Maxilon Red. Journal of Fluorescence, 2022, 32, 1381-1388.	1.3	14
64	Cationic poly(diallyldimethylammonium chloride) based hydrogel for effective anionic dyes adsorption from aqueous solution. Reactive and Functional Polymers, 2022, 174, 105239.	2.0	11
65	Ammonia removal from industrial effluent using zirconium oxide and graphene-oxide nanocomposites. Chemosphere, 2022, 297, 134008.	4.2	12
66	Green nanocomposites and gamma radiation as a novel treatment for dye removal in wastewater. , 2022, , 323-339.		0
67	Emulsion-Templated Porous Polymers for Efficient Dye Removal. ACS Omega, 2022, 7, 16127-16140.	1.6	8
68	Reconciling water circularity through reverse osmosis for wastewater treatment for a hyper-arid climate: a life cycle assessment. Sustainable Water Resources Management, 2022, 8, 1.	1.0	1
69	Facile synthesis of multifunctional C@Fe3O4–MoO3-rGO ternary composite and its versatile roles as sonoadsorbent to ameliorate triphenylmethane textile dye and as potential electrode for supercapacitor applications. Environmental Research, 2022, 212, 113417.	3.7	3
70	Treatment of textile wastewater by sulfate radical based advanced oxidation processes. Separation and Purification Technology, 2022, 293, 121115.	3.9	97
71	Novel in-situ fabrication of L-methionine functionalized bionanocomposite for adsorption of Amido Black 10B dye. Process Biochemistry, 2022, 119, 48-57.	1.8	14
72	Recent and Emerging Trends in Remediation of Methylene Blue Dye from Wastewater by Using Zinc Oxide Nanoparticles. Water (Switzerland), 2022, 14, 1749.	1.2	29
73	Metal–organic frameworks (MOFs) for the efficient removal of contaminants from water: Underlying mechanisms, recent advances, challenges, and future prospects. Coordination Chemistry Reviews, 2022, 468, 214595.	9.5	64
74	Waste-derived biochar for water pollution control and sustainable development. Nature Reviews Earth & Environment, 2022, 3, 444-460.	12.2	233
7 5	Photocatalytic activity and radiation-attenuation ability of copper ions surface-doped dysprosium oxide. Journal of Materials Science: Materials in Electronics, 0, , .	1.1	1

#	ARTICLE	IF	CITATIONS
76	Treatment of As(III)-Laden Contaminated Water Using Iron-Coated Carbon Fiber. Materials, 2022, 15, 4365.	1.3	26
77	Textile effluent toxicity trend: A scientometric review. Journal of Cleaner Production, 2022, 366, 132756.	4.6	14
78	Modeling and optimization of Acid Orange 7 adsorption process using magnetite/carbon nanocomposite. Sustainable Chemistry and Pharmacy, 2022, 29, 100778.	1.6	2
79	Dynamics and thermodynamics for competitive adsorptive removal of methylene blue and rhodamine B from binary aqueous solution onto durian rind. Environmental Monitoring and Assessment, 2022, 194,	1.3	14
80	Removal of anionic and cationic dyes using porous copolymer networks made from a <scp>S</scp> onogashira crossâ€coupling reaction of diethynyl iron (<scp>II</scp>) clathrochelate with various arylamines. Journal of Applied Polymer Science, 2022, 139, .	1.3	9
81	Desorption and transfer processes in different classes of dyes. Journal of Surfactants and Detergents, 0, , .	1.0	0
82	Two-dimensional NiO nanosheets for efficient Congo red adsorption removal. Materials Chemistry and Physics, 2022, 290, 126591.	2.0	6
83	Applications of Luffa Based Biomaterials in Textile Waste Water. Sustainable Textiles, 2022, , 71-88.	0.4	1
84	Dyes and Pigments: Interventions and How Safe and Sustainable Are Colors of Life!!!. Environmental Science and Engineering, 2022, , 1-20.	0.1	2
85	Carbon Dot grafted pH sensitive smart paper for highly efficient separation of anionic/cationic dyes from a mixture. Sustainable Materials and Technologies, 2022, 33, e00489.	1.7	2
86	Dynamics of Diffusion- and Immobilization-Limited Photocatalytic Degradation of Dyes by Metal Oxide Nanoparticles in Binary or Ternary Solutions. Catalysts, 2022, 12, 1254.	1.6	13
87	Photocatalytic and Adsorptive Removal of Liquid Textile Industrial Waste with Carbon-Based Nanomaterials. Green Energy and Technology, 2023, , 1-73.	0.4	0
88	Anthropogenic microparticles in the emerald rockcod Trematomus bernacchii (Nototheniidae) from the Antarctic. Scientific Reports, 2022, 12, .	1.6	9
89	A comparative review on adsorption and photocatalytic degradation of classified dyes with metal/non-metal-based modification of graphitic carbon nitride nanocomposites: Synthesis, mechanism, and affecting parameters. Journal of Cleaner Production, 2023, 382, 134967.	4.6	37
90	Synthesis, Characterization and Sorption Properties of Biochar, Chitosan and ZnO-Based Binary Composites towards a Cationic Dye. Sustainability, 2022, 14, 14571.	1.6	18
91	Extraction of coir fibers by different methods. , 2022, , 19-42.		1
92	Biodegradation of harmful industrial dyes by an extra-cellular bacterial peroxidase. Environment Conservation Journal, 2022, 23, 217-232.	0.1	1
93	ZIF-8 modified poly (m-phenylene isophthalamide) (PMIA) hybrid membrane for dye wastewater treatment. Journal of Industrial Textiles, 2022, 52, 152808372211392.	1.1	1

#	ARTICLE	IF	CITATIONS
94	Melanins from the Lichens Lobaria pulmonaria and Lobaria retigera as Eco-Friendly Adsorbents of Synthetic Dyes. International Journal of Molecular Sciences, 2022, 23, 15605.	1.8	3
95	Fe3O4-multiwalled carbon nanotubes-bentonite as adsorbent for removal of methylene blue from aqueous solutions. Chemosphere, 2023, 316, 137824.	4.2	33
96	Midinfrared Spectroscopic Analysis of Aqueous Mixtures Using Artificial-Intelligence-Enhanced Metamaterial Waveguide Sensing Platform. ACS Nano, 2023, 17, 711-724.	7.3	18
97	Membrane-based treatment of wastewater generated in pharmaceutical and textile industries for a sustainable environment., 2023,, 87-109.		1
98	CuFe2O4/activated carbon nanocomposite for efficient photocatalytic degradation of dye: Green synthesis approaches using the waste of oil palm empty bunches and bio-capping agent. Case Studies in Chemical and Environmental Engineering, 2023, 7, 100305.	2.9	5
99	Tuning the core-shell ratio in nanostructured CuS@In2S3 photocatalyst for efficient dye degradation., 2023, 5, 100093.		1
100	A novel terpolymer nanocomposite (carboxymethyl \hat{l}^2 -cyclodextrin \hat{a} e"nano chitosan \hat{a} e"glutaraldehyde) for the potential removal of a textile dye acid red 37 from water. Frontiers in Chemistry, 0, 11 , .	1.8	4
101	Optimization of a Binary Dye Mixture Adsorption by Moroccan Clay Using the Box-Behnken Experimental Design. Chemistry Africa, 2023, 6, 2011-2027.	1.2	1
102	ZIF-67/SA@PVDF Ultrafiltration Membrane with Simultaneous Adsorption and Catalytic Oxidation for Dyes. Sustainability, 2023, 15, 2879.	1.6	5
103	Production of Activated Carbons from Food/Storage Waste. Materials, 2023, 16, 1349.	1.3	4
104	Investigation of the water quality of Aktutan pond located in $G\tilde{A}^{1/4}$ m $\tilde{A}^{1/4}$ Å \ddot{Y} hane province in the North East region of Turkey by Hazen statistical method. Environmental Earth Sciences, 2023, 82, .	1.3	3
105	Simultaneous Adsorption of Anionic Dyes onto Kail Sawdust Charcoal (KSC) from Binary Dye Solution. Macromolecular Symposia, 2023, 407, .	0.4	0
106	Sustainable approach toward antibacterial textiles. , 2023, , 177-211.		0
107	Sustainable and integrated industrial wastewater treatment as a base of green industry 4.0. AIP Conference Proceedings, 2023, , .	0.3	0
108	Waste material recycled adsorbents for abatement of textile dyes. , 2023, , 189-229.		0
109	Rare earth-doped mixed Ni–Cu–Zn ferrites as an effective photocatalytic agent for active degradation of Rhodamine B dye. Journal of Rare Earths, 2024, 42, 488-496.	2.5	18
111	Modeling of methylene blue removal on Fe ₃ O ₄ modified activated carbon with artificial neural network (ANN). International Journal of Phytoremediation, 0, , 1-19.	1.7	1
112	Biosorption of methylene blue by residue from Lentinus crinitus mushroom cultivation. World Journal of Microbiology and Biotechnology, 2023, 39, .	1.7	O

#	Article	IF	CITATIONS
113	Photocatalytic degradation of Rhodamine B dye using lowâ€cost pyrofabricated titanium dioxide quantum dotsâ€kaolinite nanocomposite. Applied Organometallic Chemistry, 2023, 37, .	1.7	27
118	Plant-Based Synthesis of Nanomaterials for Nanoremediation. , 2023, , 127-150.		0
129	Recovery and Removal of Textile Dyes Through Adsorption Process., 2023,, 179-201.		0
133	Photocatalytic Degradation of Textile Dyes Using Nanohybrid Materials. , 2023, , 203-222.		0
134	Polymeric adsorbents for removal of hazardous dyes. , 2024, , 297-350.		0
135	Carbon nanotubes–based nanoadsorbents in wastewater treatment. , 2023, , 103-141.		0
139	A review on existing and emerging approaches for textile wastewater treatments: challenges and future perspectives. Environmental Science and Pollution Research, 2024, 31, 1748-1789.	2.7	2
142	Dye Degradation - Basics and Necessity. , 2023, , 1-32.		0
147	Catalytic Methods for Sustainable Textile Dyeing. Sustainable Textiles, 2024, , 143-172.	0.4	0
150	Basic Planning Principles of Roof Precipitation Harvesting Systems. , 2024, , 409-420.		0