Effect of printing direction on stress distortion of three using stereolithography technology

Journal of the Mechanical Behavior of Biomedical Materials 110, 103949

DOI: 10.1016/j.jmbbm.2020.103949

Citation Report

#	Article	lF	CITATIONS
1	Effect of Printing Direction on the Accuracy of 3D-Printed Dentures Using Stereolithography Technology. Materials, 2020, 13, 3405.	2.9	79
2	Comparison of hardness and polishability of various occlusal splint materials. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 115, 104270.	3.1	24
3	Investigation of mechanical properties and form error of the components fabricated by rapid prototyping: A review. Materials Today: Proceedings, 2021, 47, 3901-3906.	1.8	3
4	Stereolithography Apparatus Evolution: Enhancing Throughput and Efficiency of Pharmaceutical Formulation Development. Pharmaceutics, 2021, 13, 616.	4.5	13
5	Vat photopolymerization of polymers and polymer composites: Processes and applications. Additive Manufacturing, 2021, 47, 102279.	3.0	65
6	Evaluation of Dimensional Changes According to Aging Period and Postcuring Time of 3D-Printed Denture Base Prostheses: An In Vitro Study. Materials, 2021, 14, 6185.	2.9	9
7	Effect of post-curing light exposure time on the physico–mechanical properties and cytotoxicity of 3D-printed denture base material. Dental Materials, 2022, 38, 57-67.	3.5	49
8	Effect of Different Filler Contents and Printing Directions on the Mechanical Properties for Photopolymer Resins. International Journal of Molecular Sciences, 2022, 23, 2296.	4.1	12
9	Evaluation of Shear Bond Strength Between Denture Teeth and 3Dâ€Printed Denture Base Resin. Journal of Prosthodontics, 2023, 32, 3-10.	3.7	9
10	Assessing the physical and mechanical properties of 3D printed acrylic material for denture base application. Dental Materials, 2022, 38, 1841-1854.	3.5	22
12	Mechanical performance of 3-dimensionally printed resins compared with conventional and milled resins for the manufacture of occlusal devices: A systematic review. Journal of Prosthetic Dentistry, 2023, , .	2.8	4
13	Factors affecting flexural strength of 3Dâ€printed resins: A systematic review. Journal of Prosthodontics, 2023, 32, 96-110.	3.7	20
14	FDM technology and the effect of printing parameters on the tensile strength of ABS parts. International Journal of Advanced Manufacturing Technology, 2023, 126, 5307-5323.	3.0	5
15	Tensile Bond Strength between Different Denture Base Materials and Soft Denture Liners. Materials, 2023, 16, 4615.	2.9	2
16	The mechanical properties of 3D printed denture base resin incorporating essential oil microcapsules. Journal of Advanced Prosthodontics, 2023, 15, 189.	2.6	0
17	Mechanical Properties of 3D-Printed Occlusal Splint Materials. Dentistry Journal, 2023, 11, 199.	2.3	4
18	Vat Photopolymerization 3D Printing in Dentistry: A Comprehensive Review of Actual Popular Technologies. Materials, 2024, 17, 950.	2.9	0
19	Assessing the effect of Artemisia sieberi extracts on surface roughness and candida growth of digitally processed denture acrylic materials. Technology and Health Care. 2024. , 1-13.	1.2	0