Estimating daily reference evapotranspiration based or deep learning and classical machine learning methods

Journal of Hydrology 591, 125286 DOI: 10.1016/j.jhydrol.2020.125286

Citation Report

#	Article	IF	CITATIONS
1	Evaluation of multivariate linear regression for reference evapotranspiration modeling in different climates of Iran. Theoretical and Applied Climatology, 2021, 143, 1409-1423.	1.3	18
2	Estimation of reference evapotranspiration using machine learning models with limited data. AIMS Geosciences, 2021, 7, 268-290.	0.4	10
3	Deep Learning Sensor Fusion in Plant Water Stress Assessment: A Comprehensive Review. Applied Sciences (Switzerland), 2021, 11, 1403.	1.3	19
4	Simulating reference crop evapotranspiration with different climate data inputs using Gaussian exponential model. Environmental Science and Pollution Research, 2021, 28, 41317-41336.	2.7	4
6	Evolutionary artificial intelligence model via cooperation search algorithm and extreme learning machine for multiple scales nonstationary hydrological time series prediction. Journal of Hydrology, 2021, 595, 126062.	2.3	49
7	Long Short-Term Memory Networks to Predict One-Step Ahead Reference Evapotranspiration in a Subtropical Climatic Zone. Environmental Processes, 2021, 8, 911-941.	1.7	37
8	Modeling reference evapotranspiration using a novel regression-based method: radial basis M5 model tree. Theoretical and Applied Climatology, 2021, 145, 639-659.	1.3	26
9	Simulation of forest evapotranspiration based on Attention-LSTM model. , 2021, , .		Ο
10	Daily scale evapotranspiration prediction over the coastal region of southwest Bangladesh: new development of artificial intelligence model. Stochastic Environmental Research and Risk Assessment, 2022, 36, 451-471.	1.9	15
11	Modelling Long-Term Urban Temperatures with Less Training Data: A Comparative Study Using Neural Networks in the City of Madrid. Sustainability, 2021, 13, 8143.	1.6	2
12	Long-term relative decline in evapotranspiration with increasing runoff on fractional land surfaces. Hydrology and Earth System Sciences, 2021, 25, 3805-3818.	1.9	22
13	A Modelling Approach to Forecast the Effect of Climate Change on the Tagus-Segura Interbasin Water Transfer. Water Resources Management, 2021, 35, 3791-3808.	1.9	11
14	The water supply association analysis method in Shenzhen based on kmeans clustering discretization and apriori algorithm. PLoS ONE, 2021, 16, e0255684.	1.1	7
15	Improving reference evapotranspiration estimation using novel inter-model ensemble approaches. Computers and Electronics in Agriculture, 2021, 187, 106227.	3.7	15
16	Hybrid deep learning methodÂforÂa week-ahead evapotranspiration forecasting. Stochastic Environmental Research and Risk Assessment, 2022, 36, 831-849.	1.9	27
17	Evaluation of prediction and forecasting models for evapotranspiration of agricultural lands in the Midwest U.S. Journal of Hydrology, 2021, 600, 126579.	2.3	21
18	Forecasting evapotranspiration in different climates using ensembles of recurrent neural networks. Agricultural Water Management, 2021, 255, 107040.	2.4	86
19	Assessment and Comparison of Six Machine Learning Models in Estimating Evapotranspiration over Croplands Using Remote Sensing and Meteorological Factors. Remote Sensing, 2021, 13, 3838.	1.8	27

#	Article	IF	CITATIONS
20	Introductory overview: Evapotranspiration (ET) models for controlled environment agriculture (CEA). Computers and Electronics in Agriculture, 2021, 190, 106447.	3.7	15
21	Ultra-short-term Railway traction load prediction based on DWT-TCN-PSO_SVR combined model. International Journal of Electrical Power and Energy Systems, 2022, 135, 107595.	3.3	24
22	A Deep Neural Network Architecture to Model Reference Evapotranspiration Using a Single Input Meteorological Parameter. Environmental Processes, 2021, 8, 1567-1599.	1.7	32
23	Resolving data-hungry nature of machine learning reference evapotranspiration estimating models using inter-model ensembles with various data management schemes. Agricultural Water Management, 2022, 261, 107343.	2.4	15
24	Nation-scale reference evapotranspiration estimation by using deep learning and classical machine learning models in China. Journal of Hydrology, 2022, 604, 127207.	2.3	31
25	Assessing Neural Network Approaches for Solar Radiation Estimates Using Limited Climatic Data in the Mediterranean Sea. Environmental Sciences Proceedings, 2020, 4, .	0.3	2
26	Investigation of Hyperparameter Setting of a Long Short-Term Memory Model Applied for Imputation of Missing Discharge Data of the Daihachiga River. Water (Switzerland), 2022, 14, 213.	1.2	2
27	Parallel cooperation search algorithm and artificial intelligence method for streamflow time series forecasting. Journal of Hydrology, 2022, 606, 127434.	2.3	23
28	Assessing multi-year-drought vulnerability in dense Mediterranean-climate forests using water-balance-based indicators. Journal of Hydrology, 2022, 606, 127431.	2.3	10
29	Recent increase in the observation-derived land evapotranspiration due to global warming. Environmental Research Letters, 2022, 17, 024020.	2.2	31
30	Daily Streamflow Forecasting Based on the Hybrid Particle Swarm Optimization and Long Short-Term Memory Model in the Orontes Basin. Water (Switzerland), 2022, 14, 490.	1.2	26
31	How Knowledge-Driven Class Generalization Affects Classical Machine Learning Algorithms for Mono-label Supervised Classification. Lecture Notes in Networks and Systems, 2022, , 637-646.	0.5	0
32	Observational evidenceÂofÂregional increasing hot extreme accelerated by surface energy partitioning. Journal of Hydrometeorology, 2022, , .	0.7	3
33	Modelling daily reference evapotranspiration based on stacking hybridization of ANN with meta-heuristic algorithms under diverse agro-climatic conditions. Stochastic Environmental Research and Risk Assessment, 2022, 36, 3311-3334.	1.9	30
34	Estimation methods to define reference evapotranspiration: a comparative perspective. Water Practice and Technology, 2022, 17, 940-948.	1.0	3
35	An automated machine learning methodology for the improved prediction of reference evapotranspiration using minimal input parameters. Hydrological Processes, 2022, 36, .	1.1	3
36	AgroML: An Open-Source Repository to Forecast Reference Evapotranspiration in Different Geo-Climatic Conditions Using Machine Learning and Transformer-Based Models. Agronomy, 2022, 12, 656.	1.3	9
37	Estimating Evapotranspiration of Screenhouse Banana Plantations Using Artificial Neural Network and Multiple Linear Regression Models. Water (Switzerland), 2022, 14, 1130.	1.2	6

CITATION REPORT

#	Article	IF	CITATIONS
38	Estimation of actual evapotranspiration: A novel hybrid method based on remote sensing and artificial intelligence. Journal of Hydrology, 2022, 609, 127774.	2.3	33
39	Splitting and Length of Years for Improving Tree-Based Models to Predict Reference Crop Evapotranspiration in the Humid Regions of China. Water (Switzerland), 2021, 13, 3478.	1.2	5
40	Optimal Alternative for Quantifying Reference Evapotranspiration in Northern Xinjiang. Water (Switzerland), 2022, 14, 1.	1.2	24
41	Comparative evaluation of deep learning and machine learning in modelling pan evaporation using limited inputs. Hydrological Sciences Journal, 2022, 67, 1309-1327.	1.2	11
42	Evaluation of Machine Learning versus Empirical Models for Monthly Reference Evapotranspiration Estimation in Uttar Pradesh and Uttarakhand States, India. Sustainability, 2022, 14, 5771.	1.6	12
43	Estimation of reference evapotranspiration via machine learning algorithms in humid and semiarid environments in Khyber Pakhtunkhwa, Pakistan. International Journal of Environmental Science and Technology, 2023, 20, 5091-5108.	1.8	1
44	Improved weighted ensemble learning for predicting the daily reference evapotranspiration under the semi-arid climate conditions. Environmental Science and Pollution Research, 2022, 29, 81279-81299.	2.7	22
45	Machine Learning Based Prediction of Reference Evapotranspiration (ET ₀) Using IoT. IEEE Access, 2022, 10, 70526-70540.	2.6	12
46	Predicting Dynamic Riverine Nitrogen Export in Unmonitored Watersheds: Leveraging Insights of Al from Data-Rich Regions. Environmental Science & Technology, 2022, 56, 10530-10542.	4.6	13
47	Pre- and post-dam river water temperature alteration prediction using advanced machine learning models. Environmental Science and Pollution Research, 2022, 29, 83321-83346.	2.7	29
48	Error characterization of global land evapotranspiration products: Collocation-based approach. Journal of Hydrology, 2022, 612, 128102.	2.3	15
49	Long-term forecasting of monthly mean reference evapotranspiration using deep neural network: A comparison of training strategies and approaches. Applied Soft Computing Journal, 2022, 126, 109221.	4.1	19
50	Parameter regionalization based on machine learning optimizes the estimation of reference evapotranspiration in data deficient area. Science of the Total Environment, 2022, 844, 157034.	3.9	8
51	Simulation of Actual Evapotranspiration and Evaluation of Three Complementary Relationships in Three Parallel River Basins. Water Resources Management, 2022, 36, 5107-5126.	1.9	3
52	Spatiotemporal Variations in Reference Evapotranspiration and Its Contributing Climatic Variables at Various Spatial Scales across China for 1984–2019. Water (Switzerland), 2022, 14, 2502.	1.2	2
53	Multi-step daily forecasting of reference evapotranspiration for different climates of India: A modern multivariate complementary technique reinforced with ridge regression feature selection. Agricultural Water Management, 2022, 272, 107812.	2.4	26
54	Meteorological driving forces of reference evapotranspiration and their trends in California. Science of the Total Environment, 2022, 849, 157823.	3.9	17
55	Estimation of daily apple tree transpiration in the Loess Plateau region of China using deep learning models. Agricultural Water Management, 2022, 273, 107889.	2.4	4

CITATION REPORT

#	Article	IF	CITATIONS
56	Machine-Learning Models to Improve Accuracy of Real-Time Reference Evapotranspiration Estimates in an Arid Environment. Journal of Irrigation and Drainage Engineering - ASCE, 2022, 148, .	0.6	2
57	Estimating the Routing Parameter of the Xin'anjiang Hydrological Model Based on Remote Sensing Data and Machine Learning. Remote Sensing, 2022, 14, 4609.	1.8	5
58	Deep learning approaches and interventions for futuristic engineering in agriculture. Neural Computing and Applications, 2022, 34, 20539-20573.	3.2	18
59	Evaluation of Machine Learning Models for Daily Reference Evapotranspiration Modeling Using Limited Meteorological Data in Eastern Inner Mongolia, North China. Water (Switzerland), 2022, 14, 2890.	1.2	6
60	Hybrid Genetic Algorithmâ^'Based BP Neural Network Models Optimize Estimation Performance of Reference Crop Evapotranspiration in China. Applied Sciences (Switzerland), 2022, 12, 10689.	1.3	4
61	Estimation of daily reference evapotranspiration from limited climatic variables in coastal regions. Hydrological Sciences Journal, 2023, 68, 91-107.	1.2	1
62	Estimating daily reference evapotranspiration using a novel hybrid deep learning model. Journal of Hydrology, 2022, 614, 128567.	2.3	8
63	Estimation of green and blue water evapotranspiration using machine learning algorithms with limited meteorological data: A case study in Amu Darya River Basin, Central Asia. Computers and Electronics in Agriculture, 2022, 202, 107403.	3.7	8
64	Reference evapotranspiration estimation in hyper-arid regions via D-vine copula based-quantile regression and comparison with empirical approaches and machine learning models. Journal of Hydrology: Regional Studies, 2022, 44, 101259.	1.0	5
65	MODIS Evapotranspiration Downscaling Using a Deep Neural Network Trained Using Landsat 8 Reflectance and Temperature Data. Remote Sensing, 2022, 14, 5876.	1.8	3
66	A spatiotemporal graph convolution-based model for daily runoff prediction in a river network with non-Euclidean topological structure. Stochastic Environmental Research and Risk Assessment, 2023, 37, 1457-1478.	1.9	2
67	Spatial and Temporal Variation in Reference Evapotranspiration and Its Climatic Drivers in Northeast China. Water (Switzerland), 2022, 14, 3911.	1.2	3
68	Hybrid the long short-term memory with whale optimization algorithm and variational mode decomposition for monthly evapotranspiration estimation. Scientific Reports, 2022, 12, .	1.6	5
69	Hybrid Neural Network Based Models for Evapotranspiration Prediction Over Limited Weather Parameters. IEEE Access, 2023, 11, 963-976.	2.6	6
70	Application of Innovative Machine Learning Techniques for Long-Term Rainfall Prediction. Pure and Applied Geophysics, 2023, 180, 335-363.	0.8	10
71	Modeling Daily Reference Evapotranspiration from Climate Variables: Assessment of Bagging and Boosting Regression Approaches. Water Resources Management, 2023, 37, 1013-1032.	1.9	8
72	Evaluation of artificial intelligence algorithms with sensor data assimilation in estimating crop evapotranspiration and crop water stress index for irrigation water management. Smart Agricultural Technology, 2023, 4, 100176.	3.1	8
73	Performance of machine learning algorithms for multi-step ahead prediction of reference evapotranspiration across various agro-climatic zones and cropping seasons. Journal of Hydrology, 2023, 620, 129418.	2.3	4

#	Article	IF	CITATIONS
74	Hybrid machine learning and deep learning models for multi-step-ahead daily reference evapotranspiration forecasting in different climate regions across the contiguous United States. Agricultural Water Management, 2023, 283, 108311.	2.4	5
75	Effect of the net radiation proxies on maize and soya evapotranspiration estimation using machine learning methods AgriScientia, 2022, 39, 1-17.	0.2	0
76	Future trends of reference evapotranspiration in Sicily based on CORDEX data and Machine Learning algorithms. Agricultural Water Management, 2023, 280, 108232.	2.4	21
77	Vector Autoregression Model-Based Forecasting of Reference Evapotranspiration in Malaysia. Sustainability, 2023, 15, 3675.	1.6	4
78	Development of a Deep Neural Network Model for Predicting Reference Crop Evapotranspiration from Climate Variables. Algorithms for Intelligent Systems, 2023, , 757-769.	0.5	0
79	Hybrid Statistical and Machine Learning Methods for Daily Evapotranspiration Modeling. Sustainability, 2023, 15, 5689.	1.6	5
80	A novel hybrid AIG-SVR model for estimating daily reference evapotranspiration. Arabian Journal of Geosciences, 2023, 16, .	0.6	8
81	Intelligent optimization of Reference Evapotranspiration (ETo) for precision irrigation. Journal of Computational Science, 2023, 69, 102025.	1.5	4
82	Estimating the monthly pan evaporation with limited climatic data in dryland based on the extended long short-term memory model enhanced with meta-heuristic algorithms. Scientific Reports, 2023, 13, .	1.6	3
83	Estimating daily minimum grass temperature to quantify frost damage to winter wheat during stem elongation in the central area of Huang-Huai plain in China. Environmental Science and Pollution Research, 0, , .	2.7	1
84	Daily reference evapotranspiration prediction for irrigation scheduling decisions based on the hybrid PSO-LSTM model. PLoS ONE, 2023, 18, e0281478.	1.1	3
87	Artificial neural modeling for precision agricultural water management practices. , 2023, , 169-186.		0
88	Multivariate Time Series Evapotranspiration Forecasting using Machine Learning Techniques. , 2023, , .		0
90	Artificial intelligence-based solutions for climate change: a review. Environmental Chemistry Letters, 2023, 21, 2525-2557.	8.3	24
92	Machine Learning Approach for Reference Evapotranspiration Estimation in the Region of Fes, Morocco. Lecture Notes in Networks and Systems, 2023, , 105-113.	0.5	0