Streams, Substructures, and the Early History of the Mi

Annual Review of Astronomy and Astrophysics 58, 205-256

DOI: 10.1146/annurev-astro-032620-021917

Citation Report

#	Article	IF	CITATIONS
1	New constraints on the mass of fermionic dark matter from dwarf spheroidal galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1188-1201.	1.6	25
2	Kraken reveals itself $\hat{a} \in$ the merger history of the Milky Way reconstructed with the E-MOSAICS simulations. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2472-2491.	1.6	147
3	Exploring the origin of low-metallicity stars in Milky-Way-like galaxies with the NIHAO-UHD simulations. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3750-3762.	1.6	30
4	Milky Way. , 2021, , 1-2.		1
5	LAMOST's view on the Gaia-Sausage-Enceladus merger event. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	0
6	The formation history of the Milky Way disc with high-resolution cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2251-2265.	1.6	5
7	Dynamically Tagged Groups of Very Metal-poor Halo Stars from the HK and Hamburg/ESO Surveys. Astrophysical Journal, 2021, 907, 10.	1.6	41
8	A Blueprint for the Milky Way's Stellar Populations. II. Improved Isochrone Calibration in the SDSS and Pan-STARRS Photometric Systems. Astrophysical Journal, 2021, 907, 101.	1.6	9
9	The kinematics of globular cluster populations in the E-MOSAICS simulations and their implications for the assembly history of the Milky Way. Monthly Notices of the Royal Astronomical Society, 2021, 503, 31-58.	1.6	22
10	An enquiry on the origins of N-rich stars in the inner Galaxy based on APOGEE chemical compositions. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1657-1667.	1.6	9
11	The Star Formation History of Eridanus II: On the Role of Supernova Feedback in the Quenching of Ultrafaint Dwarf Galaxies*. Astrophysical Journal, 2021, 909, 192.	1.6	26
12	Milky Way archaeology using RR Lyrae and type II Cepheids. Astronomy and Astrophysics, 2021, 648, A78.	2.1	10
13	VINTERGATAN – II. The history of the Milky Way told by its mergers. Monthly Notices of the Royal Astronomical Society, 2021, 503, 5846-5867.	1.6	41
14	Targeting Bright Metal-poor Stars in the Disk and Halo Systems of the Galaxy. Astrophysical Journal, 2021, 913, 11.	1.6	18
15	Chronologically dating the early assembly of the Milky Way. Nature Astronomy, 2021, 5, 640-647.	4.2	61
16	Searching for Extragalactic Exoplanetary Systems: The Curious Case of BD+20 2457. Astrophysical Journal Letters, 2021, 913, L3.	3.0	5
17	The GALAH+ survey: Third data release. Monthly Notices of the Royal Astronomical Society, 2021, 506, 150-201.	1.6	293
18	Abundance Patterns of $\hat{I}\pm$ and Neutron-capture Elements in the Helmi Stream. Astrophysical Journal Letters, 2021, 913, L28.	3.0	21

# 19	ARTICLE Neutron star mergers as the astrophysical site of the r-process in the Milky Way and its satellite galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 505, 5862-5883.	lF 1.6	CITATIONS 24
20	The GALAH survey: accreted stars also inhabit the Spite plateau. Monthly Notices of the Royal Astronomical Society, 2021, 507, 43-54.	1.6	11
21	G 112-43/44: A metal-poor binary star with a unique chemical composition and Helmi stream kinematics. Astronomy and Astrophysics, 2021, 651, A57.	2.1	7
22	Origin of metals in old Milky Way halo stars based on GALAH and Gaia. Monthly Notices of the Royal Astronomical Society, 2021, 506, 5410-5429.	1.6	10
23	Elemental Abundances in M31: Gradients in the Giant Stellar Stream*. Astronomical Journal, 2021, 162, 45.	1.9	16
24	Searching for Dwarf Galaxies in Gaia DR2 Phase-space Data Using Wavelet Transforms. Astrophysical Journal, 2021, 915, 48.	1.6	5
25	Which Milky Way masses are consistent with the slightly declining 5–25 kpc rotation curve?. Astronomy and Astrophysics, 2021, 654, A25.	2.1	13
26	VEXAS: VISTA EXtension to Auxiliary Surveys. Astronomy and Astrophysics, 2021, 651, A69.	2.1	4
27	<i>SRG</i> /eROSITA discovery of a large circular SNR candidate G116.6â^26.1: SNÂla explosion probing the gas of the Milky Way halo?. Monthly Notices of the Royal Astronomical Society, 2021, 507, 971-982.	1.6	10
28	Age-dating Red Giant Stars Associated with Galactic Disk and Halo Substructures. Astrophysical Journal, 2021, 916, 88.	1.6	19
29	Measuring the vertical response of the Galactic disc to an infalling satellite. Monthly Notices of the Royal Astronomical Society, 2021, 508, 541-559.	1.6	17
30	The structure of the Milky Way based on unWISE 3.4Â <i>μ</i> m integrated photometry. Monthly Notices of the Royal Astronomical Society, 2021, 507, 5246-5263.	1.6	9
31	Combining Astrometry and Elemental Abundances: The Case of the Candidate Pre-Gaia Halo Moving Groups G03-37, G18-39, and G21-22 [*] . Astronomical Journal, 2021, 162, 109.	1.9	3
32	Constraints on the Assembly History of the Milky Way's Smooth, Diffuse Stellar Halo from the Metallicity-dependent, Radially Dominated Velocity Anisotropy Profiles Probed with K Giants and BHB Stars Using LAMOST, SDSS/SEGUE, and Gaia. Astrophysical Journal, 2021, 919, 66.	1.6	23
33	The episodic and multiscale Galactic Centre. New Astronomy Reviews, 2021, 93, 101630.	5.2	5
34	A New Set of Chisels for Galactic Archeology: Sc, V, and Zn as Taggers of Accreted Globular Clusters*. Astrophysical Journal Letters, 2021, 918, L32.	3.0	9
35	EC 22536â^'5304: a lead-rich and metal-poor long-period binary. Astronomy and Astrophysics, 2021, 653, A120.	2.1	9
36	A Blueprint for the Milky Way's Stellar Populations. III. Spatial Distributions and Population Fractions of Local Halo Stars. Astrophysical Journal, 2021, 918, 74.	1.6	12

#	Article	IF	CITATIONS
37	The <i>Gaia</i> -ESO Survey: Galactic evolution of lithium from iDR6. Astronomy and Astrophysics, 2021, 653, A72.	2.1	25
38	Directional Recoil Detection. Annual Review of Nuclear and Particle Science, 2021, 71, 189-224.	3.5	21
39	Microarcsecond Astrometry: Science Highlights from <i>Gaia</i> . Annual Review of Astronomy and Astrophysics, 2021, 59, 59-115.	8.1	28
40	The Milky Way, coming into focus: Precision astrometry probes its evolution and its dark matter. Progress in Particle and Nuclear Physics, 2021, 121, 103904.	5.6	8
41	The chemodynamics of prograde and retrograde Milky Way stars. Astronomy and Astrophysics, 2020, 643, A69.	2.1	20
42	Separation between RR Lyrae and type II Cepheids and their importance for a distance determination: the case of omega Cen. Astronomy and Astrophysics, 2020, 644, A95.	2.1	16
43	Jurassic: A chemically anomalous structure in the Galactic halo. Astronomy and Astrophysics, 2020, 644, A83.	2.1	21
44	The accreted nuclear clusters of the Milky Way. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2514-2524.	1.6	38
45	Probing the nature of dark matter with accreted globular cluster streams. Monthly Notices of the Royal Astronomical Society, 2020, 501, 179-200.	1.6	33
46	Proper motion measurements for stars up to 100Âkpc with Subaru HSC and SDSS StripeÂ82. Monthly Notices of the Royal Astronomical Society, 2021, 501, 5149-5175.	1.6	6
47	The effects of different Type Ia SN yields on Milky Way chemical evolution. Monthly Notices of the Royal Astronomical Society, 2021, 503, 3216-3231.	1.6	26
48	The Southern Stellar Stream Spectroscopic Survey (S ⁵): Chemical Abundances of Seven Stellar Streams. Astronomical Journal, 2020, 160, 181.	1.9	53
49	Implications of a spatially resolved main sequence for the size evolution of star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5842-5853.	1.6	1
50	The Abundance Pattern of α Elements in the Triangulum–Andromeda Overdensity. Astrophysical Journal, 2020, 901, 27.	1.6	4
51	Hunting Gravitational Wave Black Holes with Microlensing. Astrophysical Journal, 2020, 905, 121.	1.6	4
52	From large-scale environment to CGM angular momentum to star-forming activities – I. Star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3148-3162.	1.6	17
53	Dwarf stellar haloes: a powerful probe of small-scale galaxy formation and the nature of dark matter. Monthly Notices of the Royal Astronomical Society, 2022, 511, 4044-4059.	1.6	17
54	Survey of Surveys. Astronomy and Astrophysics, 2022, 659, A95.	2.1	23

#	Article	IF	CITATIONS
55	Photo-astrometric distances, extinctions, and astrophysical parameters for <i>Gaia</i> EDR3 stars brighter than <i>G</i> = 18.5. Astronomy and Astrophysics, 2022, 658, A91.	2.1	106
57	<scp>via machinae</scp> : Searching for stellar streams using unsupervised machine learning. Monthly Notices of the Royal Astronomical Society, 2021, 509, 5992-6007.	1.6	17
58	Dark matter in astrophysics/cosmology. SciPost Physics Lecture Notes, 0, , .	0.0	8
59	A Very Metal-poor RR Lyrae Star with a Disk Orbit Found in the Solar Neighborhood. Astrophysical Journal, 2022, 925, 10.	1.6	2
60	Mass of the dynamically hot inner stellar halo predicts the ancient accreted stellar mass. Astronomy and Astrophysics, 2022, 660, A20.	2.1	15
61	Dynamically Tagged Groups of Metal-poor Stars from the Best and Brightest Survey. Astrophysical Journal, 2022, 926, 26.	1.6	20
62	Reconstructing the Last Major Merger of the Milky Way with the H3 Survey. Astrophysical Journal, 2021, 923, 92.	1.6	76
63	Stellar elemental abundances constraining nucleosynthesis and chemical evolution of the universe. EPJ Web of Conferences, 2022, 260, 07002.	0.1	0
64	Substructure at High Speed. I. Inferring the Escape Velocity in the Presence of Kinematic Substructure. Astrophysical Journal, 2022, 926, 188.	1.6	2
65	The Global Dynamical Atlas of the Milky Way Mergers: Constraints from Gaia EDR3–based Orbits of Globular Clusters, Stellar Streams, and Satellite Galaxies. Astrophysical Journal, 2022, 926, 107.	1.6	73
66	Star and Black Hole Formation at High Redshift. Universe, 2022, 8, 146.	0.9	0
67	Substructures, resonances, and debris streams. Astronomy and Astrophysics, 2022, 659, A61.	2.1	8
68	A time-resolved picture of our Milky Way's early formation history. Nature, 2022, 603, 599-603.	13.7	71
69	Gravitational focusing of wave dark matter. Physical Review D, 2022, 105, .	1.6	16
70	Wide binaries from the H3 survey: the thick disc and halo have similar wide binary fractions. Monthly Notices of the Royal Astronomical Society, 2022, 513, 754-767.	1.6	5
71	Overview of the LAMOST survey in the first decade. Innovation(China), 2022, 3, 100224.	5.2	24
72	Galactic ArchaeoLogIcaL ExcavatiOns (GALILEO). Astronomy and Astrophysics, 2022, 663, A126.	2.1	13
73	How cosmological merger histories shape the diversity of stellar haloes. Monthly Notices of the Royal Astronomical Society, 2022, 510, 4208-4224.	1.6	14

#	Article	IF	CITATIONS
74	Predicting the Water Content of Interstellar Objects from Galactic Star Formation Histories. Astrophysical Journal Letters, 2022, 924, L1.	3.0	4
75	Stars in the local galactic thick disc and halo in Gaia EDR3: a catalogue of half a million local main-sequence stars with photometric metallicities. Monthly Notices of the Royal Astronomical Society, 2022, 510, 4308-4329.	1.6	5
77	Orbits of 47 dwarf satellite galaxies of the MilkyWay in three models of the gravitational potential with different masses. Astronomical and Astrophysical Transactions, 2021, , 177-206.	0.2	4
78	Chemo-dynamics and asteroseismic ages of seven metal-poor red giants from the Kepler field. Monthly Notices of the Royal Astronomical Society, 2021, 510, 1733-1747.	1.6	4
79	The GALAH Survey: chemical tagging and chrono-chemodynamics of accreted halo stars with GALAH+ DR3 and <i>Gaia</i> eDR3. Monthly Notices of the Royal Astronomical Society, 2022, 510, 2407-2436.	1.6	44
80	The kinematic properties of Milky Way stellar halo populations. Monthly Notices of the Royal Astronomical Society, 2022, 510, 5119-5141.	1.6	26
81	Probing the Galactic halo with RR Lyrae stars – II. The substructures of the Milky Way. Monthly Notices of the Royal Astronomical Society, 2022, 513, 1958-1971.	1.6	9
82	A stellar clock reveals the assembly history of the Milky Way. Nature, 2022, 603, 580-581.	13.7	0
83	Visual cluster separation using high-dimensional sharpened dimensionality reduction. Information Visualization, 2022, 21, 197-219.	1.2	4
84	The Fornax3D project: Discovery of ancient massive merger events in the Fornax cluster galaxies NGC 1380 and NGC 1427. Astronomy and Astrophysics, 2022, 664, A115.	2.1	14
85	Substructure in the stellar halo near the Sun. Astronomy and Astrophysics, 2022, 665, A58.	2.1	14
86	Substructure in the stellar halo near the Sun. Astronomy and Astrophysics, 2022, 665, A57.	2.1	17
87	A Young, Low-density Stellar Stream in the Milky Way Disk: Theia 456. Astronomical Journal, 2022, 163, 275.	1.9	10
88	Constraining Mass of M31 Combing Kinematics of Stars, Planetary Nebulae and Globular clusters. Research in Astronomy and Astrophysics, 2022, 22, 085023.	0.7	1
89	<i>Gaia</i> Data Release 3. Astronomy and Astrophysics, 2023, 674, A29.	2.1	71
90	Linking the brightest stellar streams with the accretion history of Milky Way like galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 514, 4898-4911.	1.6	6
91	Modeling the kinematics of globular cluster systems. Monthly Notices of the Royal Astronomical Society, 2022, 514, 4736-4755.	1.6	9
92	Age determination of galaxy merger remnant stars using asteroseismology. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2527-2544.	1.6	12

ARTICLE IF CITATIONS # <i>Gaia</i>Data Release 3. Astronomy and Astrophysics, 2023, 674, A38. 2.1 28 93 The Local Stellar Halo is Not Dominated by a Single Radial Merger Event. Astrophysical Journal 94 Letters, 2022, 932, L16. Kinematics and Metallicity of Red Giant Branch Stars in the Northeast Shelf of M31*. Astronomical 95 1.9 6 Journal, 2022, 164, 20. Introducing EMP-<i>Pathfinder</i>: modelling the simultaneous formation and evolution of stellar clusters in their host galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 517, 3144-3180. Non-LTE abundance corrections for late-type stars from 2000 Ã... to 3 µm. Astronomy and Astrophysics, 97 2.1 18 2022, 665, A33. Dynamically Tagged Groups of Metal-poor Stars. II. The Radial Velocity Experiment Data Release 6. Astrophysical Journal, Supplement Series, 2022, 261, 19. 3.0 An Old, Metal-rich Accreted Stellar Component in the Milky Way Stellar Disk. Astrophysical Journal, 99 1.6 4 2022, 934, 21. Machine learning for galactic archaeology: A chemistry-based neural network method for 100 1.6 identification of accreted disc stars. Monthly Notices of the Royal Astronomical Society, 0, , . The stellar parameters and elemental abundances from low-resolution spectra – I. 1.2 million giants 101 1.6 10 from LAMOST DR8. Monthly Notices of the Royal Astronomical Society, 2022, 517, 4875-4891. Discovery of Faint Double-peak Hα Emission in the Halo of Low Redshift Galaxies. Astrophysical Journal, 1.6 2022, 934, 100. Reconstructing the Disrupted Dwarf Galaxy Gaia-Sausage/Enceladus Using Its Stars and Globular 103 25 1.6 Clusters. Astrophysical Journal, 2022, 935, 109. The Unmixed Debris of Gaia-Sausage/Enceladus in the Form of a Pair of Halo Stellar Overdensities. 104 3.0 Astrophysical Journal Letters, 2022, 936, L2. Cosmological gas accretion history onto the stellar discs of Milky Way-like galaxies in the Auriga simulations $\hat{a} \in (I)$ Temporal dependency. Monthly Notices of the Royal Astronomical Society, 2022, 517, 105 1.6 2 832-852. The neutron-capture and α-elements abundance ratios scatter in old stellar populations: cosmological simulations of the stellar halo. Monthly Notices of the Royal Astronomical Society, 2022, 516, 1.6 6075-6095. Gastro Library. I. The Simulated Chemodynamical Properties of Several Gaia–Sausage–Enceladus-like 107 23 1.6 Stellar Halos. Astrophysical Journal, 2022, 937, 12. LAMOST meets <i>Gaia</i>: The Galactic open clusters. Astronomy and Astrophysics, 2022, 668, A4. The pattern speeds of vertical breathing waves. Monthly Notices of the Royal Astronomical Society: 109 1.2 3 Letters, 2022, 517, L55-L59. The Atari Disk, a Metal-poor Stellar Population in the Disk System of the Milky Way. Astrophysical 1.6 Journal, 2022, 936, 78.

#	Article	IF	CITATIONS
111	1-DREAM: 1D Recovery, Extraction and Analysis of Manifolds in noisy environments. Astronomy and Computing, 2022, 41, 100658.	0.8	4
112	Chemical abundances of the Typhon stellar stream. Monthly Notices of the Royal Astronomical Society, 2023, 519, 4467-4478.	1.6	3
113	Titanium abundances in late-type stars. Astronomy and Astrophysics, 2022, 668, A103.	2.1	3
114	The Pristine Inner Galaxy Survey (PIGS) – IV. A photometric metallicity analysis of the Sagittarius dwarf spheroidal galaxy. Monthly Notices of the Royal Astronomical Society, 2022, 517, 6121-6139.	1.6	4
115	Lithium, masses, and kinematics of young Galactic dwarf and giant stars with extreme [<i>α</i> /Fe] ratios. Astronomy and Astrophysics, 2022, 668, A181.	2.1	2
116	Faint Stars in a Faint Galaxy. II. The Low-mass Stellar Initial Mass Function of the Boötes I Ultrafaint Dwarf Spheroidal Galaxy. Astrophysical Journal, 2022, 939, 38.	1.6	1
117	Dynamics of stellar disc tilting from satellite mergers. Monthly Notices of the Royal Astronomical Society, 2022, 518, 2870-2884.	1.6	4
118	The Stellar Halo of the Galaxy is Tilted and Doubly Broken. Astronomical Journal, 2022, 164, 249.	1.9	19
119	Origin of highly <i>r</i> -process-enhanced stars in a cosmological zoom-in simulation of a Milky Way-like galaxy. Monthly Notices of the Royal Astronomical Society, 2022, 517, 4856-4874.	1.6	15
120	The SDSS-Gaia View of the Color–Magnitude Relation for Blue Horizontal-branch Stars. Astrophysical Journal, 2022, 940, 30.	1.6	2
121	The cerium content of the Milky Way as revealed by <i>Gaia</i> DR3 GSP-Spec abundances. Astronomy and Astrophysics, 2023, 670, A106.	2.1	8
122	New stellar velocity substructures from Gaia DR3 proper motions. Monthly Notices of the Royal Astronomical Society, 2022, 519, 1989-2003.	1.6	2
123	Unveiling the past evolution of the progenitor of the Helmi streams. Astronomy and Astrophysics, 2022, 668, L10.	2.1	3
124	Spiral-like features in the disc revealed by <i>Gaia</i> DR3 radial actions. Astronomy and Astrophysics, 2023, 670, L7.	2.1	6
125	<i>Gaia</i> DR3 view of dynamical substructure in the stellar halo near the Sun. Astronomy and Astrophysics, 2023, 670, L2.	2.1	13
126	Effects of the Central Mass Concentration on Bar Formation in Disk Galaxies. Astrophysical Journal, 2023, 942, 106.	1.6	4
127	Studying Magnetic Field Amplification in Interacting Galaxies Using Numerical Simulations. Proceedings of the International Astronomical Union, 2020, 16, 94-99.	0.0	0
128	Revealing the Milky Way's most recent major merger with a <i>Gaia</i> EDR3 catalogue of machine-learned line-of-sight velocities. Monthly Notices of the Royal Astronomical Society, 2023, 521, 1633-1645.	1.6	3

#	Article	IF	Citations
129	The R-Process Alliance: Chemodynamically Tagged Groups. II. An Extended Sample of Halo r-process-enhanced Stars. Astrophysical Journal, 2023, 943, 23.	1.6	5
130	galstreams: A library of Milky Way stellar stream footprints and tracks. Monthly Notices of the Royal Astronomical Society, 2023, 520, 5225-5258.	1.6	28
131	Chemodynamically Tagged Groups of CEMP Stars in the Halo of the Milky Way. I. Untangling the Origins of CEMP-s and CEMP-no Stars. Astrophysical Journal, 2023, 947, 23.	1.6	10
132	Stellar Escape from Globular Clusters. I. Escape Mechanisms and Properties at Ejection. Astrophysical Journal, 2023, 946, 104.	1.6	5
133	Uncovering dark matter density profiles in dwarf galaxies with graph neural networks. Physical Review D, 2023, 107, .	1.6	1
134	Orbital evolution of satellite galaxies in self-interacting dark matter models. Physical Review D, 2023, 107, .	1.6	5
135	Dynamical data mining captures disc–halo couplings that structure galaxies. Monthly Notices of the Royal Astronomical Society, 2023, 521, 1757-1774.	1.6	3
136	VINTERGATAN-GM: The cosmological imprints of early mergers on Milky-Way-mass galaxies. Monthly Notices of the Royal Astronomical Society, 2023, 521, 995-1012.	1.6	8
137	<i>>S</i> 5: Probing the Milky Way and Magellanic Clouds potentials with the 6D map of the Orphan–Chenab stream. Monthly Notices of the Royal Astronomical Society, 2023, 521, 4936-4962.	1.6	17
138	Dark matter substructures affect dark matter-electron scattering in xenon-based direct detection experiments. Journal of High Energy Physics, 2023, 2023, .	1.6	2
139	A Swing of the Pendulum: The Chemodynamics of the Local Stellar Halo Indicate Contributions from Several Radial Merger Events. Astrophysical Journal, 2023, 944, 169.	1.6	7
140	Growing the first galaxies' merger trees. Monthly Notices of the Royal Astronomical Society, 2023, 521, 3201-3220.	1.6	2
141	Robust clustering of the local Milky Way stellar kinematic substructures with <i>Gaia</i> eDR3. Monthly Notices of the Royal Astronomical Society, 2023, 521, 2623-2648.	1.6	2
142	Hidden deep in the halo: selection of a reduced proper motion halo catalogue and mining retrograde streams in the velocity space. Monthly Notices of the Royal Astronomical Society, 2023, 521, 2087-2102.	1.6	2
143	Symphony: Cosmological Zoom-in Simulation Suites over Four Decades of Host Halo Mass. Astrophysical Journal, 2023, 945, 159.	1.6	7
144	Estimating the Oblateness of Dark Matter Halos Using Neutral Hydrogen Velocity Dispersion. Astrophysical Journal Letters, 2023, 946, L8.	3.0	0
145	StarHorse results for spectroscopic surveys and <i>Gaia</i> DR3: Chrono-chemical populations in the solar vicinity, the genuine thick disk, and young alpha-rich stars. Astronomy and Astrophysics, 2023, 673, A155.	2.1	23
146	Local stellar formation history from the 40 pc white dwarf sample. Monthly Notices of the Royal Astronomical Society, 2023, 522, 1643-1661.	1.6	7

		CITATION REPORT	
#	Article	IF	Citations
147	Sodium Abundances in Very Metal-poor Stars. Research in Astronomy and Astrophysics, 0, , .	0.7	1
148	Overview of the DESI Milky Way Survey. Astrophysical Journal, 2023, 947, 37.	1.6	26
151	Cosmic Radioactivity and Galactic Chemical Evolution. , 2023, , 1-83.		0
153	Phase-space Properties and Chemistry of the Sagittarius Stellar Stream Down to the Extremely Metal-poor ([Fe/H] ≲ â~'3) Regime. Astrophysical Journal, 2023, 946, 66.	1.6	6
163	Milky Way. , 2023, , 1952-1954.		0
164	Solar Neighborhood. , 2023, , 2786-2787.		0
165	Galactic Archaeology. , 2023, , 1111-1114.		0
176	Cosmic Radioactivity and Galactic Chemical Evolution. , 2023, , 3261-3343.		0