Tree planting in organic soils does not result in net carb timescales

Global Change Biology 26, 5178-5188

DOI: 10.1111/gcb.15229

Citation Report

#	Article	IF	CITATIONS
1	Modeling Ambitions Outpace Observations of Forest Carbon Allocation. Trends in Plant Science, 2021, 26, 210-219.	4.3	29
2	Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Global Change Biology, 2021, 27, 1328-1348.	4.2	306
3	Carbon sequestration: counterintuitive feedback of plant growth. Quantitative Plant Biology, 2021, 2,	0.8	0
4	Getting the message right on natureâ€based solutions to climate change. Global Change Biology, 2021, 27, 1518-1546.	4.2	363
5	Shrub expansion in the Arctic may induce largeâ€scale carbon losses due to changes in plantâ€soil interactions. Plant and Soil, 2021, 463, 643-651.	1.8	28
6	Alternative afforestation options on sandy heathland result in minimal long-term changes in mineral soil layers. Forest Ecology and Management, 2021, 483, 118906.	1.4	6
7	The carbon sequestration potential of Scottish native woodland. Environmental Research Communications, 2021, 3, 041003.	0.9	4
8	Sustainability policy and practice: Is Nature an appropriate mentor?. Environment, Development and Sustainability, $0, 1$.	2.7	3
9	Soil carbon balance of afforested peatlands in the maritime temperate climatic zone. Global Change Biology, 2021, 27, 3681-3698.	4.2	15
10	From the ground up: prioritizing soil at the forefront of ecological restoration. Restoration Ecology, 2021, 29, e13453.	1.4	9
11	The impacts of agroforestry interventions on agricultural productivity, ecosystem services, and human wellâ€being in lowâ€and middleâ€ncome countries: A systematic review. Campbell Systematic Reviews, 2021, 17, e1167.	1.2	34
12	Soil carbon sequestration by agroforestry systems in China: A meta-analysis. Agriculture, Ecosystems and Environment, 2021, 315, 107437.	2.5	42
13	Does restoring native forest restore ecosystem functioning? Evidence from a largeâ€scale reforestation project in the Scottish Highlands. Restoration Ecology, 0, , e13530.	1.4	2
14	The potential contribution of terrestrial natureâ€based solutions to a national †net zero' climate target. Journal of Applied Ecology, 2021, 58, 2349-2360.	1.9	30
15	Coastal heathland vegetation is surprisingly resistant to experimental drought across successional stages and latitude. Oikos, 2021, 130, 2015-2027.	1.2	5
16	Climate change and soil organic matter in Scotland: time to turn over a new leaf?. Soil Research, 2021, 59, 529.	0.6	1
17	Living, dead, and absent treesâ€"How do moth outbreaks shape smallâ€scale patterns of soil organic matter stocks and dynamics at the Subarctic mountain birch treeline?. Global Change Biology, 2022, 28, 441-462.	4.2	9
18	Urgent need for updating the slogan of global climate actions from "tree planting―to "restore native vegetation― Restoration Ecology, 2022, 30, e13594.	1.4	27

#	ARTICLE	IF	CITATIONS
19	Strong Interactive Effects of Warming and Insect Herbivory on Soil Carbon and Nitrogen Dynamics at Subarctic Tree Line. Frontiers in Forests and Global Change, 2021, 4, .	1.0	1
20	Contrasting Responses of Soil Inorganic Carbon to Afforestation in Acidic Versus Alkaline Soils. Global Biogeochemical Cycles, 2022, 36, .	1.9	8
21	Soil microbial stoichiometry and community structure responses to long-term natural forest conversion to plantations in a subtropical region. Environmental Science and Pollution Research, 2022, , 1.	2.7	4
22	Optimizing opportunities for oak woodland expansion into upland pastures. Ecological Solutions and Evidence, 2022, 3, .	0.8	2
23	Net soil carbon balance in afforested peatlands and separating autotrophic and heterotrophic soil CO ₂ effluxes. Biogeosciences, 2022, 19, 313-327.	1.3	8
24	â€~Can't see the forest for the trees': The importance of fungi in the context of UK tree planting. Food and Energy Security, 0, , .	2.0	5
27	Variation of Soil Organic Carbon Density with Plantation Age and Initial Vegetation Types in the Liupan Mountains Areas of Northwest China. Forests, 2021, 12, 1811.	0.9	2
28	Substantial carbon drawdown potential from enhanced rock weathering in the United Kingdom. Nature Geoscience, 2022, 15, 382-389.	5.4	48
29	Ericaceous dwarf shrubs contribute a significant but droughtâ€sensitive fraction of soil respiration in a boreal pine forest. Journal of Ecology, 2022, 110, 1928-1941.	1.9	6
30	CORSIA—A Feasible Second Best Solution?. Applied Sciences (Switzerland), 2022, 12, 7054.	1.3	7
31	Ericoid shrubs shape fungal communities and suppress organic matter decomposition in boreal forests. New Phytologist, 2022, 236, 684-697.	3.5	23
32	Ecoenzymatic stoichiometry reveals widespread soil phosphorus limitation to microbial metabolism across Chinese forests. Communications Earth & Environment, 2022, 3, .	2.6	31
33	Estimating growth, loss and potential carbon sequestration of farmed kelp: a case study of (i) Saccharina latissima (i) at Strangford Lough, Northern Ireland. Applied Phycology, 2022, 3, 324-339.	0.6	6
34	How can economics contribute to environmental and social sustainability? The significance of systems theory and the embedded economy. Frontiers in Sustainability, 0, 3, .	1.3	2
35	Planetary bioengineering on Earth to return and maintain the atmospheric carbon dioxide to pre-industrial levels: Assessing potential mechanisms. Frontiers in Astronomy and Space Sciences, 0, 9,	1.1	0
36	Ground truth: Finding a "place―for climate change. , 2022, 1, 137-162.		3
37	Tree Plantation: A Silver Bullet to Achieve Carbon Neutrality?., 2022,, 205-227.		0
38	Microbial properties determine dynamics of topsoil organic carbon stocks and fractions along an age-sequence of Mongolian pine plantations. Plant and Soil, 2023, 483, 441-457.	1.8	2

#	Article	IF	CITATIONS
39	Sustainable pathways towards climate and biodiversity goals in the UK: the importance of managing land-use synergies and trade-offs. Sustainability Science, 2023, 18, 521-538.	2.5	8
40	Afforestation of Taxodium Hybrid Zhongshanshan Influences Soil Bacterial Community Structure by Altering Soil Properties in the Yangtze River Basin, China. Plants, 2022, 11, 3456.	1.6	2
41	A Community Housing Association's Strategy for the Benchmarking, Reduction and Sequestration of Carbon Towards a Resilient and Globally Responsible Wales (UK). Smart Innovation, Systems and Technologies, 2023, , 240-248.	0.5	0
43	How to balance land demand conflicts to guarantee sustainable land development. IScience, 2023, 26, 106641.	1.9	5
44	Pathways to achieving nature-positive and carbon–neutral land use and food systems in Wales. Regional Environmental Change, 2023, 23, .	1.4	1
45	Evaluating soil carbon stability by combining $\hat{\Gamma}13C$ and soil aggregates after afforestation on agricultural land and thinning management. Plant and Soil, 2023, 487, 567-586.	1.8	1
47	Soil carbon sequestration benefits of active versus natural restoration vary with initial carbon content and soil layer. Communications Earth & Environment, 2023, 4, .	2.6	4
48	Bases para el manejo adaptativo de la leñosa invasora Acacia melanoxylon (Fabaceae) en la Reserva Natural Privada Paititi, sierras del Sistema de Tandilia, Argentina. Boletin De La Sociedad Argentina De Botanica, 2023, 58, .	0.1	1
49	Simulating SOC Dynamics under Different Temperature Regimes and FYM Addition in Bamboo Species Using RothC-Model. Forests, 2023, 14, 722.	0.9	O