Dripping, jetting and tip streaming

Reports on Progress in Physics 83, 097001

DOI: 10.1088/1361-6633/aba482

Citation Report

#	Article	IF	CITATIONS
1	Influence of the surface viscous stress on the pinch-off of free surfaces loaded with nearly-inviscid surfactants. Scientific Reports, 2020, 10, 16065.	1.6	12
2	Capabilities and Limitations of Fire-Shaping to Produce Glass Nozzles. Materials, 2020, 13, 5477.	1.3	3
3	Fluid interfaces with very sharp tips in viscous flow. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32238-32243.	3. 3	10
4	Whipping in gaseous flow focusing. International Journal of Multiphase Flow, 2020, 130, 103367.	1.6	9
5	Global stability analysis of axisymmetric liquid–liquid flow focusing. Journal of Fluid Mechanics, 2021, 909, .	1.4	10
6	Electrostatically Sprayed Nanostructured Electrodes for Energy Conversion and Storage Devices. Advanced Functional Materials, 2021, 31, 2008181.	7.8	39
7	Simulation of impulsively induced viscoelastic jets using the Oldroyd-B model. Journal of Fluid Mechanics, 2021, 911, .	1.4	2
8	Electrical Conductivity of a Stretching Viscoelastic Filament. Materials, 2021, 14, 1294.	1.3	1
9	Diameter and charge of the first droplet emitted in electrospray. Physics of Fluids, 2021, 33, .	1.6	14
10	Aerosol agitation: Quantifying the hydrodynamic stressors on particulates encapsulated in small droplets. Physical Review Fluids, 2021, 6, .	1.0	8
11	Interfacial instability and transition of jetting and dripping modes in a co-flow focusing process. Physics of Fluids, 2021, 33, .	1.6	12
12	Air filament contraction. Physics of Fluids, 2021, 33, 051702.	1.6	3
13	Blood Particulate Analogue Fluids: A Review. Materials, 2021, 14, 2451.	1.3	20
14	Role of Interfacial Tension on Viscous Multiphase Flows in Coaxial Microfluidic Channels. Langmuir, 2021, 37, 7420-7429.	1.6	9
15	Formation of suspending beads-on-a-string structure in electrohydrodynamic printing process. Materials and Design, 2021, 204, 109692.	3.3	6
16	Dynamic behavior of droplet formation in dripping mode of capillary ï¬,ow focusing. Capillarity, 2021, 4, 45-49.	1.0	1
17	Formation mechanism and criterion of tail satellite droplets for moving droplet in microchannel. Chemical Engineering Science, 2021, 238, 116607.	1.9	7
18	Flow regime mapping for a two-phase system of aqueous alginate and water droplets in T-junction geometry. Physics of Fluids, 2021, 33, .	1.6	19

#	Article	IF	CITATIONS
19	Coâ€Axial Gyroâ€Spinning of PCL/PVA/HA Coreâ€Sheath Fibrous Scaffolds for Bone Tissue Engineering. Macromolecular Bioscience, 2021, 21, e2100177.	2.1	18
20	Size control of shape switchable micronetworks by fast two-step microfluidic templating. Journal of Materials Research, 2021, 36, 3248-3257.	1.2	0
21	The Natural Breakup Length of a Steady Capillary Jet: Application to Serial Femtosecond Crystallography. Crystals, 2021, 11, 990.	1.0	6
22	Effects of charge relaxation on the electrohydrodynamic breakup of leaky-dielectric jets. Journal of Fluid Mechanics, 2021, 925, .	1.4	8
23	Diffusive and capillary instabilities of viscous fluid threads in microchannels. Physical Review Fluids, 2021, 6, .	1.0	7
24	Dynamics of a viscoelastic thread surrounded by a Newtonian viscous fluid inside a cylindrical tube. Journal of Fluid Mechanics, 2021, 926, .	1.4	1
25	Transonic flow focusing: stability analysis and jet diameter. International Journal of Multiphase Flow, 2021, 142, 103720.	1.6	3
26	Effect of an axial electric field on the breakup of a leaky-dielectric liquid filament. Physics of Fluids, 2021, 33, .	1.6	8
27	Prediction of outflow parameters for a shower head. Water Research, 2021, 202, 117436.	5.3	4
28	Comparison of surfactant mass transfer with drop formation times from dynamic interfacial tension measurements in microchannels. Journal of Colloid and Interface Science, 2022, 605, 204-213.	5.0	21
29	On the physics of transient ejection from bubble bursting. Journal of Fluid Mechanics, 2021, 929, .	1.4	17
30	Dynamics of droplet formation and mechanisms of satellite droplet formation in T-junction microchannel. Chemical Engineering Science, 2022, 248, 117217.	1.9	18
31	Molecular dynamics simulations of nanoparticle-laden drop–interface electrocoalescence behaviors under direct and alternating current electric fields. Journal of Molecular Liquids, 2021, 344, 117875.	2.3	15
32	Progress and potential of electrospinning-derived substrate-free and binder-free lithium-ion battery electrodes. Chemical Engineering Journal, 2022, 430, 132876.	6.6	53
33	Instability of coaxial viscoelastic jets under a radial electric field. European Journal of Mechanics, B/Fluids, 2022, 92, 25-39.	1,2	5
34	Damped shape oscillations of a viscous compound droplet suspended in a viscous host fluid. Journal of Fluid Mechanics, 2022, 931, .	1.4	2
35	Transient radial spray from electrified viscous jets. Physics of Fluids, 2021, 33, 121704.	1.6	4
36	Axisymmetric thin film flow on a flat disk foil subject to intense radial electric fields. Physics of Fluids, 2022, 34, .	1.6	3

#	ARTICLE	IF	CITATIONS
37	Micrometer-sized droplets from liquid helium jets at low stagnation pressures. Physics of Fluids, 2022, 34, .	1.6	12
38	Perturbations of liquid jets with an entering sphere in flow focusing. International Journal of Multiphase Flow, 2022, 147, 103914.	1.6	1
39	Microfluidics-Enabled Soft Manufacture of Materials with Tailorable Wettability. Chemical Reviews, 2022, 122, 7010-7060.	23.0	44
40	Stability and tip streaming of a surfactant-loaded drop in an extensional flow. Influence of surface viscosity. Journal of Fluid Mechanics, 2022, 934, .	1.4	17
41	On the hydrodynamic focusing for producing microemulsions via tip streaming. Journal of Fluid Mechanics, 2022, 934, .	1.4	5
42	The liquid–liquid flow dynamics and droplet formation in a modified step Tâ€junction microchannel. AICHE Journal, 2022, 68, .	1.8	8
43	Increase of one-to-one particle encapsulation yield using dielectrophoretic alignment technique with boxcar-type electrodes. Transactions of the JSME (in Japanese), 2022, 88, 21-00300-21-00300.	0.1	0
44	Experiment and prediction of droplet formation in microfluidic cross-junctions with different bifurcation angles. International Journal of Multiphase Flow, 2022, 149, 103973.	1.6	16
45	Linear instability analysis of a viscoelastic jet in a co-flowing gas stream. Journal of Fluid Mechanics, 2022, 936, .	1.4	3
46	Experimental and numerical investigations on characteristics of coaxial liquid cone in coflow focusing. Physical Review Fluids, 2022, 7, .	1.0	7
47	The onset of heterogeneity in the pinch-off of suspension drops. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120893119.	3.3	12
48	Metamorphosis of trilobite-like drops on a surface: Electrically driven fingering. Physics of Fluids, 2021, 33, 124107.	1.6	4
49	Controlling instabilities of electrified liquid jets via orthogonal perturbations. Physical Review Fluids, 2022, 7, .	1.0	2
50	Physics-based statistical learning perspectives on droplet formation characteristics in microfluidic cross-junctions. Applied Physics Letters, 2022, 120, .	1.5	16
51	Influence of a Soluble Surfactant on the Transition to Tip Streaming. SSRN Electronic Journal, 0, , .	0.4	0
52	Applicability of near-field electrospinning for the development of TCP-based thin fibres and scaffold 3D printing. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2022, , .	0.9	0
53	Fire-Shaped Nozzles to Produce a Stress Peak for Deformability Studies. Polymers, 2022, 14, 2784.	2.0	1
54	One-step electrospinning PMMA-SPO with hierarchical architectures as a multi-functional transparent screen window. New Journal of Chemistry, 2022, 46, 16675-16683.	1.4	2

#	ARTICLE	IF	CITATIONS
55	Influence of a soluble surfactant on the transition to tip streaming. Experimental Thermal and Fluid Science, 2023, 141, 110776.	1.5	1
56	Taylor–Culick retractions and the influence of the surroundings. Journal of Fluid Mechanics, 2022, 948, .	1.4	17
57	Influence of the gas viscosity on the stability of flow focusing. Experimental Thermal and Fluid Science, 2023, 141, 110788.	1.5	1
58	Experimental observations and modelling of sub-Hinze bubble production by turbulent bubble break-up. Journal of Fluid Mechanics, 2022, 951, .	1.4	4
59	Microfluidics-derived microcarrier systems for oral delivery., 2023, 1, 30-38.		12
60	One-step fabrication of multiphasic Janus microparticles with programmed degradation properties based on a microfluidic chip. Materials and Design, 2023, 225, 111516.	3.3	3
61	Food aeration: Effect of the surface-active agent type on bubble deformation and break-up in a viscous Newtonian fluid: From single bubble to process-scale. Food Research International, 2023, 165, 112478.	2.9	0
62	A revisit of Rayleigh capillary jet breakup at low Ohnesorge number. Physics of Fluids, 2023, 35, 011706.	1.6	0
63	Electrospray., 2023,, 121-152.		1
64	Marangoni destabilization of bidimensional-confined gas–liquid co-flowing streams in rectangular microfluidic channels. Physics of Fluids, 2023, 35, .	1.6	3
65	Formation of droplets of yield stress non-Newtonian fluids at T-junctions within parallelized microchannels. Chemical Engineering Science, 2023, 274, 118696.	1.9	0
66	The ocean fine spray. Physics of Fluids, 2023, 35, .	1.6	6
67	Numerical Simulation of Motion and Distribution Characteristics for Electrospray Droplets. Micromachines, 2023, 14, 396.	1.4	1
68	Computational simulation of the effects of interfacial tension in microfluidic flow focusing droplet generators. Frontiers in Physics, 0, 11 , .	1.0	1
69	Biomimetic Extracellular Scaffolds by Microfluidic Superstructuring of Nanofibers. ACS Biomaterials Science and Engineering, 2023, 9, 1251-1260.	2.6	0
70	Microfluidic Methods for Generation of Submicron Droplets: A Review. Micromachines, 2023, 14, 638.	1.4	1
71	Experimental study of dispersed flows in microchannels for 3D printing of composite materials. Thermophysics and Aeromechanics, 2022, 29, 913-920.	0.1	0
72	Dynamics of Multiphase Magnetic Fluid Systems in Microchannels of Different Shapes inside a Nonhomogeneous Magnetic Field. Bulletin of the Russian Academy of Sciences: Physics, 2023, 87, 295-299.	0.1	3

Article IF Citations