Impaired type I interferon activity and inflammatory re-

Science 369, 718-724 DOI: 10.1126/science.abc6027

Citation Report

#	Article	IF	CITATIONS
1	The Role of Type I Interferons in the Pathogenesis and Treatment of COVID-19. Frontiers in Immunology, 2020, 11, 595739.	2.2	90
2	A Cytokine Circus with a Viral Ringleader: SARS-CoV-2-Associated Cytokine Storm Syndromes. Trends in Molecular Medicine, 2020, 26, 1078-1085.	3.5	12
3	Whole blood immunophenotyping uncovers immature neutrophil-to-VD2 T-cell ratio as an early marker for severe COVID-19. Nature Communications, 2020, 11, 5243.	5.8	138
4	Impaired natural killer cell counts and cytolytic activity in patients with severe COVID-19. Blood Advances, 2020, 4, 5035-5039.	2.5	92
5	<p>Immunoglobulin G2 Antibody as a Potential Target for COVID-19 Vaccine</p> . ImmunoTargets and Therapy, 2020, Volume 9, 143-149.	2.7	7
6	On the genetics and immunopathogenesis of COVID-19. Clinical Immunology, 2020, 220, 108591.	1.4	32
7	Azithromycin: The First Broad-spectrum Therapeutic. European Journal of Medicinal Chemistry, 2020, 207, 112739.	2.6	64
8	Systems-Level Immunomonitoring from Acute to Recovery Phase of Severe COVID-19. Cell Reports Medicine, 2020, 1, 100078.	3.3	160
9	Severe COVID-19: what have we learned with the immunopathogenesis?. Advances in Rheumatology, 2020, 60, 50.	0.8	53
10	An open-label, randomized trial of the combination of IFN-κ plus TFF2 with standard care in the treatment of patients with moderate COVID-19. EClinicalMedicine, 2020, 27, 100547.	3.2	29
11	Neurocovid-19: A clinical neuroscience-based approach to reduce SARS-CoV-2 related mental health sequelae. Journal of Psychiatric Research, 2020, 130, 215-217.	1.5	25
12	SARS-CoV-2 ORF3b Is a Potent Interferon Antagonist Whose Activity Is Increased by a Naturally Occurring Elongation Variant. Cell Reports, 2020, 32, 108185.	2.9	345
13	Cytokine Storm in COVID-19: "When You Come Out of the Storm, You Won't Be the Same Person Who Walked in― Frontiers in Immunology, 2020, 11, 2132.	2.2	96
14	PML nuclear bodies and chromatin dynamics: catch me if you can!. Nucleic Acids Research, 2020, 48, 11890-11912.	6.5	100
15	<p>Drugs for Multiple Sclerosis Activate Natural Killer Cells: Do They Protect Against COVID-19 Infection?</p> . Infection and Drug Resistance, 2020, Volume 13, 3243-3254.	1.1	20
16	SARS-CoV-2 morbidity and mortality in racial/ethnic minority populations: A window into the stress related inflammatory basis of health disparities?. Brain, Behavior, & Immunity - Health, 2020, 9, 100158.	1.3	22
17	Comparison of transgenic and adenovirus hACE2 mouse models for SARS-CoV-2 infection. Emerging Microbes and Infections, 2020, 9, 2433-2445.	3.0	153
18	Higher mortality of COVID-19 in males: sex differences in immune response and cardiovascular comorbidities. Cardiovascular Research, 2020, 116, 2197-2206.	1.8	205

ARTICLE IF CITATIONS # Immunopathogenesis of SARS-CoV-2-induced pneumonia: lessons from influenza virus infection. 19 1.5 40 Inflammation and Regeneration, 2020, 40, 39. The differential immune responses to COVID-19 in peripheral and lung revealed by single-cell RNA 3.1 188 sequencing. Cell Discovery, 2020, 6, 73. 21 Susceptibility to severe COVID-19. Science, 2020, 370, 404-405. 6.0 43 SARS-CoV-2 Disrupts Splicing, Translation, and Protein Trafficking to Suppress Host Defenses. Cell, 442 2020, 183, 1325-1339.e21. An aberrant STAT pathway is central to COVID-19. Cell Death and Differentiation, 2020, 27, 3209-3225. 23 5.0 224 Two distinct immunopathological profiles in autopsy lungs of COVID-19. Nature Communications, 5.8 230 2020, 11, 5086. Immunology of COVIDâ€19 and diseaseâ€modifying therapies: the good, the bad and the unknown. European 1.7 26 20 Journal of Neurology, 2020, 28, 3503-3516. Before Virus, After Virus: A Reckoning. Cell, 2020, 183, 308-314. 13.5 A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduction and Targeted Therapy, 2020, 28 7.1 427 5, 237. Imperfect storm: is interleukin-33 the Achilles heel of COVID-19?. Lancet Rheumatology, The, 2020, 2, 29 2.2 84 е779-е790. Coronaviruses: Innate Immunity, Inflammasome Activation, Inflammatory Cell Death, and Cytokines. 30 2.9 154 Trends in Immunology, 2020, 41, 1083-1099. Vascular Disease and Thrombosis in SARS-CoV-2-Infected Rhesus Macaques. Cell, 2020, 183, 1354-1366.e13. 13.5 184 Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends in Immunology, 2020, 41, 1100-1115. 32 2.9 794 Main protease of SARS-CoV-2 serves as a bifunctional molecule in restricting type I interferon 34 7.1 antiviral signaling. Signal Transduction and Targeted Therapy, 2020, 5, 221. The immuno-oncological challenge of COVID-19. Nature Cancer, 2020, 1, 946-964. 35 5.796 Interferon Beta-1b and Lopinavir–Ritonavir for Middle East Respiratory Syndrome. New England Journal of Medicine, 2020, 383, 1645-1656. Lessons for COVID-19 Immunity from Other Coronavirus Infections. Immunity, 2020, 53, 248-263. 37 6.6 281 Clinical characteristics, management and outcome of COVIDâ€19â€associated immune thrombocytopenia: a 1.2 French multicentre series. British Journal of Haematology, 2020, 190, e224-e229.

#	Article	IF	CITATIONS
39	Tea Bioactive Modulate Innate Immunity: In Perception to COVID-19 Pandemic. Frontiers in Immunology, 2020, 11, 590716.	2.2	50
40	Chloroquine, hydroxychloroquine, and COVID-19: Systematic review and narrative synthesis of efficacy and safety. Saudi Pharmaceutical Journal, 2020, 28, 1760-1776.	1.2	18
41	The known unknowns of T cell immunity to COVID-19. Science Immunology, 2020, 5, .	5.6	122
42	Clinical Outcomes of COVID-19 Patients with Pre-existing, Compromised Immune Systems: A Review of Case Reports. International Journal of Medical Sciences, 2020, 17, 2974-2986.	1.1	16
43	The immunology of SARS-CoV-2 infections and vaccines. Seminars in Immunology, 2020, 50, 101422.	2.7	85
44	Vitamin D and SARS-CoV-2 infection—evolution of evidence supporting clinical practice and policy development. Irish Journal of Medical Science, 2020, 190, 1253-1265.	0.8	19
45	Hydroxychloroquine Inhibits the Trained Innate Immune Response to Interferons. Cell Reports Medicine, 2020, 1, 100146.	3.3	24
46	Type I Interferon (IFN)-Regulated Activation of Canonical and Non-Canonical Signaling Pathways. Frontiers in Immunology, 2020, 11, 606456.	2.2	98
47	Three Properties of SARS-CoV-2 That Promote COVID-19. Infectious Diseases in Clinical Practice, 2020, 28, 324-326.	0.1	1
48	MAFB and MAF Transcription Factors as Macrophage Checkpoints for COVID-19 Severity. Frontiers in Immunology, 2020, 11, 603507.	2.2	19
49	Longitudinal Multi-omics Analyses Identify Responses of Megakaryocytes, Erythroid Cells, and Plasmablasts as Hallmarks of Severe COVID-19. Immunity, 2020, 53, 1296-1314.e9.	6.6	278
50	Response to: †Antirheumatic drugs, B cell depletion and critical COVID-19: correspondence on †Clinical course of coronavirus disease 2019 (COVID-19) in a series of 17 patients with systemic lupus erythematosus under long-term treatment with hydroxychloroquine by Mathian <i>et al</i> ' by Notz <i>et al</i> . Annals of the Rheumatic Diseases. 2022. 81, e217-e217.	0.5	8
51	Immunogenetic Association Underlying Severe COVID-19. Vaccines, 2020, 8, 700.	2.1	30
52	Structural Characterization of SARS-CoV-2: Where We Are, and Where We Need to Be. Frontiers in Molecular Biosciences, 2020, 7, 605236.	1.6	159
53	The dysregulated innate immune response in severe COVID-19 pneumonia that could drive poorer outcome. Journal of Translational Medicine, 2020, 18, 457.	1.8	61
54	Pediatric Inflammatory Multisystem Syndrome and Rheumatic Diseases During SARS-CoV-2 Pandemic. Frontiers in Pediatrics, 2020, 8, 605807.	0.9	34
55	COVID-19: The Emerging Immunopathological Determinants for Recovery or Death. Frontiers in Microbiology, 2020, 11, 588409.	1.5	19
56	Transcriptional Differences for COVID-19 Disease Map Genes between Males and Females Indicate a Different Basal Immunophenotype Relevant to the Disease. Genes. 2020. 11. 1447.	1.0	16

#	Article	IF	CITATIONS
57	SARS-CoV-2 and interferon blockade. Molecular Medicine, 2020, 26, 103.	1.9	3
58	Update in COVID-19 in the intensive care unit from the 2020 HELLENIC Athens International symposium. Anaesthesia, Critical Care & Pain Medicine, 2020, 39, 723-730.	0.6	22
59	Increased ILâ€10â€producing regulatory T cells are characteristic of severe cases of COVIDâ€19. Clinical and Translational Immunology, 2020, 9, e1204.	1.7	59
60	Daily Viral Kinetics and Innate and Adaptive Immune Response Assessment in COVID-19: a Case Series. MSphere, 2020, 5, .	1.3	52
61	l mmunosenescence and Inflammaging: Risk Factors of Severe COVID-19 in Older People. Frontiers in Immunology, 2020, 11, 579220.	2.2	115
62	Distinct inflammatory profiles distinguish COVID-19 from influenza with limited contributions from cytokine storm. Science Advances, 2020, 6, .	4.7	204
63	Interferon responses in viral pneumonias. Science, 2020, 369, 626-627.	6.0	26
64	Rewiring the Immune Response in COVID-19. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 784-786.	2.5	8
65	COVID-19: Pharmacology and kinetics of viral clearance. Pharmacological Research, 2020, 161, 105114.	3.1	17
66	Impaired NLRP3 inflammasome activation/pyroptosis leads to robust inflammatory cell death via caspase-8/RIPK3 during coronavirus infection. Journal of Biological Chemistry, 2020, 295, 14040-14052.	1.6	144
67	Serum Proteomics in COVID-19 Patients: Altered Coagulation and Complement Status as a Function of IL-6 Level. Journal of Proteome Research, 2020, 19, 4417-4427.	1.8	155
68	Presence of Genetic Variants Among Young Men With Severe COVID-19. JAMA - Journal of the American Medical Association, 2020, 324, 663.	3.8	626
69	Approaching coronavirus disease 2019: Mechanisms of action of repurposed drugs with potential activity against SARS-CoV-2. Biochemical Pharmacology, 2020, 180, 114169.	2.0	26
70	Nonâ€steroidal antiâ€inflammatory drugs, prostaglandins, and COVIDâ€19. British Journal of Pharmacology, 2020, 177, 4899-4920.	2.7	73
71	A nomogram to predict the risk of unfavourable outcome in COVID-19: a retrospective cohort of 279 hospitalized patients in Paris area. Annals of Medicine, 2020, 52, 367-375.	1.5	28
72	Interplay between SARS-CoV-2 and the type I interferon response. PLoS Pathogens, 2020, 16, e1008737.	2.1	406
73	Cellular and Molecular Pathways of COVID-19 and Potential Points of Therapeutic Intervention. Frontiers in Pharmacology, 2020, 11, 1169.	1.6	108
74	Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment. Cell, 2020, 182, 1419-1440.e23.	13.5	1,162

#	Article	IF	CITATIONS
75	Elevated Calprotectin and Abnormal Myeloid Cell Subsets Discriminate Severe from Mild COVID-19. Cell, 2020, 182, 1401-1418.e18.	13.5	663
76	Understanding immunopathological fallout of human coronavirus infections including COVIDâ€19: Will they cross the path of rheumatologists?. International Journal of Rheumatic Diseases, 2020, 23, 998-1008.	0.9	9
77	Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science, 2020, 369, 1210-1220.	6.0	947
78	Host-directed therapies: a potential solution to combat COVID-19. Expert Opinion on Biological Therapy, 2020, 20, 1117-1120.	1.4	8
79	Negative tests for SARSâ€CoVâ€2 infection do not rule out its responsibility for chilblains: reply from the authors. British Journal of Dermatology, 2020, 183, 1151-1152.	1.4	0
80	The type I interferon response in COVID-19: implications for treatment. Nature Reviews Immunology, 2020, 20, 585-586.	10.6	317
81	Evaluation of mechanisms of action of re-purposed drugs for treatment of COVID-19. Cellular Immunology, 2020, 358, 104240.	1.4	6
82	Phenotypical and functional alteration of unconventional T cells in severe COVID-19 patients. Journal of Experimental Medicine, 2020, 217, .	4.2	150
83	Integrative Network Biology Framework Elucidates Molecular Mechanisms of SARS-CoV-2 Pathogenesis. IScience, 2020, 23, 101526.	1.9	52
84	Multi-Omics Resolves a Sharp Disease-State Shift between Mild and Moderate COVID-19. Cell, 2020, 183, 1479-1495.e20.	13.5	449
85	Understanding the complexities of SARS-CoV2 infection and its immunology: A road to immune-based therapeutics. International Immunopharmacology, 2020, 88, 106980.	1.7	31
86	SARS-CoV-2 Infection Boosts MX1 Antiviral Effector in COVID-19 Patients. IScience, 2020, 23, 101585.	1.9	85
87	Immunoinflammatory, Thrombohaemostatic, and Cardiovascular Mechanisms in COVID-19. Thrombosis and Haemostasis, 2020, 120, 1629-1641.	1.8	44
88	Dexamethasone in hospitalised patients with COVID-19: addressing uncertainties. Lancet Respiratory Medicine,the, 2020, 8, 1170-1172.	5.2	98
89	Immune asynchrony in COVID-19 pathogenesis and potential immunotherapies. Journal of Experimental Medicine, 2020, 217, .	4.2	55
90	An ace model for SARS-CoV-2 infection. Journal of Experimental Medicine, 2020, 217, .	4.2	4
91	Systemic innate and adaptive immune responses to SARS-CoV-2 as it relates to other coronaviruses. Human Vaccines and Immunotherapeutics, 2020, 16, 2980-2991.	1.4	24
92	Convalescent plasma therapy for B-cell–depleted patients with protracted COVID-19. Blood, 2020, 136, 2290-2295.	0.6	251

#	Article	IF	CITATIONS
93	Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science, 2020, 370, .	6.0	1,749
94	Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science, 2020, 370, .	6.0	1,983
95	The role of Interleukin 6 inhibitors in therapy of severe COVID-19. Biomedicine and Pharmacotherapy, 2020, 131, 110698.	2.5	77
96	Longitudinal immune profiling reveals key myeloid signatures associated with COVID-19. Science Immunology, 2020, 5, .	5.6	198
97	Immune responses during COVID-19 infection. OncoImmunology, 2020, 9, 1807836.	2.1	103
98	Monocyte activation in systemic Covid-19 infection: Assay and rationale. EBioMedicine, 2020, 59, 102964.	2.7	80
99	Type I IFN deficiency: an immunological characteristic of severe COVID-19 patients. Signal Transduction and Targeted Therapy, 2020, 5, 198.	7.1	21
100	Type I Interferon Susceptibility Distinguishes SARS-CoV-2 from SARS-CoV. Journal of Virology, 2020, 94,	1.5	303
101	How to Survive COVIDâ€19 Even If the Vaccine Fails. Hepatology Communications, 2020, 4, 1864-1879.	2.0	1
102	National Psoriasis Foundation COVID-19 Task Force Guidance for Management of Psoriatic Disease During the Pandemic: Version 1. Journal of the American Academy of Dermatology, 2020, 83, 1704-1716.	0.6	43
103	Response to: â€~Correspondence on â€~Lung involvement in macrophage activation syndrome and severe COVID-19: results from a cross-sectional study to assess clinical, laboratory and artificial intelligence–radiological differences' by Ruscitti <i>et al</i> ' by Chen <i>et al</i> . Annals of the Rheumatic Diseases, 2022, 81, e221-e221.	0.5	1
104	Multidisciplinary Guidance Regarding the Use of Immunomodulatory Therapies for Acute Coronavirus Disease 2019 in Pediatric Patients. Journal of the Pediatric Infectious Diseases Society, 2020, 9, 716-737.	0.6	40
105	Highly Sensitive Quantification of Plasma Severe Acute Respiratory Syndrome Coronavirus 2 RNA Sheds Light on its Potential Clinical Value. Clinical Infectious Diseases, 2021, 73, e2890-e2897.	2.9	92
106	Animal and translational models of SARS-CoV-2 infection and COVID-19. Mucosal Immunology, 2020, 13, 877-891.	2.7	155
107	In-depth virological assessment of kidney transplant recipients with COVID-19. American Journal of Transplantation, 2020, 20, 3162-3172.	2.6	68
108	Extracorporeal cytokine adsorption as an alternative to pharmacological inhibition of IL-6 in COVID-19. Critical Care, 2020, 24, 514.	2.5	5
109	SARS-CoV-2 ORF8 and SARS-CoV ORF8ab: Genomic Divergence and Functional Convergence. Pathogens, 2020, 9, 677.	1.2	44
110	Antagonism of Type I Interferon by Severe Acute Respiratory Syndrome Coronavirus 2. Journal of Interferon and Cytokine Research, 2020, 40, 543-548.	0.5	31

#	Article	IF	CITATIONS
111	Taming the Autophagy as a Strategy for Treating COVID-19. Cells, 2020, 9, 2679.	1.8	52
112	Rationale for COVID-19 Treatment by Nebulized Interferon-β-1b–Literature Review and Personal Preliminary Experience. Frontiers in Pharmacology, 2020, 11, 592543.	1.6	11
113	Morphogenetic (Mucin Expression) as Well as Potential Anti-Corona Viral Activity of the Marine Secondary Metabolite Polyphosphate on A549 Cells. Marine Drugs, 2020, 18, 639.	2.2	25
114	Therapeutic Effectiveness of Interferon Alpha 2b Treatment for COVID-19 Patient Recovery. Journal of Interferon and Cytokine Research, 2020, 40, 578-588.	0.5	21
115	SARS-CoV-2: Immune Response Elicited by Infection and Development of Vaccines and Treatments. Frontiers in Immunology, 2020, 11, 569760.	2.2	30
116	Akt-Fas to Quell Aberrant T Cell Differentiation and Apoptosis in Covid-19. Frontiers in Immunology, 2020, 11, 600405.	2.2	15
117	Lymphocyte Changes in Severe COVID-19: Delayed Over-Activation of STING?. Frontiers in Immunology, 2020, 11, 607069.	2.2	38
118	Dysregulated Interferon Response Underlying Severe COVID-19. Viruses, 2020, 12, 1433.	1.5	64
119	Pathophysiology and potential future therapeutic targets using preclinical models of COVID-19. ERJ Open Research, 2020, 6, 00405-2020.	1.1	12
120	Sharing CD4+ T Cell Loss: When COVID-19 and HIV Collide on Immune System. Frontiers in Immunology, 2020, 11, 596631.	2.2	79
121	Vaccination Is the Only Acceptable Path to Herd Immunity. Med, 2020, 1, 21-23.	2.2	21
122	SARS-CoV-2 Re-infections: Lessons from Other Coronaviruses. Med, 2020, 1, 23-28.	2.2	3
123	lt is time to drop hydroxychloroquine from our COVID-19 armamentarium. Medical Hypotheses, 2020, 144, 110198.	0.8	7
124	Temporal and spatial heterogeneity of host response to SARS-CoV-2 pulmonary infection. Nature Communications, 2020, 11, 6319.	5.8	203
125	B Cell Subsets as Severity-Associated Signatures in COVID-19 Patients. Frontiers in Immunology, 2020, 11, 611004.	2.2	101
126	Mechanisms of Dysregulated Humoral and Cellular Immunity by SARS-CoV-2. Pathogens, 2020, 9, 1027.	1.2	20
127	Type I Interferon Signature in Chilblain-Like Lesions Associated with the COVID-19 Pandemic. Dermatopathology (Basel, Switzerland), 2020, 7, 57-63.	0.7	30
128	Coronavirus disease 2019: investigational therapies in the prevention and treatment of hyperinflammation. Expert Review of Clinical Immunology, 2020, 16, 1185-1204.	1.3	23

#	Article	IF	CITATIONS
129	Immunesenescence: A Predisposing Risk Factor for the Development of COVID-19?. Frontiers in Immunology, 2020, 11, 573662.	2.2	42
130	ADE and hyperinflammation in SARS-CoV2 infection- comparison with dengue hemorrhagic fever and feline infectious peritonitis. Cytokine, 2020, 136, 155256.	1.4	26
131	Immunology of <scp>COVID</scp> â€19. Environmental Microbiology, 2020, 22, 4895-4908.	1.8	21
132	Immune Mechanisms in Cardiovascular Diseases Associated With Viral Infection. Frontiers in Immunology, 2020, 11, 570681.	2.2	29
133	A connectivity map-based drug repurposing study and integrative analysis of transcriptomic profiling of SARS-CoV-2 infection. Infection, Genetics and Evolution, 2020, 86, 104610.	1.0	25
134	Mucus production stimulated by IFN-AhR signaling triggers hypoxia of COVID-19. Cell Research, 2020, 30, 1078-1087.	5.7	92
135	SARS-CoV-2 and mitochondrial health: implications of lifestyle and ageing. Immunity and Ageing, 2020, 17, 33.	1.8	46
136	Perspective: Reducing SARS-CoV2 Infectivity and Its Associated Immunopathology. Frontiers in Immunology, 2020, 11, 581076.	2.2	6
137	Integrate structural analysis, isoform diversity, and interferon-inductive propensity of ACE2 to predict SARS-CoV2 susceptibility in vertebrates. Heliyon, 2020, 6, e04818.	1.4	13
138	Protective Potentials of Type III Interferons in COVID-19 Patients: Lessons from Differential Properties of Type I- and III Interferons. Viral Immunology, 2021, 34, 307-320.	0.6	30
139	Evidence and possible mechanisms of rare maternal-fetal transmission of SARS-CoV-2. Journal of Clinical Virology, 2020, 128, 104447.	1.6	88
140	Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nature Reviews Immunology, 2020, 20, 355-362.	10.6	1,963
141	Angiopoietin-2 as a marker of endothelial activation is a good predictor factor for intensive care unit admission of COVID-19 patients. Angiogenesis, 2020, 23, 611-620.	3.7	204
143	Paediatric multisystem inflammatory syndrome temporally associated with SARS-CoV-2 mimicking Kawasaki disease (Kawa-COVID-19): a multicentre cohort. Annals of the Rheumatic Diseases, 2020, 79, 999-1006.	0.5	400
144	Baricitinib: A Review of Pharmacology, Safety, and Emerging Clinical Experience in COVIDâ€19. Pharmacotherapy, 2020, 40, 843-856.	1.2	144
145	Pediatric cancer research: Surviving COVIDâ€19. Pediatric Blood and Cancer, 2020, 67, e28435.	0.8	28
146	Metabolic Syndrome and COVID 19: Endocrine-Immune-Vascular Interactions Shapes Clinical Course. Endocrinology, 2020, 161, .	1.4	80
147	Flow Cytometry Identifies Risk Factors and Dynamic Changes in Patients with COVID-19. Journal of Clinical Immunology, 2020, 40, 970-973.	2.0	37

#	Article	IF	CITATIONS
148	A cytokine super cyclone in COVID-19 patients with risk factors: the therapeutic potential of BCG immunization. Cytokine and Growth Factor Reviews, 2020, 54, 32-42.	3.2	37
149	Are we fully exploiting type I Interferons in today's fight against COVID-19 pandemic?. Cytokine and Growth Factor Reviews, 2020, 54, 43-50.	3.2	19
150	Immunologic Features in Coronavirus Disease 2019: Functional Exhaustion of T Cells and Cytokine Storm. Journal of Clinical Immunology, 2020, 40, 974-976.	2.0	59
151	Devilishly radical NETwork in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. Advances in Biological Regulation, 2020, 77, 100741.	1.4	172
152	New insights in COVID-19–associated chilblains: A comparative study with chilblain lupus erythematosus. Journal of the American Academy of Dermatology, 2020, 83, 1219-1222.	0.6	36
153	SARSâ€COVâ€2 and biomimetics: What saves the planet will save our health. Journal of Internal Medicine, 2021, 289, 244-246.	2.7	4
154	High-dimensional single-cell analysis reveals the immune characteristics of COVID-19. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L84-L98.	1.3	22
155	Potential role of interferons in treating COVID-19 patients. International Immunopharmacology, 2021, 90, 107171.	1.7	55
156	An overview on the use of antivirals for the treatment of patients with COVID19 disease. Expert Opinion on Investigational Drugs, 2021, 30, 45-59.	1.9	4
157	T-cell dysregulation in COVID-19. Biochemical and Biophysical Research Communications, 2021, 538, 204-210.	1.0	50
158	Response to: †Exacerbation of immune thrombocytopenia triggered by COVID-19 in patients with systemic lupus erythematosus' by Kondo et al. Annals of the Rheumatic Diseases, 2021, 80, e78-e78.	0.5	0
159	Clinical trial protocols of repurposed prophylaxis for COVID-19: A review. Infectious Diseases Now, 2021, 51, 7-13.	0.7	5
160	Neurological Complications Associated with the Blood-Brain Barrier Damage Induced by the Inflammatory Response During SARS-CoV-2 Infection. Molecular Neurobiology, 2021, 58, 520-535.	1.9	81
161	Preliminary predictive criteria for COVID-19 cytokine storm. Annals of the Rheumatic Diseases, 2021, 80, 88-95.	0.5	165
162	Cytokine profile as a prognostic tool in coronavirus disease 2019. Comment on "Urgent avenues in the treatment of COVID-19: Targeting downstream inflammation to prevent catastrophic syndrome―by Quartuccio et al. Joint Bone Spine. 2020;87:191–93. Joint Bone Spine, 2021, 88, 105074.	0.8	5
163	The association of smoking status with SARSâ€CoVâ€2 infection, hospitalization and mortality from COVIDâ€19: a living rapid evidence review with Bayesian metaâ€analyses (version 7). Addiction, 2021, 116, 1319-1368.	1.7	266
164	SARS oVâ€2â€specific virulence factors in COVIDâ€19. Journal of Medical Virology, 2021, 93, 1343-1350.	2.5	60
165	Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nature Reviews Nephrology, 2021, 17, 46-64.	4.1	444

#	Article	IF	CITATIONS
166	Risk factors for severe and critically ill COVIDâ€19 patients: A review. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 428-455.	2.7	904
167	Lymphocyte subsets early predict mortality in a large series of hospitalized COVID-19 patients in Spain. Clinical and Experimental Immunology, 2021, 203, 424-432.	1.1	29
168	Coronavirus disease 2019 (COVIDâ€19): An overview of the immunopathology, serological diagnosis and management. Scandinavian Journal of Immunology, 2021, 93, e12998.	1.3	201
169	Interferon-inducer antivirals: Potential candidates to combat COVID-19. International Immunopharmacology, 2021, 91, 107245.	1.7	32
170	Impaired type I interferon response in SARS oVâ€2 infection: looking through the cutaneous window. British Journal of Dermatology, 2021, 184, 11-12.	1.4	3
171	The interplay between inflammatory pathways and COVID-19: A critical review on pathogenesis and therapeutic options. Microbial Pathogenesis, 2021, 150, 104673.	1.3	116
172	The Influence of Immune Immaturity on Outcome After Virus Infections. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 641-650.	2.0	3
174	Untuned antiviral immunity in COVID-19 revealed by temporal type I/III interferon patterns and flu comparison. Nature Immunology, 2021, 22, 32-40.	7.0	391
175	Metabolomics of exhaled breath in critically ill COVID-19 patients: A pilot study. EBioMedicine, 2021, 63, 103154.	2.7	143
176	T Cells: Warriors of SARS-CoV-2 Infection. Trends in Immunology, 2021, 42, 18-30.	2.9	142
177	Myxovirus resistance protein A in peripheral blood predicts supplemental oxygen need in COVID-19. Journal of Infection, 2021, 82, 186-230.	1.7	2
178	Immunopathogenesis and treatment of cytokine storm in COVID-19. Theranostics, 2021, 11, 316-329.	4.6	314
179	Lost in deletion: The enigmatic ORF8 protein of SARS-CoV-2. Biochemical and Biophysical Research Communications, 2021, 538, 116-124.	1.0	108
180	Prevention and treatment of COVID-19: Focus on interferons, chloroquine/hydroxychloroquine, azithromycin, and vaccine. Biomedicine and Pharmacotherapy, 2021, 133, 111008.	2.5	40
181	Skin manifestations of COVIDâ€19 in children: Part 1. Clinical and Experimental Dermatology, 2021, 46, 444-450.	0.6	61
182	A systematic metaâ€analysis of immune signatures in patients with COVIDâ€19. Reviews in Medical Virology, 2021, 31, e2195.	3.9	38
183	Combining Antivirals and Immunomodulators to Fight COVID-19. Trends in Immunology, 2021, 42, 31-44.	2.9	46

#	Article	IF	CITATIONS
185	Identification of key signaling pathways induced by SARS-CoV2 that underlie thrombosis and vascular injury in COVID-19 patients. Journal of Leukocyte Biology, 2021, 109, 35-47.	1.5	42
186	Clinical, Laboratory, and Interferon-Alpha Response Characteristics of Patients With Chilblain-like Lesions During the COVID-19 Pandemic. JAMA Dermatology, 2021, 157, 202.	2.0	92
187	Synergism of TNF-α and IFN-Î ³ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes. Cell, 2021, 184, 149-168.e17.	13.5	923
188	Macrophage expression and prognostic significance of the long pentraxin PTX3 in COVID-19. Nature Immunology, 2021, 22, 19-24.	7.0	101
189	Correlation Between Early Plasma Interleukin 37 Responses With Low Inflammatory Cytokine Levels and Benign Clinical Outcomes in Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Journal of Infectious Diseases, 2021, 223, 568-580.	1.9	17
190	Nebulised interferon beta-1a for patients with COVID-19. Lancet Respiratory Medicine,the, 2021, 9, 122-123.	5.2	32
191	Leukocyte trafficking to the lungs and beyond: lessons from influenza for COVID-19. Nature Reviews Immunology, 2021, 21, 49-64.	10.6	126
192	A digital protein microarray for COVID-19 cytokine storm monitoring. Lab on A Chip, 2021, 21, 331-343.	3.1	30
193	Monocyte CD169 Expression as a Biomarker in the Early Diagnosis of Coronavirus Disease 2019. Journal of Infectious Diseases, 2021, 223, 562-567.	1.9	47
194	A Prototype QSP Model of the Immune Response to SARS oVâ€2 for Community Development. CPT: Pharmacometrics and Systems Pharmacology, 2021, 10, 18-29.	1.3	16
195	Safety and efficacy of inhaled nebulised interferon beta-1a (SNG001) for treatment of SARS-CoV-2 infection: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Respiratory Medicine,the, 2021, 9, 196-206.	5.2	370
196	COVID-19 and diabetes mellitus: from pathophysiology to clinical management. Nature Reviews Endocrinology, 2021, 17, 11-30.	4.3	653
197	The role of extracellular DNA in COVID-19: Clues from inflamm-aging. Ageing Research Reviews, 2021, 66, 101234.	5.0	16
198	Recent Insights into Emerging Coronavirus: SARS-CoV-2. ACS Infectious Diseases, 2021, 7, 1369-1388.	1.8	27
199	Severe Acute Respiratory Syndrome Coronavirus 2–Induced Immune Activation and Death of Monocyte-Derived Human Macrophages and Dendritic Cells. Journal of Infectious Diseases, 2021, 223, 785-795.	1.9	127
200	Typeâ€I Interferon assessment in 45 minutes using the FilmArray [®] PCR platform in SARS oVâ€2 and other viral infections. European Journal of Immunology, 2021, 51, 989-994.	1.6	4
201	COVID-19: The Effect of Host Genetic Variations on Host–Virus Interactions. Journal of Proteome Research, 2021, 20, 139-153.	1.8	14
202	Dysregulation of Cell Signaling by SARS-CoV-2. Trends in Microbiology, 2021, 29, 224-237.	3.5	62

#	Article	IF	CITATIONS
203	COVID-19 in patients with systemic lupus erythematosus: lessons learned from the inflammatory disease. Translational Research, 2021, 232, 13-36.	2.2	69
204	Cell-Type-Specific Immune Dysregulation in Severely Ill COVID-19 Patients. Cell Reports, 2021, 34, 108590.	2.9	116
205	Neurological Manifestations of COVID-19 Feature T Cell Exhaustion and Dedifferentiated Monocytes in Cerebrospinal Fluid. Immunity, 2021, 54, 164-175.e6.	6.6	119
206	Sex-dependent immune response and lethality of COVID-19. Stem Cell Research, 2021, 50, 102116.	0.3	18
207	COVID-19 and Solid Organ Transplantation: A Review Article. Transplantation, 2021, 105, 37-55.	0.5	241
208	Pathways to Severe COVIDâ€19 for People with Obesity. Obesity, 2021, 29, 645-653.	1.5	36
209	Harnessing the non-specific immunogenic effects of available vaccines to combat COVID-19. Human Vaccines and Immunotherapeutics, 2021, 17, 1650-1661.	1.4	12
210	Functional and druggability analysis of the SARS-CoV-2 proteome. European Journal of Pharmacology, 2021, 890, 173705.	1.7	34
211	SARS-CoV-2 membrane glycoprotein M antagonizes the MAVS-mediated innate antiviral response. Cellular and Molecular Immunology, 2021, 18, 613-620.	4.8	143
212	Immunopathology of Hyperinflammation in COVID-19. American Journal of Pathology, 2021, 191, 4-17.	1.9	372
213	Underlying Vulnerabilities to the Cytokine Storm and Adverse COVID-19 Outcomes in the Aging Immune System. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, e13-e18.	1.7	55
214	Northern pig-tailed macaques (<i>Macaca leonina</i>) infected with SARS-CoV-2 show rapid viral clearance and persistent immune response. Zoological Research, 2021, 42, 350-353.	0.9	9
217	A Missing Link: Engagements of Dendritic Cells in the Pathogenesis of SARS-CoV-2 Infections. International Journal of Molecular Sciences, 2021, 22, 1118.	1.8	14
218	Epigenetic Evolution of ACE2 and IL-6 Genes: Non-Canonical Interferon-Stimulated Genes Correlate to COVID-19 Susceptibility in Vertebrates. Genes, 2021, 12, 154.	1.0	31
219	Global absence and targeting of protective immune states in severe COVID-19. Nature, 2021, 591, 124-130.	13.7	206
220	Cenetic predisposition to allergic diseases is inversely associated with risk of COVIDâ€19. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1911-1913.	2.7	15
222	Natural Risks to Life. , 2021, , 75-95.		0
223	COVID-19; Immunology, pathology, severity and immunosuppressants. Azhar International Journal of Pharmaceutical and Medical Sciences, 2021, 1, 1-14.	0.2	2

#	Article	IF	CITATIONS
224	The Novel Coronavirus and Inflammation. Advances in Experimental Medicine and Biology, 2021, 1321, 127-138.	0.8	10
227	Delineating phenotypes of Kawasaki disease and SARS-CoV-2-related inflammatory multisystem syndrome: a French study and literature review. Rheumatology, 2021, 60, 4530-4537.	0.9	24
228	Immunopathological Roles of Neutrophils in Virus Infection and COVID-19. Shock, 2021, 56, 345-351.	1.0	16
229	Control and prevention of infectious diseases from a One Health perspective. Genetics and Molecular Biology, 2021, 44, e20200256.	0.6	38
230	A distinct innate immune signature marks progression from mild to severe COVID-19. Cell Reports Medicine, 2021, 2, 100166.	3.3	102
231	Antibodies against type I interferon: detection and association with severe clinical outcome in COVIDâ€19 patients. Clinical and Translational Immunology, 2021, 10, e1327.	1.7	79
232	Obesity is a strong risk factor for short-term mortality and adverse outcomes in Mexican patients with COVID-19: a national observational study. Epidemiology and Infection, 2021, 149, e109.	1.0	30
233	Mucosal immune responses in COVID19 - a living review. Oxford Open Immunology, 2021, 2, iqab002.	1.2	14
234	Nucleocapsid and Spike Proteins of the Coronavirus SARS-CoV-2 Induce IL6 in Monocytes and Macrophages—Potential Implications for Cytokine Storm Syndrome. Vaccines, 2021, 9, 54.	2.1	45
235	llluminating the immunopathology of <scp>SARS oV</scp> â€2. Cytometry Part B - Clinical Cytometry, 2021, 100, 33-41.	0.7	11
236	RGDâ€binding integrins and TGFâ€Î² in SARSâ€CoVâ€2 infections – novel targets to treat COVIDâ€19 patients Clinical and Translational Immunology, 2021, 10, e1240.	?. 1.7	32
237	A scoping review of the pathophysiology of COVID-19. International Journal of Immunopathology and Pharmacology, 2021, 35, 205873842110480.	1.0	42
238	MDA5 Governs the Innate Immune Response to SARS-CoV-2 in Lung Epithelial Cells. Cell Reports, 2021, 34, 108628.	2.9	287
239	A genetic link between risk for Alzheimer's disease and severe COVID-19 outcomes via the <i>OAS1</i> gene. Brain, 2021, 144, 3727-3741.	3.7	65
240	Protective reactive thymus hyperplasia in COVID-19 acute respiratory distress syndrome. Critical Care, 2021, 25, 4.	2.5	26
241	Prognostic significance of ferritin, D-dimer, lymphocyte / monocyte ratio and some biochemical markers in patients with SARS-CoV-2. Medical Science and Discovery, 2021, 8, 24-28.	0.1	0
242	COVID-19 Lockdown Policies: An Interdisciplinary Review. SSRN Electronic Journal, 0, , .	0.4	5
243	Exploring the rationale for thermotherapy in COVID-19. International Journal of Hyperthermia, 2021, 38, 202-212.	1.1	6

#	Article	IF	CITATIONS
244	High levels of soluble CD25 in COVIDâ€19 severity suggest a divergence between antiâ€viral and proâ€inflammatory Tâ€cell responses. Clinical and Translational Immunology, 2021, 10, e1251.	1.7	22
246	Beta interferons as immunotherapy in multiple sclerosis: a new outlook on a classic drug during the COVID-19 pandemic. QJM - Monthly Journal of the Association of Physicians, 2021, 114, 691-697.	0.2	9
247	Extreme phenotypes approach to investigate host genetics and COVID-19 outcomes. Genetics and Molecular Biology, 2021, 44, e20200302.	0.6	6
248	Can NLRP3 inhibitors improve on dexamethasone for the treatment of COVID-19?. Current Research in Pharmacology and Drug Discovery, 2021, 2, 100048.	1.7	6
249	Hydroxychloroquine/Chloroquine as Therapeutics for COVID-19: Truth under the Mystery. International Journal of Biological Sciences, 2021, 17, 1538-1546.	2.6	24
251	At the Crossroads: COVID-19 and Immune-Checkpoint Blockade for Cancer. Cancer Immunology Research, 2021, 9, 261-264.	1.6	20
252	Similarities and Dissimilarities of COVID-19 and Other Coronavirus Diseases. Annual Review of Microbiology, 2021, 75, 19-47.	2.9	52
254	SARS-CoV-2 main protease suppresses type I interferon production by preventing nuclear translocation of phosphorylated IRF3. International Journal of Biological Sciences, 2021, 17, 1547-1554.	2.6	48
255	Promising Therapy for Heart Failure in Patients with Severe COVID-19: Calming the Cytokine Storm. Cardiovascular Drugs and Therapy, 2021, 35, 231-247.	1.3	22
256	JAK-inhibitor and type I interferon ability to produce favorable clinical outcomes in COVID-19 patients: a systematic review and meta-analysis. BMC Infectious Diseases, 2021, 21, 47.	1.3	57
257	COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-CoV-2 May Bind and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry and Causing Hyperinflammation. Mediators of Inflammation, 2021, 2021, 1-18.	1.4	215
258	An immune-based biomarker signature is associated with mortality in COVID-19 patients. JCI Insight, 2021, 6, .	2.3	269
259	Clinically distinct COVID-19 cases share notably similar immune response progression: A follow-up analysis. Heliyon, 2021, 7, e05877.	1.4	5
263	Understanding the Host Innate Immune Responses against SARS-CoV-2 Infection and COVID-19 Pathogenesis. Immune Network, 2021, 21, e1.	1.6	9
264	A SCID mouse-human lung xenograft model of SARS-CoV-2 infection. Theranostics, 2021, 11, 6607-6615.	4.6	8
267	The Many Faces of Cytokine Release Syndrome-Related Coagulopathy. Clinical Hematology International, 2021, 3, 3.	0.7	16
268	Severe Acute Respiratory Syndrome Coronavirus 2: Manifestations of Disease and Approaches to Treatment and Prevention in Humans. Comparative Medicine, 2021, 71, 342-358.	0.4	3
269	Effect of a genetically engineered interferon-alpha versus traditional interferon-alpha in the treatment of moderate-to-severe COVID-19: a randomised clinical trial. Annals of Medicine, 2021, 53, 391-401.	1.5	28

#	Article	IF	CITATIONS
270	B Cell Receptor Repertoire Kinetics after SARS-CoV-2 Infection and Vaccination. SSRN Electronic Journal, 0, , .	0.4	0
271	The therapeutic potential of inorganic polyphosphate: A versatile physiological polymer to control coronavirus disease (COVID-19). Theranostics, 2021, 11, 6193-6213.	4.6	16
272	Roles of Type I and III Interferons in COVID-19. Yonsei Medical Journal, 2021, 62, 381.	0.9	17
273	Transcriptional response modules characterize IL-1β and IL-6 activity in COVID-19. IScience, 2021, 24, 101896.	1.9	28
274	The dual role of the immune system in the course of COVID-19. The fatal impact of the aging immune system. Central-European Journal of Immunology, 2021, 46, 1-9.	0.4	12
275	Disease severity-specific neutrophil signatures in blood transcriptomes stratify COVID-19 patients. Genome Medicine, 2021, 13, 7.	3.6	193
276	Regulation of RIG-I-like receptor-mediated signaling: interaction between host and viral factors. Cellular and Molecular Immunology, 2021, 18, 539-555.	4.8	179
277	SARSâ€CoVâ€2 sculpts the immune system to induce sustained virusâ€specific naÃ⁻veâ€like and memory Bâ€cell responses. Clinical and Translational Immunology, 2021, 10, e1339.	1.7	11
278	COVID-19, rheumatic diseases and immune dysregulation—a perspective. Clinical Rheumatology, 2021, 40, 433-442.	1.0	11
279	Role of vitamin D in regulating COVID-19 severity—An immunological perspective. Journal of Leukocyte Biology, 2021, 110, 809-819.	1.5	17
280	Protective Immune Trajectories in Early Viral Containment of Non-Pneumonic SARS-CoV-2 Infection. SSRN Electronic Journal, 0, , .	0.4	3
281	Recent endemic coronavirus infection is associated with less-severe COVID-19. Journal of Clinical Investigation, 2021, 131, .	3.9	277
282	Host directed therapies: COVID-19 and beyond. Current Research in Pharmacology and Drug Discovery, 2021, 2, 100058.	1.7	19
283	Inflammation Meets Metabolism Roles: for the Receptor for Advanced Glycation End Products Axis in Cardiovascular Disease. Immunometabolism, 2021, 3, .	0.7	12
287	Immune cartography of macrophage activation syndrome in the COVID-19 era. Nature Reviews Rheumatology, 2021, 17, 145-157.	3.5	75
288	Plasma Concentrations and Safety of Lopinavir/Ritonavir in COVID-19 Patients. Therapeutic Drug Monitoring, 2021, 43, 131-135.	1.0	8
289	Marked changes in innate immunity associated with a mild course of COVID-19 in identical twins with athymia and absent circulating T cells. Journal of Allergy and Clinical Immunology, 2021, 147, 567-568.	1.5	3
290	Type 2 diabetes and viral infection; cause and effect of disease. Diabetes Research and Clinical Practice, 2021, 172, 108637.	1.1	26

#	Article	IF	CITATIONS
291	COVID-19 – pathogenesis and immunological findings across the clinical manifestation spectrum. Current Opinion in Pulmonary Medicine, 2021, 27, 193-198.	1.2	8
292	Cytokine storm induced by SARS-CoV-2 infection: The spectrum of its neurological manifestations. Cytokine, 2021, 138, 155404.	1.4	55
293	In Nasal Mucosal Secretions, Distinct IFN and IgA Responses Are Found in Severe and Mild SARS-CoV-2 Infection. Frontiers in Immunology, 2021, 12, 595343.	2.2	23
294	Genomic Signatures of SARS-CoV-2 Associated with Patient Mortality. Viruses, 2021, 13, 227.	1.5	7
295	Point of view on the vaccination against COVID-19 in patients with autoimmune inflammatory rheumatic diseases. RMD Open, 2021, 7, e001594.	1.8	59
296	Modalities and Mechanisms of Treatment for Coronavirus Disease 2019. Frontiers in Pharmacology, 2020, 11, 583914.	1.6	8
298	Is There an Effect of Fetal Mesenchymal Stem Cells in the Mother–Fetus Dyad in COVID-19 Pregnancies and Vertical Transmission?. Frontiers in Physiology, 2020, 11, 624625.	1.3	1
299	Why Is COVID-19 More Severe in Patients With Diabetes? The Role of Angiotensin-Converting Enzyme 2, Endothelial Dysfunction and the Immunoinflammatory System. Frontiers in Cardiovascular Medicine, 2020, 7, 629933.	1.1	43
300	Safety and Outcomes Associated with the Pharmacological Inhibition of the Kinin–Kallikrein System in Severe COVID-19. Viruses, 2021, 13, 309.	1.5	35
301	Multiplex assays for the identification of serological signatures of SARS-CoV-2 infection: an antibody-based diagnostic and machine learning study. Lancet Microbe, The, 2021, 2, e60-e69.	3.4	78
302	Monocyte <scp>CD169</scp> expression in <scp>COVID</scp> â€19 patients upon intensive care unit admission. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 466-471.	1.1	13
304	Pathophysiology of acute respiratory syndrome coronavirus 2 infection: a systematic literature review to inform EULAR points to consider. RMD Open, 2021, 7, e001549.	1.8	14
305	The nanomedicine rush: New strategies for unmet medical needs based on innovative nano DDS. Journal of Controlled Release, 2021, 330, 305-316.	4.8	24
308	Host–virus interaction and viral evasion. Cell Biology International, 2021, 45, 1124-1147.	1.4	11
309	Interferon-beta offers promising avenues to COVID-19 treatment: a systematic review and meta-analysis of clinical trial studies. Naunyn-Schmiedeberg's Archives of Pharmacology, 2021, 394, 829-838.	1.4	37
310	Specialized Pro-Resolving Mediators as Potential Regulators of Inflammatory Macrophage Responses in COVID-19. Frontiers in Immunology, 2021, 12, 632238.	2.2	19
311	How Do Inflammatory Mediators, Immune Response and Air Pollution Contribute to COVID-19 Disease Severity? A Lesson to Learn. Life, 2021, 11, 182.	1.1	11
312	Inflammation and Antiviral Immune Response Associated With Severe Progression of COVID-19. Frontiers in Immunology, 2021, 12, 631226.	2.2	51

#	Article	IF	CITATIONS
313	Induction of alarmin S100A8/A9 mediates activation of aberrant neutrophils in the pathogenesis of COVID-19. Cell Host and Microbe, 2021, 29, 222-235.e4.	5.1	145
315	Auto-antibodies against type I IFNs are associated with severe COVID-19 pneumonia. Signal Transduction and Targeted Therapy, 2021, 6, 96.	7.1	11
316	Gastrodin Inhibits Virus Infection by Promoting the Production of Type I Interferon. Frontiers in Pharmacology, 2020, 11, 608707.	1.6	8
319	Remembering Metchnikoff in the time of COVID-19. Journal of Leukocyte Biology, 2021, 109, 509-512.	1.5	2
320	Accurate classification of COVIDâ€19 patients with different severity via machine learning. Clinical and Translational Medicine, 2021, 11, e323.	1.7	17
321	COVID-19–associated Nephropathy Includes Tubular Necrosis and Capillary Congestion, with Evidence of SARS-CoV-2 in the Nephron. Kidney360, 2021, 2, 639-652.	0.9	24
322	Interleukin-6 Is a Biomarker for the Development of Fatal Severe Acute Respiratory Syndrome Coronavirus 2 Pneumonia. Frontiers in Immunology, 2021, 12, 613422.	2.2	228
323	A Comprehensive Review of Viral Characteristics, Transmission, Pathophysiology, Immune Response, and Management of SARS-CoV-2 and COVID-19 as a Basis for Controlling the Pandemic. Frontiers in Immunology, 2021, 12, 631139.	2.2	117
325	Position statement for a pragmatic approach to immunotherapeutics in patients with inflammatory skin diseases during the coronavirus disease 2019 pandemic and beyond. Journal of the European Academy of Dermatology and Venereology, 2021, 35, 797-806.	1.3	6
326	Dysregulated Innate and Adaptive Immune Responses Discriminate Disease Severity in COVID-19. Journal of Infectious Diseases, 2021, 223, 1322-1333.	1.9	61
327	COVID-19: Immunology, Immunopathogenesis and Potential Therapies. International Reviews of Immunology, 2022, 41, 171-206.	1.5	30
330	Non-Musculoskeletal Benefits of Vitamin D beyond the Musculoskeletal System. International Journal of Molecular Sciences, 2021, 22, 2128.	1.8	21
331	A Scoping Insight on Potential Prophylactics, Vaccines and Therapeutic Weaponry for the Ongoing Novel Coronavirus (COVID-19) Pandemic- A Comprehensive Review. Frontiers in Pharmacology, 2020, 11, 590154.	1.6	8
334	The Heterogeneous Landscape and Early Evolution of Pathogen-Associated CpG Dinucleotides in SARS-CoV-2. Molecular Biology and Evolution, 2021, 38, 2428-2445.	3.5	15
335	In silico Analyses of Immune System Protein Interactome Network, Single-Cell RNA Sequencing of Human Tissues, and Artificial Neural Networks Reveal Potential Therapeutic Targets for Drug Repurposing Against COVID-19. Frontiers in Pharmacology, 2021, 12, 598925.	1.6	16
337	SARSâ€CoVâ€2 viral load in nasopharyngeal swabs in the emergency department does not predict COVIDâ€19 severity and mortality. Academic Emergency Medicine, 2021, 28, 306-313.	0.8	33
338	Clinical Significance of Indeterminate QuantiFERON-TB Gold Plus Assay Results in Hospitalized COVID-19 Patients with Severe Hyperinflammatory Syndrome. Journal of Clinical Medicine, 2021, 10, 918.	1.0	15
340	Relapse of chilblainâ€like lesions during the second wave of coronavirus disease 19. Journal of the European Academy of Dermatology and Venereology, 2021, 35, e315-e316.	1.3	11

#	Article	IF	CITATIONS
341	Immunomodulatory Effects of Azithromycin Revisited: Potential Applications to COVID-19. Frontiers in Immunology, 2021, 12, 574425.	2.2	38
344	Neutrophil Extracellular Traps in SARS-CoV2 Related Pneumonia in ICU Patients: The NETCOV2 Study. Frontiers in Medicine, 2021, 8, 615984.	1.2	16
345	The Immunopathology of COVID-19 and the Cannabis Paradigm. Frontiers in Immunology, 2021, 12, 631233.	2.2	25
347	A Timely Call to Arms: COVID-19, the Circadian Clock, and Critical Care. Journal of Biological Rhythms, 2021, 36, 55-70.	1.4	22
348	Outcome of SARS-CoV-2 infection is linked to MAIT cell activation and cytotoxicity. Nature Immunology, 2021, 22, 322-335.	7.0	145
349	The Activin/Follistatin Axis Is Severely Deregulated in COVID-19 and Independently Associated With In-Hospital Mortality. Journal of Infectious Diseases, 2021, 223, 1544-1554.	1.9	16
350	Dysregulated transcriptional responses to SARS-CoV-2 in the periphery. Nature Communications, 2021, 12, 1079.	5.8	81
351	Severe clinical relapse in an immunocompromised host with persistent SARS-CoV-2 infection. Leukemia, 2021, 35, 920-923.	3.3	38
352	Clinical outcomes of different therapeutic options for COVID-19 in two Chinese case cohorts: A propensity-score analysis. EClinicalMedicine, 2021, 32, 100743.	3.2	24
353	Adaptive immunity to SARS-CoV-2 and COVID-19. Cell, 2021, 184, 861-880.	13.5	1,364
354	The intersection of COVID-19 and autoimmunity: What is our current understanding?. Pathogens and Immunity, 2021, 6, 31-54.	1.4	20
356	Insight into the emerging role of SARS-CoV-2 nonstructural and accessory proteins in modulation of multiple mechanisms of host innate defense. Bosnian Journal of Basic Medical Sciences, 2021, 21, 515-527.	0.6	4
357	Serum β2-microglobulin levels in Coronavirus disease 2019 (Covid-19): Another prognosticator of disease severity?. PLoS ONE, 2021, 16, e0247758.	1.1	12
358	SARS-CoV-2 Triggers an MDA-5-Dependent Interferon Response Which Is Unable To Control Replication in Lung Epithelial Cells. Journal of Virology, 2021, 95, .	1.5	168
360	Insights into biological therapeutic strategies for COVID-19. Fundamental Research, 2021, 1, 166-178.	1.6	2
361	The Pathogenic Role of Interferons in the Hyperinflammatory Response on Adult-Onset Still's Disease and Macrophage Activation Syndrome: Paving the Way towards New Therapeutic Targets. Journal of Clinical Medicine, 2021, 10, 1164.	1.0	15
363	Sarbecovirus ORF6 proteins hamper induction of interferon signaling. Cell Reports, 2021, 34, 108916.	2.9	62
364	Lactiplantibacillus plantarum as a Potential Adjuvant and Delivery System for the Development of SARS-CoV-2 Oral Vaccines. Microorganisms, 2021, 9, 683.	1.6	25

		CITATION REPORT	
#	Article	IF	CITATIONS
365	Clofazimine broadly inhibits coronaviruses including SARS-CoV-2. Nature, 2021, 593, 418-423.	13.7	151
366	SARS-CoV-2 vaccines in patients with SLE. Lupus Science and Medicine, 2021, 8, e000479.	1.1	30
367	Nanotechnology to the Rescue: Treatment Perspective for the Immune Dysregulation Observed in COVID-19. Frontiers in Nanotechnology, 2021, 3, .	2.4	4
370	Combination therapy of IFNβ1 with lopinavir–ritonavir, increases oxygenation, survival and discharging of sever COVID-19 infected inpatients. International Immunopharmacology, 2021, 92,	107329. ^{1.7}	15
371	Clinical evidence of an interferon–glucocorticoid therapeutic synergy in COVID-19. Signal Transduction and Targeted Therapy, 2021, 6, 107.	7.1	10
372	Plasmapheresis Efficiency in Coronavirus Disease 2019. Critical Care Medicine, 2021, Publish Aheac Print, e651-e652.	l of 0.4	2
373	Considering Personalized Interferon Beta Therapy for COVID-19. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	9
374	Mechanistic Modeling of SARS oVâ€2 and Other Infectious Diseases and the Effects of Theraper Clinical Pharmacology and Therapeutics, 2021, 109, 829-840.	utics. 2.3	70
375	Insights into coronavirus immunity taught by the murine coronavirus. European Journal of Immunology, 2021, 51, 1062-1070.	1.6	14
376	Coronavirus disease 2019 (COVID-19) and autoimmunity. Nauchno-Prakticheskaya Revmatologiya, 59, 5-30.	2021, 0.2	28
378	Abnormal upregulation of cardiovascular disease biomarker PLA2G7 induced by proinflammatory macrophages in COVID-19 patients. Scientific Reports, 2021, 11, 6811.	1.6	19
379	Identification of Plitidepsin as Potent Inhibitor of SARS-CoV-2-Induced Cytopathic Effect After a Dru Repurposing Screen. Frontiers in Pharmacology, 2021, 12, 646676.	lg 1.6	40
380	Hypothetical COVID-19 protection mechanism: hints from centenarians. Immunity and Ageing, 202 15.	1, 18, 1.8	7
381	Lung Protection vs. Infection Resolution: Interleukin 10 Suspected of Double-Dealing in COVID-19. Frontiers in Immunology, 2021, 12, 602130.	2.2	21
382	Aging and Interferons: Impacts on Inflammation and Viral Disease Outcomes. Cells, 2021, 10, 708.	1.8	32
383	Drugs used in the treatment of multiple sclerosis during COVID-19 pandemic: a critical viewpoint. Current Neuropharmacology, 2021, 19, .	1.4	5
385	Association of administration of IFN-α with mortality among patients hospitalized with coronavirus disease 2019. Future Virology, 2021, 16, 201-209.	0.9	1
386	Metabolomic analyses of COVID-19 patients unravel stage-dependent and prognostic biomarkers. Death and Disease, 2021, 12, 258.	Cell 2.7	113

#	Article	IF	CITATIONS
387	Inflammatory profiles across the spectrum of disease reveal a distinct role for GM-CSF in severe COVID-19. Science Immunology, 2021, 6, .	5.6	161
388	Blood Interferon-α Levels and Severity, Outcomes, and Inflammatory Profiles in Hospitalized COVID-19 Patients. Frontiers in Immunology, 2021, 12, 648004.	2.2	60
389	Peginterferon Lambda-1a for treatment of outpatients with uncomplicated COVID-19: a randomized placebo-controlled trial. Nature Communications, 2021, 12, 1967.	5.8	107
391	Diabetes-related acute metabolic emergencies in COVID-19 patients: a systematic review and meta-analysis. Diabetology International, 2021, 12, 445-459.	0.7	15
392	Plasmacytoid Dendritic Cells Depletion and Elevation of IFN-Î ³ Dependent Chemokines CXCL9 and CXCL10 in Children With Multisystem Inflammatory Syndrome. Frontiers in Immunology, 2021, 12, 654587.	2.2	39
393	Revisiting Pleiotropic Effects of Type I Interferons: Rationale for Its Prophylactic and Therapeutic Use Against SARS-CoV-2. Frontiers in Immunology, 2021, 12, 655528.	2.2	19
395	Hydroxychloroquine in Hospitalized Patients with Covid-19. New England Journal of Medicine, 2021, 384, 881-882.	13.9	7
396	An Overview of Current Knowledge of Deadly CoVs and Their Interface with Innate Immunity. Viruses, 2021, 13, 560.	1.5	15
398	Endogenously Produced SARS-CoV-2 Specific IgG Antibodies May Have a Limited Impact on Clearing Nasal Shedding of Virus during Primary Infection in Humans. Viruses, 2021, 13, 516.	1.5	5
400	Correlates of Vaccine-Induced Protection against SARS-CoV-2. Vaccines, 2021, 9, 238.	2.1	49
401	Janus kinase signaling as risk factor and therapeutic target for severe SARS oVâ€2 infection. European Journal of Immunology, 2021, 51, 1071-1075.	1.6	31
402	COVID-19 and the clinical course of rheumatic manifestations. Clinical Rheumatology, 2021, 40, 2611-2619.	1.0	85
405	Deciphering the state of immune silence in fatal COVID-19 patients. Nature Communications, 2021, 12, 1428.	5.8	107
407	COVID-19 and HIV-Associated Immune Reconstitution Inflammatory Syndrome: Emergence of Pathogen-Specific Immune Responses Adding Fuel to the Fire. Frontiers in Immunology, 2021, 12, 649567.	2.2	14
408	Interaction between hepatitis B virus and SARS-CoV-2 infections. World Journal of Gastroenterology, 2021, 27, 782-793.	1.4	24
410	The Weight of Obesity in Immunity from Influenza to COVID-19. Frontiers in Cellular and Infection Microbiology, 2021, 11, 638852.	1.8	24
413	Frontrunners in the race to develop a SARS-CoV-2 vaccine. Canadian Journal of Microbiology, 2021, 67, 189-212.	0.8	11
414	Systems and Clinical Pharmacology of COVID-19 Therapeutic Candidates: A Clinical and Translational Medicine Perspective. Journal of Pharmaceutical Sciences, 2021, 110, 1002-1017.	1.6	14

#	Article	IF	CITATIONS
415	T Cell Activation, Highly Armed Cytotoxic Cells and a Shift in Monocytes CD300 Receptors Expression Is Characteristic of Patients With Severe COVID-19. Frontiers in Immunology, 2021, 12, 655934.	2.2	50
416	COVID-19 convalescent plasma composition and immunological effects in severe patients. Journal of Autoimmunity, 2021, 118, 102598.	3.0	92
417	SARS-CoV-2 Nucleocapsid Protein Targets RIG-I-Like Receptor Pathways to Inhibit the Induction of Interferon Response. Cells, 2021, 10, 530.	1.8	84
418	Leveraging the antiviral type I interferon system as a first line of defense against SARS-CoV-2 pathogenicity. Immunity, 2021, 54, 557-570.e5.	6.6	153
420	Integrated cytokine and metabolite analysis reveals immunometabolic reprogramming in COVID-19 patients with therapeutic implications. Nature Communications, 2021, 12, 1618.	5.8	168
421	Management of hospitalised adults with coronavirus disease 2019 (COVID-19): a European Respiratory Society living guideline. European Respiratory Journal, 2021, 57, 2100048.	3.1	152
422	Sexâ€based differences in severity and mortality in COVIDâ€19. Reviews in Medical Virology, 2021, 31, e2223.	3.9	78
424	Reply to Dorgham et al., "Considering Personalized Interferon Beta Therapy for COVID-19â€. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	0
425	Low type l interferon response in COVID‑19 patients: Interferon response may be a potential treatment for COVID‑19. Biomedical Reports, 2021, 14, 43.	0.9	18
426	The spatial landscape of lung pathology during COVID-19 progression. Nature, 2021, 593, 564-569.	13.7	249
427	ISG15-dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papain-like protease to evade host innate immunity. Nature Microbiology, 2021, 6, 467-478.	5.9	192
428	Why Haven't We Found an Effective Treatment for COVID-19?. Frontiers in Immunology, 2021, 12, 644850.	2.2	9
429	The first 12 months of COVID-19: a timeline of immunological insights. Nature Reviews Immunology, 2021, 21, 245-256.	10.6	325
431	COVID-19 Treatment Guidelines: Do They Really Reflect Best Medical Practices to Manage the Pandemic?. Infectious Disease Reports, 2021, 13, 259-284.	1.5	27
433	Cutaneous Manifestations of COVID-19: Characteristics, Pathogenesis, and the Role of Dermatology in the Pandemic. , 2021, 107, 209-215.		3
434	COVID-19-associated secondary hemophagocytic lymphohistiocytosis (cytokine storm syndrome). Vestnik Rossiiskoi Akademii Meditsinskikh Nauk, 2021, 76, 51-66.	0.2	11
435	Overlapping and distinct features of viral and allergen immunity in the human lung. Immunity, 2021, 54, 617-631.	6.6	17
436	Human Pluripotent Stem Cell-Derived Intestinal Organoids Model SARS-CoV-2 Infection Revealing a Common Epithelial Inflammatory Response. Stem Cell Reports, 2021, 16, 940-953.	2.3	20

#	Article	IF	CITATIONS
438	Linkage of Lambda Interferons in Protection Against Severe COVID-19. Journal of Interferon and Cytokine Research, 2021, 41, 149-152.	0.5	12
441	The Neurobiology of Modern Viral Scourges: ZIKV and COVID-19. Neuroscientist, 2022, 28, 438-452.	2.6	4
442	Tocilizumab in Treatment for Patients With COVID-19. JAMA Internal Medicine, 2021, 181, 1019.	2.6	0
443	The SARS-CoV-2 RNA interactome. Molecular Cell, 2021, 81, 2838-2850.e6.	4.5	109
444	Longitudinal assessment of IFN-I activity and immune profile in critically ill COVID-19 patients with acute respiratory distress syndrome. Critical Care, 2021, 25, 140.	2.5	27
445	Actionable druggable genome-wide Mendelian randomization identifies repurposing opportunities for COVID-19. Nature Medicine, 2021, 27, 668-676.	15.2	120
446	A molecular single-cell lung atlas of lethal COVID-19. Nature, 2021, 595, 114-119.	13.7	411
447	Complement cascade in severe forms of COVIDâ€19: Recent advances in therapy. European Journal of Immunology, 2021, 51, 1652-1659.	1.6	46
448	Aging versus youth: Endocrine aspects of vulnerability for COVID-19. Reviews in Endocrine and Metabolic Disorders, 2021, , 1.	2.6	6
449	Obesity and its impact on COVID-19. Journal of Molecular Medicine, 2021, 99, 899-915.	1.7	41
450	Relationship of COVID-19 pathogenesis for periodontal medicine research. Part I: Pathogenesis of COVID-19. Research, Society and Development, 2021, 10, e1910513729.	0.0	0
451	Strategies for Immunomonitoring after Vaccination and during Infection. Vaccines, 2021, 9, 365.	2.1	12
452	CD169/SIGLEC1 is expressed on circulating monocytes in COVID-19 and expression levels are associated with disease severity. Infection, 2021, 49, 757-762.	2.3	47
452 453		2.3 2.2	47 32
	with disease severity. Infection, 2021, 49, 757-762. Clinical and Immunological Factors That Distinguish COVID-19 From Pandemic Influenza A(H1N1).		
453	 with disease severity. Infection, 2021, 49, 757-762. Clinical and Immunological Factors That Distinguish COVID-19 From Pandemic Influenza A(H1N1). Frontiers in Immunology, 2021, 12, 593595. Single-Cell RNA Sequencing Analysis of the Immunometabolic Rewiring and Immunopathogenesis of 	2.2	32
453 456	 with disease severity. Infection, 2021, 49, 757-762. Clinical and Immunological Factors That Distinguish COVID-19 From Pandemic Influenza A(H1N1). Frontiers in Immunology, 2021, 12, 593595. Single-Cell RNA Sequencing Analysis of the Immunometabolic Rewiring and Immunopathogenesis of Coronavirus Disease 2019. Frontiers in Immunology, 2021, 12, 651656. Systemic and organ-specific immune-related manifestations of COVID-19. Nature Reviews 	2.2 2.2	32 23

#	Article	IF	CITATIONS
460	Singleâ€cell analyses reveal SARSâ€CoVâ€2 interference with intrinsic immune response in the human gut. Molecular Systems Biology, 2021, 17, e10232.	3.2	78
461	Efficacy and safety of pegylated interferon alfa-2b in moderate COVID-19: A phase II, randomized, controlled, open-label study. International Journal of Infectious Diseases, 2021, 105, 516-521.	1.5	54
462	Multi-cohort analysis of host immune response identifies conserved protective and detrimental modules associated with severity across viruses. Immunity, 2021, 54, 753-768.e5.	6.6	42
463	Relationship of COVID-19 pathogenesis for periodontal medicine research. Part II: Periodontal Medicine. Research, Society and Development, 2021, 10, e2010513731.	0.0	0
464	Mounting evidence of impaired viral control in severe COVID-19. Lancet Microbe, The, 2021, 2, e228-e229.	3.4	11
466	From bedside to bench: regulation of host factors in SARS-CoV-2 infection. Experimental and Molecular Medicine, 2021, 53, 483-494.	3.2	6
467	Why Do Some People Develop Serious COVID-19 Disease After Infection, While Others Only Exhibit Mild Symptoms?. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 1442-1448.	2.0	21
468	Emergence of immunosuppressive LOX-1+ PMN-MDSC in septic shock and severe COVID-19 patients with acute respiratory distress syndrome. Journal of Leukocyte Biology, 2022, 111, 489-496.	1.5	26
469	Repurposing of Anticancer Drugs Expands Possibilities for Antiviral and Anti-Inflammatory Discovery in COVID-19. Cancer Discovery, 2021, 11, 1336-1344.	7.7	20
470	Type I and III IFN-mediated antiviral actions counteracted by SARS-CoV-2 proteins and host inherited factors. Cytokine and Growth Factor Reviews, 2021, 58, 55-65.	3.2	11
471	Differential induction of type I and III interferon genes in the upper respiratory tract of patients with coronavirus disease 2019 (COVID-19). Virus Research, 2021, 295, 198283.	1.1	26
472	Distinct cellular immune profiles in the airways and blood of critically ill patients with COVID-19. Thorax, 2021, 76, 1010-1019.	2.7	53
473	Cell-free DNA maps COVID-19 tissue injury and risk of death and can cause tissue injury. JCI Insight, 2021, 6, .	2.3	86
474	Could Antigen Presenting Cells Represent a Protective Element during SARS-CoV-2 Infection in Children?. Pathogens, 2021, 10, 476.	1.2	8
475	Endothelial cells and SARS-CoV-2: An intimate relationship. Vascular Pharmacology, 2021, 137, 106829.	1.0	45
476	Versatile and flexible microfluidic qPCR test for high-throughput SARS-CoV-2 and cellular response detection in nasopharyngeal swab samples. PLoS ONE, 2021, 16, e0243333.	1.1	14
477	Protection against SARS-CoV-2 infection by a mucosal vaccine in rhesus macaques. JCI Insight, 2021, 6, .	2.3	52
478	Human Cathelicidin Inhibits SARS-CoV-2 Infection: Killing Two Birds with One Stone. ACS Infectious Diseases, 2021, 7, 1545-1554.	1.8	64

#	Article	IF	Citations
479	COVID-19 and the human innate immune system. Cell, 2021, 184, 1671-1692.	13.5	524
480	Involvement of Interleukin-1 Receptor-Associated Kinase 4 and Interferon Regulatory Factor 5 in the Immunopathogenesis of SARS-CoV-2 Infection: Implications for the Treatment of COVID-19. Frontiers in Immunology, 2021, 12, 638446.	2.2	9
481	The pathogenic role of epithelial and endothelial cells in early-phase COVID-19 pneumonia: victims and partners in crime. Modern Pathology, 2021, 34, 1444-1455.	2.9	41
482	Endothelial cell, myeloid, and adaptive immune responses in SARS oVâ€2 infection. FASEB Journal, 2021, 35, e21577.	0.2	13
485	Longitudinal Peripheral Blood Transcriptional Analysis Reveals Molecular Signatures of Disease Progression in COVID-19 Patients. Journal of Immunology, 2021, 206, 2146-2159.	0.4	25
486	The pro-inflammatory cytokines in COVID-19 pathogenesis: What goes wrong?. Microbial Pathogenesis, 2021, 153, 104799.	1.3	196
487	Impact of virus genetic variability and host immunity for the success of COVID-19 vaccines. Biomedicine and Pharmacotherapy, 2021, 136, 111272.	2.5	84
488	Single-cell multi-omics analysis of the immune response in COVID-19. Nature Medicine, 2021, 27, 904-916.	15.2	452
489	Time-resolved systems immunology reveals a late juncture linked to fatal COVID-19. Cell, 2021, 184, 1836-1857.e22.	13.5	167
490	COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature, 2021, 595, 107-113.	13.7	537
491	Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity, 2021, 54, 797-814.e6.	6.6	272
492	Differential T-Cell Reactivity to Endemic Coronaviruses and SARS-CoV-2 in Community and Health Care Workers. Journal of Infectious Diseases, 2021, 224, 70-80.	1.9	65
493	Gastrointestinal Microenvironment and the Gut-Lung Axis in the Immune Responses of Severe COVID-19. Frontiers in Molecular Biosciences, 2021, 8, 647508.	1.6	9
494	The use of intranasal interferon for prevention and treatment of acute respiratory infections. Aktualʹnaâ Infektologiâ, 2021, 9, 17-23.	0.1	0
499	Virus Caused Imbalance of Type I IFN Responses and Inflammation in COVID-19. Frontiers in Immunology, 2021, 12, 633769.	2.2	20
500	Attenuating the Effects of Novel COVID-19 (SARS-CoV-2) Infection-Induced Cytokine Storm and the Implications. Journal of Inflammation Research, 2021, Volume 14, 1487-1510.	1.6	50
501	Pernio (Chilblains), SARS-CoV-2, and COVID Toes Unified Through Cutaneous and Systemic Mechanisms. Mayo Clinic Proceedings, 2021, 96, 989-1005.	1.4	23
502	Epigenetic mechanisms influencing COVID-19. Genome, 2021, 64, 372-385.	0.9	41

#	Article	IF	CITATIONS
503	Influenza virus and SARS-CoV-2: pathogenesis and host responses in the respiratory tract. Nature Reviews Microbiology, 2021, 19, 425-441.	13.6	202
504	Dual Nature of Type I Interferons in SARS-CoV-2-Induced Inflammation. Trends in Immunology, 2021, 42, 312-322.	2.9	86
505	A Canadian perspective on severe acute respiratory syndrome coronavirus 2 infection and treatment: how prevalent underlying inflammatory disease contributes to pathogenesis. Biochemistry and Cell Biology, 2021, 99, 173-194.	0.9	3
506	COVID-19 in Immunosuppressed Children. Frontiers in Pediatrics, 2021, 9, 629240.	0.9	30
507	COVID-19 and Cardiovascular Disease. Circulation Research, 2021, 128, 1214-1236.	2.0	232
509	Quercetin for COVID-19 and DENGUE co-infection: a potential therapeutic strategy of targeting critical host signal pathways triggered by SARS-CoV-2 and DENV. Briefings in Bioinformatics, 2021, 22, .	3.2	16
510	Single-cell RNA sequencing of blood antigen-presenting cells in severe COVID-19 reveals multi-process defects in antiviral immunity. Nature Cell Biology, 2021, 23, 538-551.	4.6	114
511	Comparative immune profiling of acute respiratory distress syndrome patients with or without SARS-CoV-2 infection. Cell Reports Medicine, 2021, 2, 100291.	3.3	17
512	Infectionâ€induced inflammation from specific inborn errors of immunity to COVIDâ€19. FEBS Journal, 2021, 288, 5021-5041.	2.2	12
513	Experimental and natural evidence of SARS-CoV-2-infection-induced activation of type I interferon responses. IScience, 2021, 24, 102477.	1.9	49
514	Targeting novel LSD1-dependent ACE2 demethylation domains inhibits SARS-CoV-2 replication. Cell Discovery, 2021, 7, 37.	3.1	11
515	Transcriptional Changes in CD16+ Monocytes May Contribute to the Pathogenesis of COVID-19. Frontiers in Immunology, 2021, 12, 665773.	2.2	20
516	Polyclonal expansion of TCR Vβ 21.3 ⁺ CD4 ⁺ and CD8 ⁺ T cells is a hallmark of multisystem inflammatory syndrome in children. Science Immunology, 2021, 6, .	5.6	105
517	Type I and III interferon responses in SARS-CoV-2 infection. Experimental and Molecular Medicine, 2021, 53, 750-760.	3.2	187
518	Low incidence of COVID-19 severe complications in a large cohort of children with sickle cell disease: a protective role for basal interferon-1 activation?. Haematologica, 2021, 106, 2746-2748.	1.7	6
519	Immune dysregulation and autoreactivity correlate with disease severity in SARS-CoV-2-associated multisystem inflammatory syndrome in children. Immunity, 2021, 54, 1083-1095.e7.	6.6	164
520	Exosomes contribution in COVID-19 patients' treatment. Journal of Translational Medicine, 2021, 19, 234.	1.8	25
521	Immunological Biomarkers of Fatal COVID-19: A Study of 868 Patients. Frontiers in Immunology, 2021, 12, 659018.	2.2	14

#	Article	IF	CITATIONS
522	Integrative genomics analysis reveals a 21q22.11 locus contributing risk to COVID-19. Human Molecular Genetics, 2021, 30, 1247-1258.	1.4	28
523	Monocyte and dendritic cell defects in COVID-19. Nature Cell Biology, 2021, 23, 445-447.	4.6	23
524	Depleting plasmacytoid dendritic cells reduces local type I interferon responses and disease activity in patients with cutaneous lupus. Science Translational Medicine, 2021, 13, .	5.8	50
526	A glimmer of hope for the most vulnerable. Journal of the American Geriatrics Society, 2021, 69, 1710-1712.	1.3	0
527	Peginterferon lambda for the treatment of outpatients with COVID-19: a phase 2, placebo-controlled randomised trial. Lancet Respiratory Medicine,the, 2021, 9, 498-510.	5.2	180
529	Rapid endotheliitis and vascular damage characterize SARS oVâ€2 infection in a human lungâ€onâ€chip model. EMBO Reports, 2021, 22, e52744.	2.0	81
530	The intersection of COVID-19 and cancer: signaling pathways and treatment implications. Molecular Cancer, 2021, 20, 76.	7.9	42
531	SARS-CoV-2 infects human adult donor eyes and hESC-derived ocular epithelium. Cell Stem Cell, 2021, 28, 1205-1220.e7.	5.2	44
532	Prevention of vitamin D deficiency in children. The state of the problem in the world and in Ukraine. Modern Pediatrics Ukraine, 2021, , 36-45.	0.1	4
533	Mass spectrometryâ€based proteomic platforms for better understanding of SARSâ€CoVâ€2 induced pathogenesis and potential diagnostic approaches. Proteomics, 2021, 21, e2000279.	1.3	19
534	No evidence of tocilizumab treatment efficacy for severe to critical SARS-CoV2 infected patients. Medicine (United States), 2021, 100, e26023.	0.4	4
535	Echinacea purpurea (L.) Moench treatment of monocytes promotes tonic interferon signaling, increased innate immunity gene expression and DNA repeat hypermethylated silencing of endogenous retroviral sequences. BMC Complementary Medicine and Therapies, 2021, 21, 141.	1.2	7
536	Macrophages and Dendritic Cells Are Not the Major Source of Pro-Inflammatory Cytokines Upon SARS-CoV-2 Infection. Frontiers in Immunology, 2021, 12, 647824.	2.2	33
538	Activation of STING Signaling Pathway Effectively Blocks Human Coronavirus Infection. Journal of Virology, 2021, 95, .	1.5	40
540	SARSâ€CoVâ€2 ORF9b antagonizes type I and III interferons by targeting multiple components of the RIGâ€I/MDAâ€5–MAVS, TLR3–TRIF, and cGAS–STING signaling pathways. Journal of Medical Virology, 2021 5376-5389.	93,	153
541	Systematic functional analysis of SARS-CoV-2 proteins uncovers viral innate immune antagonists and remaining vulnerabilities. Cell Reports, 2021, 35, 109126.	2.9	176
542	Longitudinal proteomic analysis of severe COVID-19 reveals survival-associated signatures, tissue-specific cell death, and cell-cell interactions. Cell Reports Medicine, 2021, 2, 100287.	3.3	183
544	Temporal Profiles of Antibody Responses, Cytokines, and Survival of COVID-19 Patients: A Retrospective Cohort in Wuhan, China. Engineering, 2021, 7, 958-965.	3.2	3

#	Article	IF	CITATIONS
545	COVID-19 Vasculopathy: Mounting Evidence for an Indirect Mechanism of Endothelial Injury. American Journal of Pathology, 2021, 191, 1374-1384.	1.9	78
546	Predicting COVID-19—Comorbidity Pathway Crosstalk-Based Targets and Drugs: Towards Personalized COVID-19 Management. Biomedicines, 2021, 9, 556.	1.4	20
547	Overview of SARS-CoV-2 infection in adults living with HIV. Lancet HIV, the, 2021, 8, e294-e305.	2.1	129
548	Dysregulation of Pulmonary Responses in Severe COVID-19. Viruses, 2021, 13, 957.	1.5	17
549	CD8+ T cells contribute to survival in patients with COVID-19 and hematologic cancer. Nature Medicine, 2021, 27, 1280-1289.	15.2	365
551	Circulating Type I Interferon Levels and COVID-19 Severity: A Systematic Review and Meta-Analysis. Frontiers in Immunology, 2021, 12, 657363.	2.2	34
554	Development of leading first-generation vaccines against SARS-CoV-2. Microbes and Infection, 2021, 23, 104841.	1.0	0
556	Mouthrinses against SARS-CoV-2: anti-inflammatory effectivity and a clinical pilot study. European Archives of Oto-Rhino-Laryngology, 2021, 278, 5059-5067.	0.8	12
557	Monocytes and macrophages in severe COVIDâ€19 – friend, foe or both?. Immunology and Cell Biology, 2021, 99, 561-564.	1.0	11
558	Acute Viral Illnesses and Ischemic Stroke. Stroke, 2021, 52, 1885-1894.	1.0	29
561	Problems of early diagnosis of systemic lupus erythematosus during the COVID-19 pandemic. Nauchno-Prakticheskaya Revmatologiya, 2021, 59, 119-128.	0.2	13
562	SARS-CoV-2 Induced Neurological Manifestations Entangles Cytokine Storm that Implicates for Therapeutic Strategies. Current Medicinal Chemistry, 2022, 29, 2051-2074.	1.2	5
566	Transcriptomic Signature Differences BetweenÂSARS-CoV-2 and Influenza Virus Infected Patients. Frontiers in Immunology, 2021, 12, 666163.	2.2	27
569	The Coronavirus Network Explorer: mining a large-scale knowledge graph for effects of SARS-CoV-2 on host cell function. BMC Bioinformatics, 2021, 22, 229.	1.2	13
571			
571	Type-I interferon signatures in SARS-CoV-2 infected Huh7 cells. Cell Death Discovery, 2021, 7, 114.	2.0	23
573	Type-I interferon signatures in SARS-CoV-2 infected Huh7 cells. Cell Death Discovery, 2021, 7, 114. Type I, II, and III Interferon Signatures Correspond to Coronavirus Disease 2019 Severity. Journal of Infectious Diseases, 2021, 224, 777-782.	2.0 1.9	23 26
	Type I, II, and III Interferon Signatures Correspond to Coronavirus Disease 2019 Severity. Journal of		

#	Article	IF	CITATIONS
576	Proteomic and metabolomic investigation of serum lactate dehydrogenase elevation in COVIDâ€19 patients. Proteomics, 2021, 21, e2100002.	1.3	18
577	Nasopharyngeal Type-I Interferon for Immediately Available Prophylaxis Against Emerging Respiratory Viral Infections. Frontiers in Immunology, 2021, 12, 660298.	2.2	8
578	Dolosigranulum pigrum Modulates Immunity against SARS-CoV-2 in Respiratory Epithelial Cells. Pathogens, 2021, 10, 634.	1.2	10
579	A Virus-Specific Immune Rheostat in the Immunome of Patients Recovering From Mild COVID-19. Frontiers in Immunology, 2021, 12, 674279.	2.2	5
580	High titers and low fucosylation of early human anti–SARS-CoV-2 IgG promote inflammation by alveolar macrophages. Science Translational Medicine, 2021, 13, .	5.8	166
581	Severe T cell hyporeactivity in ventilated COVID-19 patients correlates with prolonged virus persistence and poor outcomes. Nature Communications, 2021, 12, 3006.	5.8	11
582	Asymptomatic and symptomatic SARS-CoV-2 infections elicit polyfunctional antibodies. Cell Reports Medicine, 2021, 2, 100275.	3.3	64
583	Longitudinal proteomic profiling provides insights into host response and proteome dynamics in COVIDâ€19 progression. Proteomics, 2021, 21, e2000278.	1.3	26
584	SARS-CoV-2 uses a multipronged strategy to impede host protein synthesis. Nature, 2021, 594, 240-245.	13.7	182
585	TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. Nature Immunology, 2021, 22, 829-838.	7.0	364
586	Multisystem inflammatory syndrome in children and adults (MIS-C/A): Case definition & guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine, 2021, 39, 3037-3049.	1.7	175
588	A cohort autopsy study defines COVID-19 systemic pathogenesis. Cell Research, 2021, 31, 836-846.	5.7	93
590	Methylprednisolone Pulses Plus Tacrolimus in Addition to Standard of Care vs. Standard of Care Alone in Patients With Severe COVID-19. A Randomized Controlled Trial. Frontiers in Medicine, 2021, 8, 691712.	1.2	11
591	Viral coinfections in COVIDâ€19. Journal of Medical Virology, 2021, 93, 5310-5322.	2.5	53
592	Innate Immune Response to SARS-CoV-2 Infection: From Cells to Soluble Mediators. International Journal of Molecular Sciences, 2021, 22, 7017.	1.8	43
593	COVID-19 and drugs: pathophysiology and therapeutic approaches. Comptes Rendus - Biologies, 2021, 344, 27-42.	0.1	5
594	Interleukin-6: obstacles to targeting a complex cytokine in critical illness. Lancet Respiratory Medicine,the, 2021, 9, 643-654.	5.2	120
595	Profound dysregulation of T cell homeostasis and function in patients with severe COVIDâ€19. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2866-2881.	2.7	59

#	Article	IF	CITATIONS
596	Outcomes and Risk Factors Associated With SARS-CoV-2 Infection in a North American Registry of Patients With Multiple Sclerosis. JAMA Neurology, 2021, 78, 699.	4.5	225
597	The Immunopathobiology of SARS-CoV-2 Infection. FEMS Microbiology Reviews, 2021, 45, .	3.9	9
599	Regulation of the acetylcholine∫α7nAChR anti-inflammatory pathway in COVID-19 patients. Scientific Reports, 2021, 11, 11886.	1.6	35
600	Leukocytes Parameters, CRP, and Ferritin in Iranian Patients with COVID-19 Infection; A Cross-sectional Study. Iranian Journal of Medical Microbiology, 2021, 15, 361-368.	0.1	1
603	Acute acral eruptions in children during the COVID-19 pandemic: Characteristics of 103 children and their family clusters. Annales De Dermatologie Et De Venereologie, 2021, 148, 94-100.	0.5	15
604	Key Considerations for the Development of Safe and Effective SARSâ€CoVâ€2 Subunit Vaccine: A Peptideâ€Based Vaccine Alternative. Advanced Science, 2021, 8, e2100985.	5.6	16
605	COVID-19: A Mitochondrial Perspective. DNA and Cell Biology, 2021, 40, 713-719.	0.9	22
606	SARS-CoV-2 Portrayed against HIV: Contrary Viral Strategies in Similar Disguise. Microorganisms, 2021, 9, 1389.	1.6	4
607	Dissecting the common and compartment-specific features of COVID-19 severity in the lung and periphery with single-cell resolution. IScience, 2021, 24, 102738.	1.9	6
608	Longitudinal analysis reveals that delayed bystander CD8+ TÂcell activation and early immune pathology distinguish severe COVID-19 from mild disease. Immunity, 2021, 54, 1257-1275.e8.	6.6	230
609	Glycophosphopeptical AM3 Food Supplement: A Potential Adjuvant in the Treatment and Vaccination of SARS-CoV-2. Frontiers in Immunology, 2021, 12, 698672.	2.2	11
610	The Role of Coronavirus RNA-Processing Enzymes in Innate Immune Evasion. Life, 2021, 11, 571.	1.1	12
611	Association of Circadian Clock and Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Chronobiology in Medicine, 2021, 3, 60-63.	0.2	1
612	Immunological Approaches to the Treatment of Novel Coronavirus Infection (Review). Sovremennye Tehnologii V Medicine, 2021, 13, 81.	0.4	4
613	Dexamethasone in the Treatment of COVID-19: Primus Inter Pares?. Journal of Personalized Medicine, 2021, 11, 556.	1.1	14
614	A single transcript for the prognosis of disease severity in COVID-19 patients. Scientific Reports, 2021, 11, 12174.	1.6	9
615	sMAdCAM: IL-6 Ratio Influences Disease Progression and Anti-Viral Responses in SARS-CoV-2 Infection. Frontiers in Immunology, 2021, 12, 619906.	2.2	4
616	Granulomatous manifestations associated with COVID19 infection: Is there a link between these two diseases?. Autoimmunity Reviews, 2021, 20, 102824.	2.5	13

	Сітаті	on Report	
#	Article	IF	CITATIONS
617	Alterations in T and B cell function persist in convalescent COVID-19 patients. Med, 2021, 2, 720-735.e4.	2.2	87
618	Neutrophils and COVID-19: Active Participants and Rational Therapeutic Targets. Frontiers in Immunology, 2021, 12, 680134.	2.2	54
619	Severe COVID-19 Recovery Is Associated with Timely Acquisition of a Myeloid Cell Immune-Regulatory Phenotype. Frontiers in Immunology, 2021, 12, 691725.	2.2	36
620	Lung-Centric Inflammation of COVID-19: Potential Modulation by Vitamin D. Nutrients, 2021, 13, 2216.	1.7	15
622	Critical Determinants of Cytokine Storm and Type I Interferon Response in COVID-19 Pathogenesis. Clinical Microbiology Reviews, 2021, 34, .	5.7	141
623	Distinct cytokine profiles associated with COVID-19 severity and mortality. Journal of Allergy and Clinical Immunology, 2021, 147, 2098-2107.	1.5	47
624	Molecular Perspectives of SARS-CoV-2: Pathology, Immune Evasion, and Therapeutic Interventions. Molecules and Cells, 2021, 44, 408-421.	1.0	18
625	Updates on clinical trials evaluating the regenerative potential of allogenic mesenchymal stem cells in COVID-19. Npj Regenerative Medicine, 2021, 6, 37.	2.5	31
626	COVID-19-associated diarrhea. World Journal of Gastroenterology, 2021, 27, 3208-3222.	1.4	32
627	Network medicine links SARS-CoV-2/COVID-19 infection to brain microvascular injury and neuroinflammation in dementia-like cognitive impairment. Alzheimer's Research and Therapy, 2021, 13, 110.	3.0	108
628	Multi-omic profiling reveals widespread dysregulation of innate immunity and hematopoiesis in COVID-19. Journal of Experimental Medicine, 2021, 218, .	4.2	139
629	Myeloid-Derived Suppressor Cells as a Potential Biomarker and Therapeutic Target in COVID-19. Frontiers in Immunology, 2021, 12, 697405.	2.2	30
630	The COVID-19 puzzle: deciphering pathophysiology and phenotypes of a new disease entity. Lancet Respiratory Medicine,the, 2021, 9, 622-642.	5.2	371
632	COVID-19 is a systemic vascular hemopathy: insight for mechanistic and clinical aspects. Angiogenesis, 2021, 24, 755-788.	3.7	114
633	Targeted Mitochondrial Therapy With Over-Expressed MAVS Protein From Mesenchymal Stem Cells: A New Therapeutic Approach for COVID-19. Frontiers in Cell and Developmental Biology, 2021, 9, 695362.	1.8	12
634	Functional landscape of SARS-CoV-2 cellular restriction. Molecular Cell, 2021, 81, 2656-2668.e8.	4.5	137
635	Viral Respiratory Pathogens and Lung Injury. Clinical Microbiology Reviews, 2021, 34, .	5.7	76
636	Diabetes Mellitus—A Risk Factor for Unfavourable Outcome in COVID-19 Patients—The Experience of a Infectious Diseases Regional Hospital. Healthcare (Switzerland), 2021, 9, 788.	n 1.0	7

#	Article	IF	CITATIONS
637	COVID-19 in the Context of Inborn Errors of Immunity: a Case Series of 31 Patients from Mexico. Journal of Clinical Immunology, 2021, 41, 1463-1478.	2.0	40
639	SARS-CoV-2-specific hotspots in virus–host interaction networks. Nature Immunology, 2021, 22, 806-808.	7.0	5
641	H-Ras gene takes part to the host immune response to COVID-19. Cell Death Discovery, 2021, 7, 158.	2.0	11
642	COVID-19: Lung-Centric Immunothrombosis. Frontiers in Cellular and Infection Microbiology, 2021, 11, 679878.	1.8	21
643	SARS-CoV-2 genomic surveillance identifies naturally occurring truncation of ORF7a that limits immune suppression. Cell Reports, 2021, 35, 109197.	2.9	65
644	Nanotechnology as a Shield against COVID-19: Current Advancement and Limitations. Viruses, 2021, 13, 1224.	1.5	42
645	Tofacitinib therapy intercepts macrophage metabolic reprogramming instigated by SARS oVâ€2 Spike protein. European Journal of Immunology, 2021, 51, 2330-2340.	1.6	16
646	Therapeutic Agents Rounding Up the Immunopathology of COVID-19. Therapeutics and Clinical Risk Management, 2021, Volume 17, 657-668.	0.9	2
647	COVID-19 and cytokine storm syndrome: are there lessons from macrophage activation syndrome?. Translational Research, 2021, 232, 1-12.	2.2	45
649	An Impaired Inflammatory and Innate Immune Response in COVID-19. Molecules and Cells, 2021, 44, 384-391.	1.0	13
650	SARS-COV-2-related immune-inflammatory thyroid disorders: facts and perspectives. Expert Review of Clinical Immunology, 2021, 17, 737-759.	1.3	55
651	Clinical significance of measuring serum cytokine levels as inflammatory biomarkers in adult and pediatric COVID-19 cases: A review. Cytokine, 2021, 142, 155478.	1.4	57
652	Lung-selective 25-hydroxycholesterol nanotherapeutics as a suppressor of COVID-19-associated cytokine storm. Nano Today, 2021, 38, 101149.	6.2	25
653	Notch4 signaling limits regulatory T-cell-mediated tissue repair and promotes severe lung inflammation in viral infections. Immunity, 2021, 54, 1186-1199.e7.	6.6	71
654	Severe acute respiratory syndrome coronavirus 2 vaccination for patients with solid cancer: Review and point of view of a French oncology intergroup (GCO, TNCD, UNICANCER). European Journal of Cancer, 2021, 150, 232-239.	1.3	11
655	Type I interferon is induced by hemolysis and drives antibody-mediated erythrophagocytosis in sickle cell disease. Blood, 2021, 138, 1162-1171.	0.6	26
656	SARS-CoV-2 Spike Protein Suppresses ACE2 and Type I Interferon Expression in Primary Cells From Macaque Lung Bronchoalveolar Lavage. Frontiers in Immunology, 2021, 12, 658428.	2.2	30
657	HIF-1α is a negative regulator of interferon regulatory factors: Implications for interferon production by hypoxic monocytes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	31

#	Article	IF	CITATIONS
658	Human Nasal and Lung Tissues Infected <i>Ex Vivo</i> with SARS-CoV-2 Provide Insights into Differential Tissue-Specific and Virus-Specific Innate Immune Responses in the Upper and Lower Respiratory Tract. Journal of Virology, 2021, 95, e0013021.	1.5	47
660	SARS-CoV-2 signaling pathway map: A functional landscape of molecular mechanisms in COVID-19. Journal of Cell Communication and Signaling, 2021, 15, 601-608.	1.8	15
661	Do Anxiety and Depression Levels Affect the Inflammation Response in Patients Hospitalized for COVID-19. Psychiatry Investigation, 2021, 18, 505-512.	0.7	4
662	Integrated transcriptionalâ€phenotypic analysis captures systemic immunomodulation following antiangiogenic therapy in renal cell carcinoma patients. Clinical and Translational Medicine, 2021, 11, e434.	1.7	3
664	Harnessing Type I IFN Immunity Against SARS-CoV-2 with Early Administration of IFN-β. Journal of Clinical Immunology, 2021, 41, 1425-1442.	2.0	39
665	COVID-19 outcomes in patients with inflammatory rheumatic and musculoskeletal diseases treated with rituximab: a cohort study. Lancet Rheumatology, The, 2021, 3, e419-e426.	2.2	211
667	SARS-CoV-2 Antiviral Therapy. Clinical Microbiology Reviews, 2021, 34, e0010921.	5.7	64
669	Identification of COVID-19 and Dengue Host Factor Interaction Networks Based on Integrative Bioinformatics Analyses. Frontiers in Immunology, 2021, 12, 707287.	2.2	11
670	High rate of HSV-1 reactivation in invasively ventilated COVID-19 patients: Immunological findings. PLoS ONE, 2021, 16, e0254129.	1.1	30
672	Safeguarding COVID-19 and cancer management: drug design and therapeutic approach. Open Research Europe, 0, 1, 77.	2.0	0
673	Low Innate Immunity and Lagged Adaptive Immune Response in the Re-Tested Viral RNA Positivity of a COVID-19 Patient. Frontiers in Immunology, 2021, 12, 664619.	2.2	5
674	Periodic thermomechanical modulation of toll-like receptor expression and distribution in mesenchymal stromal cells. MRS Communications, 2021, 11, 425-431.	0.8	2
675	Platelet activation in critically ill COVID-19 patients. Annals of Intensive Care, 2021, 11, 113.	2.2	61
677	Is there a place for mesenchymal stromal cell-based therapies in the therapeutic armamentarium against COVID-19?. Stem Cell Research and Therapy, 2021, 12, 425.	2.4	15
678	Identification of COVID-19 subtypes based on immunogenomic profiling. International Immunopharmacology, 2021, 96, 107615.	1.7	5
679	Dexamethasone may improve severe COVID-19 via ameliorating endothelial injury and inflammation: A preliminary pilot study. PLoS ONE, 2021, 16, e0254167.	1.1	41
680	A bird's eye view on the role of dendritic cells in SARSâ€CoVâ€2 infection: Perspectives for immuneâ€based vaccines. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 100-110.	2.7	25
681	B cell depletion impairs vaccination-induced CD8 ⁺ T cell responses in a type I interferon-dependent manner, Annals of the Rheumatic Diseases, 2021, 80, 1537-1544.	0.5	20

#	Article	IF	CITATIONS
682	The Relationship Between Vitamin D and Infections Including COVID-19: Any Hopes?. International Journal of General Medicine, 2021, Volume 14, 3849-3870.	0.8	22
683	Could metabolomics drive the fate of COVID-19 pandemic? A narrative review on lights and shadows. Clinical Chemistry and Laboratory Medicine, 2021, 59, 1891-1905.	1.4	40
684	IFITM proteins promote SARS-CoV-2 infection and are targets for virus inhibition in vitro. Nature Communications, 2021, 12, 4584.	5.8	129
685	Innate Immune Cytokine Profiling and Biomarker Identification for Outcome in Dengue Patients. Frontiers in Immunology, 2021, 12, 677874.	2.2	3
686	Neutrophilia, lymphopenia and myeloid dysfunction: a living review of the quantitative changes to innate and adaptive immune cells which define COVID-19 pathology. Oxford Open Immunology, 2021, 2, .	1.2	7
687	Interplay between Neutrophils, NETs and T-Cells in SARS-CoV-2 Infection—A Missing Piece of the Puzzle in the COVID-19 Pathogenesis?. Cells, 2021, 10, 1817.	1.8	8
688	COVID-19 in Children: Expressions of Type I/II/III Interferons, TRIM28, SETDB1, and Endogenous Retroviruses in Mild and Severe Cases. International Journal of Molecular Sciences, 2021, 22, 7481.	1.8	37
689	Dendritic cell deficiencies persist seven months after SARS-CoV-2 infection. Cellular and Molecular Immunology, 2021, 18, 2128-2139.	4.8	81
690	Innate immune and inflammatory responses to SARS-CoV-2: Implications for COVID-19. Cell Host and Microbe, 2021, 29, 1052-1062.	5.1	185
691	CD177, a specific marker of neutrophil activation, is associated with coronavirus disease 2019 severity and death. IScience, 2021, 24, 102711.	1.9	79
692	ORF3a-Mediated Incomplete Autophagy Facilitates Severe Acute Respiratory Syndrome Coronavirus-2 Replication. Frontiers in Cell and Developmental Biology, 2021, 9, 716208.	1.8	74
693	Insights into Innate Immune Response Against SARS-CoV-2 Infection. Romanian Journal of Laboratory Medicine, 2021, 29, 255-269.	0.1	3
694	Systems vaccinology of the BNT162b2 mRNA vaccine in humans. Nature, 2021, 596, 410-416.	13.7	313
695	Monocyte-driven atypical cytokine storm and aberrant neutrophil activation as key mediators of COVID-19 disease severity. Nature Communications, 2021, 12, 4117.	5.8	170
696	Pathophysiology of COVID-19-associated acute kidney injury. Nature Reviews Nephrology, 2021, 17, 751-764.	4.1	280
697	Is there a role for immune-enhancing therapies for acutely ill patients with coronavirus disease 2019?. Current Opinion in Critical Care, 2021, 27, 480-486.	1.6	2
698	SARS-CoV-2 infection in the Syrian hamster model causes inflammation as well as type I interferon dysregulation in both respiratory and non-respiratory tissues including the heart and kidney. PLoS Pathogens, 2021, 17, e1009705.	2.1	60
699	Distinctive features of severe SARS-CoV-2 pneumonia. Journal of Clinical Investigation, 2021, 131, .	3.9	49

#	Article	IF	CITATIONS
700	A Machine-Generated View of the Role of Blood Glucose Levels in the Severity of COVID-19. Frontiers in Public Health, 2021, 9, 695139.	1.3	32
702	Pathogenesis of the initial stages of severe COVID-19. Journal of Clinical Practice, 2021, 12, 83-102.	0.2	5
704	Network-based repurposing identifies anti-alarmins as drug candidates to control severe lung inflammation in COVID-19. PLoS ONE, 2021, 16, e0254374.	1.1	13
705	Complement Decay-Accelerating Factor is a modulator of influenza A virus lung immunopathology. PLoS Pathogens, 2021, 17, e1009381.	2.1	3
706	ILRUN Downregulates ACE2 Expression and Blocks Infection of Human Cells by SARS-CoV-2. Journal of Virology, 2021, 95, e0032721.	1.5	6
708	Interleukin-7 Reverses Lymphopenia and Improves T-Cell Function in Coronavirus Disease 2019 Patient With Inborn Error of Toll-Like Receptor 3: A Case Report. , 2021, 3, e0500.		14
710	Double stranded RNA drives anti-viral innate immune responses, sickness behavior and cognitive dysfunction dependent on dsRNA length, IFNAR1 expression and age. Brain, Behavior, and Immunity, 2021, 95, 413-428.	2.0	21
712	The skin as a critical window in unveiling the pathophysiologic principles of COVID-19. Clinics in Dermatology, 2021, 39, 934-965.	0.8	23
713	A Comparison of the Clinical, Viral, Pathologic, and Immunologic Features of Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and Coronavirus 2019 (COVID-19) Diseases. Archives of Pathology and Laboratory Medicine, 2021, 145, 1194-1211.	1.2	9
714	Variable Induction of Pro-Inflammatory Cytokines by Commercial SARS CoV-2 Spike Protein Reagents: Potential Impacts of LPS on In Vitro Modeling and Pathogenic Mechanisms In Vivo. International Journal of Molecular Sciences, 2021, 22, 7540.	1.8	12
715	Severe COVID-19 in an APS1 patient with interferon autoantibodies treated with plasmapheresis. Journal of Allergy and Clinical Immunology, 2021, 148, 96-98.	1.5	47
716	SARS-CoV-2 N Protein Targets TRIM25-Mediated RIG-I Activation to Suppress Innate Immunity. Viruses, 2021, 13, 1439.	1.5	44
717	Interplay between hypoxia and inflammation contributes to the progression and severity of respiratory viral diseases. Molecular Aspects of Medicine, 2021, 81, 101000.	2.7	12
718	Inhalation Delivery for the Treatment and Prevention of COVID-19 Infection. Pharmaceutics, 2021, 13, 1077.	2.0	50
719	Mechanistic understanding of innate and adaptive immune responses in SARS-CoV-2 infection. Molecular Immunology, 2021, 135, 268-275.	1.0	15
721	High-Density Blood Transcriptomics Reveals Precision Immune Signatures of SARS-CoV-2 Infection in Hospitalized Individuals. Frontiers in Immunology, 2021, 12, 694243.	2.2	26
723	Kinetics of the Severe Acute Respiratory Syndrome Coronavirus 2 Antibody Response and Serological Estimation of Time Since Infection. Journal of Infectious Diseases, 2021, 224, 1489-1499.	1.9	32
724	SARS-CoV-2 infection triggers widespread host mRNA decay leading to an mRNA export block. Rna, 2021, 27, 1318-1329.	1.6	66

#	Article	IF	CITATIONS
725	SARS-CoV-2 infection induces the dedifferentiation of multiciliated cells and impairs mucociliary clearance. Nature Communications, 2021, 12, 4354.	5.8	154
726	Host factors facilitating SARSâ€CoVâ€2 virus infection and replication in the lungs. Cellular and Molecular Life Sciences, 2021, 78, 5953-5976.	2.4	19
727	Immune Signature Linked to COVID-19 Severity: A SARS-Score for Personalized Medicine. Frontiers in Immunology, 2021, 12, 701273.	2.2	5
728	Do monogenic inborn errors of immunity cause susceptibility to severe COVID-19?. Journal of Clinical Investigation, 2021, 131, .	3.9	3
729	Chronic Obstructive Pulmonary Disease Patients Have Increased Levels of Plasma Inflammatory Mediators Reported Upregulated in Severe COVID-19. Frontiers in Immunology, 2021, 12, 678661.	2.2	7
730	Monocytes and Macrophages in COVID-19. Frontiers in Immunology, 2021, 12, 720109.	2.2	168
731	Mechanistic Analysis of Age-Related Clinical Manifestations in Down Syndrome. Frontiers in Aging Neuroscience, 2021, 13, 700280.	1.7	11
732	Immunological mechanisms of vaccine-induced protection against COVID-19 in humans. Nature Reviews Immunology, 2021, 21, 475-484.	10.6	434
733	Targeting liquid–liquid phase separation of SARS-CoV-2 nucleocapsid protein promotes innate antiviral immunity by elevating MAVS activity. Nature Cell Biology, 2021, 23, 718-732.	4.6	156
734	The signal pathways and treatment of cytokine storm in COVID-19. Signal Transduction and Targeted Therapy, 2021, 6, 255.	7.1	355
735	Cellular and Molecular Effects of SARS-CoV-2 Linking Lung Infection to the Brain. Frontiers in Immunology, 2021, 12, 730088.	2.2	12
738	Differential levels of IFNα subtypes in autoimmunity and viral infection. Cytokine, 2021, 144, 155533.	1.4	12
739	Identification of COVID-19 prognostic markers and therapeutic targets through meta-analysis and validation of Omics data from nasopharyngeal samples. EBioMedicine, 2021, 70, 103525.	2.7	27
740	Insights into the modulation of the interferon response and NAD+ in the context of COVID-19. International Reviews of Immunology, 2021, , 1-11.	1.5	7
741	Exploring targets and signaling pathways of paeonol involved in relieving inflammation based on modern technology. Molecular Diversity, 2022, 26, 1731-1742.	2.1	3
743	Integrated longitudinal immunophenotypic, transcriptional, and repertoire analyses delineate immune responses in patients with COVID-19. Science Immunology, 2021, 6, .	5.6	108
745	Post-mortem tissue proteomics reveals the pathogenesis of multi-organ injuries of COVID-19. National Science Review, 2021, 8, nwab143.	4.6	14
746	Early nasal type I IFN immunity against SARS-CoV-2 is compromised in patients with autoantibodies against type I IFNs. Journal of Experimental Medicine, 2021, 218, .	4.2	85

#	Article	IF	CITATIONS
747	COVID-19: Inflammatory Profile. Annual Review of Medicine, 2022, 73, 65-80.	5.0	43
748	COVID-19 as a mediator of interferon deficiency and hyperinflammation: Rationale for the use of JAK1/2 inhibitors in combination with interferon. Cytokine and Growth Factor Reviews, 2021, 60, 28-45.	3.2	21
749	Firstâ€inâ€Human Study of Bamlanivimab in a Randomized Trial of Hospitalized Patients With COVIDâ€19. Clinical Pharmacology and Therapeutics, 2021, 110, 1467-1477.	2.3	25
750	Comprehensive Immunologic Evaluation of Bronchoalveolar Lavage Samples from Human Patients with Moderate and Severe Seasonal Influenza and Severe COVID-19. Journal of Immunology, 2021, 207, 1229-1238.	0.4	21
751	SARS-CoV-2 infection initiates interleukin-17-enriched transcriptional response in different cells from multiple organs. Scientific Reports, 2021, 11, 16814.	1.6	43
752	The â€~cytokine storm': molecular mechanisms and therapeutic prospects. Trends in Immunology, 2021, 42, 681-705.	2.9	156
753	Endothelial Dysfunction, Inflammation, and Oxidative Stress in COVID-19—Mechanisms and Therapeutic Targets. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-15.	1.9	66
754	Intranasal type I interferon treatment is beneficial only when administered before clinical signs onset in the SARS-CoV-2 hamster model. PLoS Pathogens, 2021, 17, e1009427.	2.1	38
755	A high-resolution temporal atlas of the SARS-CoV-2 translatome and transcriptome. Nature Communications, 2021, 12, 5120.	5.8	57
756	Microbiota-Gut-Brain Communication in the SARS-CoV-2 Infection. Cells, 2021, 10, 1993.	1.8	17
758	Pressing Questions and Challenges in the HIV-1 and SARS-CoV-2 Syndemic. AIDS Research and Human Retroviruses, 2021, 37, 589-600.	0.5	5
759	GENETIC PREDICTORS OF SEVERITY AND EFFICACY OF COVID-19 PHARMACOTHERAPY. Farmatsiya I Farmakologiya, 2021, 9, 174-184.	0.2	2
760	Characterization of Virus Replication, Pathogenesis, and Cytokine Responses in Syrian Hamsters Inoculated with SARS-CoV-2. Journal of Inflammation Research, 2021, Volume 14, 3781-3795.	1.6	13
761	Artificial Intelligence Predicts Severity of COVID-19 Based on Correlation of Exaggerated Monocyte Activation, Excessive Organ Damage and Hyperinflammatory Syndrome: A Prospective Clinical Study. Frontiers in Immunology, 2021, 12, 715072.	2.2	13
762	Host Genetics and Antiviral Immune Responses in Adult Patients With Multisystem Inflammatory Syndrome. Frontiers in Immunology, 2021, 12, 718744.	2.2	14
763	Nonsteroidal anti-inflammatory drugs and glucocorticoids in COVID-19. Advances in Biological Regulation, 2021, 81, 100818.	1.4	10
764	Suppressive Monocytes Impair MAIT Cells Response via IL-10 in Patients with Severe COVID-19. Journal of Immunology, 2021, 207, 1848-1856.	0.4	14
765	A time-resolved proteomic and prognostic map of COVID-19. Cell Systems, 2021, 12, 780-794.e7.	2.9	125

#	Article	IF	CITATIONS
766	AHR signaling is induced by infection with coronaviruses. Nature Communications, 2021, 12, 5148.	5.8	38
767	Tracheal aspirate RNA sequencing identifies distinct immunological features of COVID-19 ARDS. Nature Communications, 2021, 12, 5152.	5.8	47
768	Chemokines and eicosanoids fuel the hyperinflammation within the lungs of patients with severe COVID-19. Journal of Allergy and Clinical Immunology, 2021, 148, 368-380.e3.	1.5	59
769	Identification of Significant Proteins in Coronavirus Disease 2019 Protein-Protein Interaction Using Principal Component Analysis and ClusterONE. Bioinformatics and Biomedical Research Journal, 2021, 3, 25-34.	0.3	2
770	IFN-λ1 Displays Various Levels of Antiviral Activity In Vitro in a Select Panel of RNA Viruses. Viruses, 2021, 13, 1602.	1.5	18
771	Deleterious single nucleotide polymorphisms (SNPs) of human IFNAR2 gene facilitate COVID-19 severity in patients: a comprehensive <i>in silico</i> approach. Journal of Biomolecular Structure and Dynamics, 2022, 40, 11173-11189.	2.0	7
773	Can Polyphenols be Used as Anti-Inflammatory Agents against Covid-19 (SARS-CoV-2)-Induced Inflammation?. Biochemistry, 0, , .	0.8	7
775	Liver Damage and Exposure to Toxic Concentrations of Endogenous Retinoids in the Pathogenesis of COVID-19 Disease: Hypothesis. Viral Immunology, 2021, 34, 376-379.	0.6	6
776	Immune checkpoint inhibitors increase T cell immunity during SARS-CoV-2 infection. Science Advances, 2021, 7, .	4.7	27
777	Bovine innate immune phenotyping via a standardized whole blood stimulation assay. Scientific Reports, 2021, 11, 17227.	1.6	5
778	Type I Interferons in COVID-19 Pathogenesis. Biology, 2021, 10, 829.	1.3	32
779	Altered function and differentiation of age-associated B cells contribute to the female bias in lupus mice. Nature Communications, 2021, 12, 4813.	5.8	47
780	Sex steroids and COVID-19 mortality in women. Trends in Endocrinology and Metabolism, 2021, 32, 533-536.	3.1	10
781	Interferon and Toll-Like Receptor 7 Response in COVID-19: Implications of Topical Imiquimod for Prophylaxis and Treatment. Dermatology, 2021, 237, 847-856.	0.9	5
782	Profound Treg perturbations correlate with COVID-19 severity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	104
783	Chronic SARS-CoV-2, a Cause of Post-acute COVID-19 Sequelae (Long-COVID)?. Frontiers in Microbiology, 2021, 12, 724654.	1.5	17
784	Anticoronavirus and Immunomodulatory Phenolic Compounds: Opportunities and Pharmacotherapeutic Perspectives. Biomolecules, 2021, 11, 1254.	1.8	16
785	SARS-CoV-2 Infection Modulates ACE2 Function and Subsequent Inflammatory Responses in Swabs and Plasma of COVID-19 Patients. Viruses, 2021, 13, 1715.	1.5	14

#	Article	IF	CITATIONS
786	Immunophenotyping assessment in a COVID-19 cohort (IMPACC): A prospective longitudinal study. Science Immunology, 2021, 6, .	5.6	20
787	Diffuse Lymphadenopathy Syndrome as a Flare-Up Manifestation in Lupus and Mixed Connective Tissue Disease Following Mild COVID-19. American Journal of Case Reports, 2021, 22, e932751.	0.3	3
788	SARS-CoV-2 Antibody Isotypes in Systemic Lupus Erythematosus Patients Prior to Vaccination: Associations With Disease Activity, Antinuclear Antibodies, and Immunomodulatory Drugs During the First Year of the Pandemic. Frontiers in Immunology, 2021, 12, 724047.	2.2	13
790	Be Alert to the Risk of Adverse Cardiovascular Events after COVID-19 Vaccination. Exploratory Research and Hypothesis in Medicine, 2021, 000, 000-000.	0.1	0
792	Immune response to SARSâ€CoVâ€2 in children: A review of the current knowledge. Pediatric Investigation, 2021, 5, 217-228.	0.6	17
793	Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Science Immunology, 2021, 6, .	5.6	357
794	Severe pediatric COVID-19 with acute respiratory distress syndrome: a narrative review. Pediatric Medicine, 0, 4, 27-27.	1.1	1
795	Prospective approach to manage COVID-19-related cytokine storm; an updated review on current concepts. Journal of Preventive Epidemiology, 2021, 6, e20-e20.	0.1	0
797	Invasive pulmonary aspergillosis associated with viral pneumonitis. Current Opinion in Microbiology, 2021, 62, 21-27.	2.3	39
798	Elevated Neopterin Levels Predict Fatal Outcome in SARS-CoV-2-Infected Patients. Frontiers in Cellular and Infection Microbiology, 2021, 11, 709893.	1.8	14
799	Safety and immunogenicity of an mRNA-lipid nanoparticle vaccine candidate against SARS-CoV-2. Wiener Klinische Wochenschrift, 2021, 133, 931-941.	1.0	79
800	Host ADP-ribosylation and the SARS-CoV-2 macrodomain. Biochemical Society Transactions, 2021, 49, 1711-1721.	1.6	16
801	Resveratrol as an Adjunctive Therapy for Excessive Oxidative Stress in Aging COVID-19 Patients. Antioxidants, 2021, 10, 1440.	2.2	28
802	A systematic review on the effects of Echinacea supplementation on cytokine levels: Is there a role in COVID-19?. Metabolism Open, 2021, 11, 100115.	1.4	15
803	SARS-CoV-2 Infection in the Immunodeficient Host: Necessary and Dispensable Immune Pathways. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 3237-3248.	2.0	4
806	An interactive single cell web portal identifies gene and cell networks in COVID-19 host responses. IScience, 2021, 24, 103115.	1.9	10
807	Of bats and men: Immunomodulatory treatment options for COVID-19 guided by the immunopathology of SARS-CoV-2 infection. Science Immunology, 2021, 6, eabd0205.	5.6	26
808	The role of type I interferon in the treatment of COVIDâ€19. Journal of Medical Virology, 2022, 94, 63-81.	2.5	52

#	Article	IF	CITATIONS
809	Neutrophil Extracellular Traps Contribute to COVID-19 Hyperinflammation and Humoral Autoimmunity. Cells, 2021, 10, 2545.	1.8	35
811	Predictors of poor prognosis in healthy, young, individuals with SARS-CoV-2 infections. Clinical Microbiology and Infection, 2022, 28, 273-278.	2.8	5
812	Differential host circRNA expression profiles in human lung epithelial cells infected with SARS-CoV-2. Infection, Genetics and Evolution, 2021, 93, 104923.	1.0	18
813	Early IFN-α signatures and persistent dysfunction are distinguishing features of NK cells in severe COVID-19. Immunity, 2021, 54, 2650-2669.e14.	6.6	145
814	A monocyte/dendritic cell molecular signature of SARS-CoV-2-related multisystem inflammatory syndrome in children with severe myocarditis. Med, 2021, 2, 1072-1092.e7.	2.2	38
816	Type I Interferon Induction and Exhaustion during Viral Infection: Plasmacytoid Dendritic Cells and Emerging COVID-19 Findings. Viruses, 2021, 13, 1839.	1.5	21
817	Immunobiotic Lactobacilli Improve Resistance of Respiratory Epithelial Cells to SARS-CoV-2 Infection. Pathogens, 2021, 10, 1197.	1.2	11
818	Impaired local intrinsic immunity to SARS-CoV-2 infection in severe COVID-19. Cell, 2021, 184, 4713-4733.e22.	13.5	206
819	The interferon landscape along the respiratory tract impacts the severity of COVID-19. Cell, 2021, 184, 4953-4968.e16.	13.5	165
820	Identification of potential therapeutic targets and mechanisms of COVID-19 through network analysis and screening of chemicals and herbal ingredients. Briefings in Bioinformatics, 2022, 23, .	3.2	14
821	What we know and still ignore on COVIDâ€19 immune pathogenesis and a proposal based on the experience of allergic disorders. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1114-1128.	2.7	6
822	Neuropsychiatric manifestations of COVID-19, potential neurotropic mechanisms, and therapeutic interventions. Translational Psychiatry, 2021, 11, 499.	2.4	35
823	RNA–RNA interactions between SARS-CoV-2 and host benefit viral development and evolution during COVID-19 infection. Briefings in Bioinformatics, 2022, 23, .	3.2	41
824	Reactive arthritis after COVID-19: a case-based review. Rheumatology International, 2021, 41, 2031-2039.	1.5	46
825	From Infection to Immunity: Understanding the Response to SARS-CoV2 Through In-Silico Modeling. Frontiers in Immunology, 2021, 12, 646972.	2.2	35
826	Interferon β, an enhancer of the innate immune response against SARS-CoV-2 infection. Microbial Pathogenesis, 2021, 158, 105105.	1.3	6
829	Role of toll-like receptor 7/8 pathways in regulation of interferon response and inflammatory mediators during SARS-CoV2 infection and potential therapeutic options. Biomedicine and Pharmacotherapy, 2021, 141, 111794.	2.5	28
830	Identification of Immune Activation Markers in the Early Onset of COVID-19 Infection. Frontiers in Cellular and Infection Microbiology, 2021, 11, 651484.	1.8	12

#	Article	IF	CITATIONS
831	Dynamic changes in human single-cell transcriptional signatures during fatal sepsis. Journal of Leukocyte Biology, 2021, 110, 1253-1268.	1.5	26
832	Mechanisms of Antiviral Immune Evasion of SARS-CoV-2. Journal of Molecular Biology, 2022, 434, 167265.	2.0	72
833	Distinct systemic and mucosal immune responses during acute SARS-CoV-2 infection. Nature Immunology, 2021, 22, 1428-1439.	7.0	110
834	A dual-role of SARS-CoV-2 nucleocapsid protein in regulating innate immune response. Signal Transduction and Targeted Therapy, 2021, 6, 331.	7.1	68
835	New-onset IgG autoantibodies in hospitalized patients with COVID-19. Nature Communications, 2021, 12, 5417.	5.8	286
836	Isolation of Rhizopus microsporus and Lichtheimia corymbifera from tracheal aspirates of two immunocompetent critically ill patients with COVID-19. Medical Mycology Case Reports, 2021, 33, 32-37.	0.7	4
837	CD8+PD-L1+CXCR3+ polyfunctional T cell abundances are associated with survival in critical SARS-CoV-2–infected patients. JCI Insight, 2021, 6, .	2.3	16
838	Clinical trials with antiviral drugs against <scp>COVID</scp> â€19: some progress and many shattered hopes. Environmental Microbiology, 2021, 23, 6364-6376.	1.8	12
839	On Deep Landscape Exploration of COVID-19 Patients Cells and Severity Markers. Frontiers in Immunology, 2021, 12, 705646.	2.2	9
840	Identification of immune correlates of fatal outcomes in critically ill COVID-19 patients. PLoS Pathogens, 2021, 17, e1009804.	2.1	39
841	The Interaction of the Inflammatory Response and Megakaryocytes in COVID-19 Infection. Experimental Hematology, 2021, 104, 32-39.	0.2	11
842	HLA-B*15 predicts survival in Egyptian patients with COVID-19. Human Immunology, 2022, 83, 10-16.	1.2	10
843	COVID-19 in complex common variable immunodeficiency patients affected by lung diseases. Current Opinion in Allergy and Clinical Immunology, 2021, 21, 535-544.	1.1	16
845	The immune response to SARS-CoV-2 and COVID-19 immunopathology – Current perspectives. Pulmonology, 2021, 27, 423-437.	1.0	118
846	Pre-existing Autoantibodies Neutralizing High Concentrations of Type I Interferons in Almost 10% of COVID-19 Patients Admitted to Intensive Care in Barcelona. Journal of Clinical Immunology, 2021, 41, 1733-1744.	2.0	66
847	Longitudinal Analysis of Inflammatory Response to SARS-CoV-2 in the Upper Respiratory Tract Reveals an Association with Viral Load, Independent of Symptoms. Journal of Clinical Immunology, 2021, 41, 1723-1732.	2.0	7
848	Impact of remdesivir according to the pre-admission symptom duration in patients with COVID-19. Journal of Antimicrobial Chemotherapy, 2021, 76, 3296-3302.	1.3	30
849	Ocular Adverse Events After COVID-19 Vaccination. Ocular Immunology and Inflammation, 2021, 29, 1216-1224.	1.0	130

# 850	ARTICLE Increased Autotaxin Levels in Severe COVID-19, Correlating with IL-6 Levels, Endothelial Dysfunction Biomarkers, and Impaired Functions of Dendritic Cells. International Journal of Molecular Sciences,	IF 1.8	CITATIONS
851	2021, 22, 10006. Alterations in Circulating Monocytes Predict COVID-19 Severity and Include Chromatin Modifications Still Detectable Six Months after Recovery. Biomedicines, 2021, 9, 1253.	1.4	28
852	GeneTrail: A Framework for the Analysis of High-Throughput Profiles. Frontiers in Molecular Biosciences, 2021, 8, 716544.	1.6	1
853	The immune-neuroendocrine system in COVID-19, advanced age and rheumatic diseases. Autoimmunity Reviews, 2021, 20, 102946.	2.5	14
854	Coronavirus induces diabetic macrophage-mediated inflammation via SETDB2. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	26
855	Accumulation of CD28null Senescent T-Cells Is Associated with Poorer Outcomes in COVID19 Patients. Biomolecules, 2021, 11, 1425.	1.8	12
856	Discrimination of COVIDâ€19 From Inflammationâ€Induced Cytokine Storm Syndromes Using Diseaseâ€Related Blood Biomarkers. Arthritis and Rheumatology, 2021, 73, 1791-1799.	2.9	36
857	Systematic investigation of cytokine signaling activity at the tissue and single-cell levels. Nature Methods, 2021, 18, 1181-1191.	9.0	82
858	The effect of air pollution on the transcriptomics of the immune response to respiratory infection. Scientific Reports, 2021, 11, 19436.	1.6	7
859	A Role of Variance in Interferon Genes to Disease Severity in COVID-19 Patients. Frontiers in Genetics, 2021, 12, 709388.	1.1	9
860	Supportive therapy during COVID-19: The proposed mechanism of short-chain fatty acids to prevent cytokine storm and multi-organ failure. Medical Hypotheses, 2021, 154, 110661.	0.8	18
861	High-dimensional profiling reveals phenotypic heterogeneity and disease-specific alterations of granulocytes in COVID-19. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	52
862	The Immunology of SARS-CoV-2 Infection and Vaccines in Solid Organ Transplant Recipients. Viruses, 2021, 13, 1879.	1.5	16
863	CD147 antibody specifically and effectively inhibits infection and cytokine storm of SARS-CoV-2 and its variants delta, alpha, beta, and gamma. Signal Transduction and Targeted Therapy, 2021, 6, 347.	7.1	64
864	A hitchhiker's guide through the COVID-19 galaxy. Clinical Immunology, 2021, 232, 108849.	1.4	3
865	COVID-19: Mechanistic Model of the African Paradox Supports the Central Role of the NF-ήB Pathway. Viruses, 2021, 13, 1887.	1.5	12
866	Lymphopenia Caused by Virus Infections and the Mechanisms Beyond. Viruses, 2021, 13, 1876.	1.5	42
867	Kinetic Multi-omic Analysis of Responses to SARS-CoV-2 Infection in a Model of Severe COVID-19. Journal of Virology, 2021, 95, e0101021.	1.5	21

#	Article	IF	CITATIONS
868	Multiomics: unraveling the panoramic landscapes of SARS-CoV-2 infection. Cellular and Molecular Immunology, 2021, 18, 2313-2324.	4.8	31
869	Mechanisms underlying host defense and disease pathology in response to severe acute respiratory syndrome (SARS)-CoV2 infection: insights from inborn errors of immunity. Current Opinion in Allergy and Clinical Immunology, 2021, 21, 515-524.	1.1	19
870	SARS-CoV-2, COVID-19 and the aging immune system. Nature Aging, 2021, 1, 769-782.	5.3	208
871	Self-sustaining IL-8 loops drive a prothrombotic neutrophil phenotype in severe COVID-19. JCI Insight, 2021, 6, .	2.3	71
873	Therapeutic potential of melatonin and melatonergic drugs on K18â€≺i>hACE2 mice infected with SARS oVâ€2. Journal of Pineal Research, 2022, 72, e12772.	3.4	20
874	Comprehending COVID-19: Immunopathogenic Mechanisms of Cytokine Action. Süleyman Demirel Üniversitesi TA±p Fakültesi Dergisi, 0, , .	0.0	0
875	Antibody-Dependent Enhancement of SARS-CoV-2 Infection Is Mediated by the IgG Receptors Fcl ³ RIIA and Fcl ³ RIIA but Does Not Contribute to Aberrant Cytokine Production by Macrophages. MBio, 2021, 12, e0198721.	1.8	57
876	ORF3a Protein of Severe Acute Respiratory Syndrome Coronavirus 2 Inhibits Interferon-Activated Janus Kinase/Signal Transducer and Activator of Transcription Signaling via Elevating Suppressor of Cytokine Signaling 1. Frontiers in Microbiology, 2021, 12, 752597.	1.5	27
877	A TLR7 antagonist restricts interferon-dependent and -independent immunopathology in a mouse model of severe influenza. Journal of Experimental Medicine, 2021, 218, .	4.2	10
878	Differential plasmacytoid dendritic cell phenotype and type I Interferon response in asymptomatic and severe COVID-19 infection. PLoS Pathogens, 2021, 17, e1009878.	2.1	52
879	Mild and Severe SARS-CoV-2 Infection Induces Respiratory and Intestinal Microbiome Changes in the K18-hACE2 Transgenic Mouse Model. Microbiology Spectrum, 2021, 9, e0053621.	1.2	21
880	SARS-CoV-2 Disrupts Proximal Elements in the JAK-STAT Pathway. Journal of Virology, 2021, 95, e0086221.	1.5	58
882	The Role of Extracellular Vesicles from Human Macrophages on Host-Pathogen Interaction. International Journal of Molecular Sciences, 2021, 22, 10262.	1.8	8
883	Interferon gamma immunotherapy in five critically ill COVID-19 patients with impaired cellular immunity: A case series. Med, 2021, 2, 1163-1170.e2.	2.2	31
884	Recent advances and developments in COVIDâ€19 in the context of allergic diseases. Clinical and Translational Allergy, 2021, 11, e12065.	1.4	7
886	Interfering with SARS-CoV-2: are interferons friends or foes in COVID-19?. Current Opinion in Virology, 2021, 50, 119-127.	2.6	32
887	Cutaneous Pathology of COVID-19 as a Window into Immunologic Mechanisms of Disease. Dermatologic Clinics, 2021, 39, 533-543.	1.0	6
888	Immune response to COVID-19 in older adults. Journal of Heart and Lung Transplantation, 2021, 40, 1082-1089.	0.3	13

#	Article	IF	CITATIONS
889	Clinical Patterns and Morphology of COVID-19 Dermatology. Dermatologic Clinics, 2021, 39, 487-503.	1.0	14
890	Adaptive lymphocyte profile analysis discriminates mild and severe forms of COVID-19 after solid organ transplantation. Kidney International, 2021, 100, 915-927.	2.6	4
891	Immunomodulation and immunotherapeutics of COVID-19. Clinical Immunology, 2021, 231, 108842.	1.4	7
892	COVID-19 challenges and its therapeutics. Biomedicine and Pharmacotherapy, 2021, 142, 112015.	2.5	59
893	The circadian clock component BMAL1 regulates SARS-CoV-2 entry and replication in lung epithelial cells. IScience, 2021, 24, 103144.	1.9	34
894	Efficacy and safety of pegylated interferon-α2b in moderate COVID-19: a phase 3, randomized, comparator-controlled, open-label study. International Journal of Infectious Diseases, 2021, 111, 281-287.	1.5	21
895	Pathophysiology of the Acute Respiratory Distress Syndrome. Critical Care Clinics, 2021, 37, 795-815.	1.0	19
896	Acute corneal endothelial graft rejection following COVID-19 vaccination. Journal Francais D'Ophtalmologie, 2021, 44, e445-e447.	0.2	45
897	Meta-analysis of single-cell RNA-seq data reveals phenotypic switching of immune cells in severe COVID-19 patients. Computers in Biology and Medicine, 2021, 137, 104792.	3.9	25
898	A novel hypothesis for COVID-19 pathogenesis: Retinol depletion and retinoid signaling disorder. Cellular Signalling, 2021, 87, 110121.	1.7	23
899	Adenovirus transduction to express human ACE2 causes obesity-specific morbidity in mice, impeding studies on the effect of host nutritional status on SARS-CoV-2 pathogenesis. Virology, 2021, 563, 98-106.	1.1	6
900	Prediction and analysis of microRNAs involved in COVID-19 inflammatory processes associated with the NF-kB and JAK/STAT signaling pathways. International Immunopharmacology, 2021, 100, 108071.	1.7	24
901	Upregulation of FOXP3 is associated with severity of hypoxia and poor outcomes in COVID-19 patients. Virology, 2021, 563, 74-81.	1.1	11
902	Cytokine storm in the pathophysiology of COVID-19: Possible functional disturbances of miRNAs. International Immunopharmacology, 2021, 101, 108172.	1.7	19
903	Animal models of SARS-CoV-2 and COVID-19 for the development of prophylactic and therapeutic interventions. , 2021, 228, 107931.		18
904	Pathophysiological Basis of COVID-19. Health Information Systems and the Advancement of Medical Practice in Developing Countries, 2022, , 38-54.	0.1	0
905	Severe Acute Respiratory Syndrome Coronavirus 2. , 2022, , 231-242.		3
907	An <i>In Vivo</i> Platform to Dissect Myeloid-Mediated Mechanisms of Protection Against Respiratory Viruses. SSRN Electronic Journal, 0, , .	0.4	0

# 908	ARTICLE Humoral and Cellular Response of Frontline Health Care Workers Infected by SARS-CoV-2 in Nice, France: A Prospective Single-Center Cohort Study. Frontiers in Medicine, 2020, 7, 608804.	IF 1.2	Citations
910	The Abstruse Side of Type I Interferon Immunotherapy for COVID-19 Cases with Comorbidities. Journal of Respiration, 2021, 1, 49-59.	0.4	5
911	Targeting immunometabolism to treat COVID-19. Immunotherapy Advances, 2021, 1, ltab013.	1.2	29
912	The pulmonary pathology of COVID-19. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2021, 478, 137-150.	1.4	123
913	Role of Multiomics Data to Understand Host–Pathogen Interactions in COVID-19 Pathogenesis. Journal of Proteome Research, 2021, 20, 1107-1132.	1.8	24
916	Immune evasion of SARS-CoV-2 from interferon antiviral system. Computational and Structural Biotechnology Journal, 2021, 19, 4217-4225.	1.9	49
917	Mechanisms of infection by SARS-CoV-2, inflammation and potential links with the microbiome. Future Virology, 2021, 16, 43-57.	0.9	10
918	Proteomic Signature of Host Response to SARS-CoV-2 Infection in the Nasopharynx. Molecular and Cellular Proteomics, 2021, 20, 100134.	2.5	25
919	Characterization of SARS-CoV-2 ORF6 deletion variants detected in a nosocomial cluster during routine genomic surveillance, Lyon, France. Emerging Microbes and Infections, 2021, 10, 167-177.	3.0	32
920	Research progress of epigallocatechin-3-gallate (EGCG) on anti-pathogenic microbes and immune regulation activities. Food and Function, 2021, 12, 9607-9619.	2.1	17
921	Functional Exhaustion of Type I and II Interferons Production in Severe COVID-19 Patients. Frontiers in Medicine, 2020, 7, 603961.	1.2	49
922	Long-term and short-term immunity to SARS-CoV-2: why it matters. Microbiology Australia, 2021, 42, 34.	0.1	0
923	Discrete Immune Response Signature to SARS-CoV-2 mRNA Vaccination Versus Infection. SSRN Electronic Journal, 0, , .	0.4	8
924	COVID-19 Antiviral and Treatment Candidates: Current Status. Immune Network, 2021, 21, e7.	1.6	8
930	COVID-19: disease, or no disease? - that is the question. It's the dose stupid!. Microbes and Infection, 2021, 23, 104779.	1.0	7
931	<i>Lacticaseibacillus paracasei</i> DG enhances the lactoferrin anti-SARS-CoV-2 response in Caco-2 cells. Gut Microbes, 2021, 13, 1961970.	4.3	16
933	Immunological perspectives on the pathogenesis, diagnosis, prevention and treatment of COVID-19. Molecular Biomedicine, 2021, 2, 1.	1.7	20
934	Nucleic Acid-Sensing Pathways During SARS-CoV-2 Infection: Expectations versus Reality. Journal of Inflammation Research, 2021, Volume 14, 199-216.	1.6	21

#	Article	IF	CITATIONS
935	SARS-CoV-2 Infection of Airway Epithelial Cells. Immune Network, 2021, 21, e3.	1.6	43
936	Neurobiology of SARS-CoV-2 interactions with the peripheral nervous system: implications for COVID-19 and pain. Pain Reports, 2021, 6, e885.	1.4	83
937	Circuits between infected macrophages and T cells in SARS-CoV-2 pneumonia. Nature, 2021, 590, 635-641.	13.7	524
939	Severely ill patients with COVID-19 display impaired exhaustion features in SARS-CoV-2–reactive CD8 ⁺ T cells. Science Immunology, 2021, 6, .	5.6	185
940	Severe SARS oVâ€2 patients develop a higher specific Tâ€cell response. Clinical and Translational Immunology, 2020, 9, e1217.	1.7	31
941	ISG15 protects human Tregs from interferon alphaâ€induced contraction in a cellâ€intrinsic fashion. Clinical and Translational Immunology, 2020, 9, e1221.	1.7	11
942	Type I interferon: From innate response to treatment for COVIDâ€19. Pediatric Investigation, 2020, 4, 275-280.	0.6	17
943	Cellâ€mediated immunity to SARSâ€CoVâ€2. Pediatric Investigation, 2020, 4, 281-291.	0.6	21
944	Innate Immunity Plays a Key Role in Controlling Viral Load in COVID-19: Mechanistic Insights from a Whole-Body Infection Dynamics Model. ACS Pharmacology and Translational Science, 2021, 4, 248-265.	2.5	36
945	Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) protein inhibits type I and III interferon production by targeting RIG-I/MDA-5 signaling. Signal Transduction and Targeted Therapy, 2020, 5, 299.	7.1	232
946	Longitudinal transcriptome analyses show robust T cell immunity during recovery from COVID-19. Signal Transduction and Targeted Therapy, 2020, 5, 294.	7.1	62
947	Dysregulation of type I interferon responses in COVID-19. Nature Reviews Immunology, 2020, 20, 397-398.	10.6	374
948	Natural history of COVID-19 and therapeutic options. Expert Review of Clinical Immunology, 2020, 16, 1159-1184.	1.3	101
949	Serum Protein Profiling Reveals a Specific Upregulation of the Immunomodulatory Protein Progranulin in Coronavirus Disease 2019. Journal of Infectious Diseases, 2021, 223, 775-784.	1.9	21
950	SARS-CoV-2 infection and the antiviral innate immune response. Journal of Molecular Cell Biology, 2021, 12, 963-967.	1.5	18
951	T cell phenotypes in COVID-19 - a living review. Oxford Open Immunology, 2021, 2, iqaa007.	1.2	19
952	The single-cell landscape of immunological responses of CD4+ T cells in HIV versus severe acute respiratory syndrome coronavirus 2. Current Opinion in HIV and AIDS, 2021, 16, 36-47.	1.5	6
953	Biomarkers of Cytokine Release Syndrome Predict Disease Severity and Mortality From COVID-19 in Kidney Transplant Recipients. Transplantation, 2021, 105, 158-169.	0.5	34

#	Article	IF	CITATIONS
1023	Biological Mechanisms of COVID-19 Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1489-1491.	2.5	38
1024	Corticosteroids, COVID-19 pneumonia, and acute respiratory distress syndrome. Journal of Clinical Investigation, 2020, 130, 6218-6221.	3.9	50
1025	Age-related susceptibility to coronavirus infections: role of impaired and dysregulated host immunity. Journal of Clinical Investigation, 2020, 130, 6204-6213.	3.9	59
1026	Inflammatory syndromes associated with SARS-CoV-2 infection: dysregulation of the immune response across the age spectrum. Journal of Clinical Investigation, 2020, 130, 6194-6197.	3.9	71
1027	Cognitive impact of COVID-19: looking beyond the short term. Alzheimer's Research and Therapy, 2020, 12, 170.	3.0	149
1028	Overweight/obesity as the potentially most important lifestyle factor associated with signs of pneumonia in COVID-19. PLoS ONE, 2020, 15, e0237799.	1.1	9
1029	Disentangling the dynamical underpinnings of differences in SARS-CoV-2 pathology using within-host ecological models. PLoS Pathogens, 2020, 16, e1009105.	2.1	14
1030	SARS-CoV-2 spike protein promotes IL-6 trans-signaling by activation of angiotensin II receptor signaling in epithelial cells. PLoS Pathogens, 2020, 16, e1009128.	2.1	157
1031	Extensive longitudinal immune profiling reveals sustained innate immune activaton in COVID-19 patients with unfavorable outcome. European Cytokine Network, 2020, 31, 154-167.	1.1	9
1032	Coronavirus disease-2019 (COVID-19): value of IL-6 inhibitors. Pulmonologiya, 2020, 30, 629-644.	0.2	7
1033	Immunometabolism at the cornerstone of inflammaging, immunosenescence, and autoimmunity in COVID-19. Aging, 2020, 12, 26263-26278.	1.4	25
1038	The Heterogeneous Landscape and Early Evolution of Pathogen-Associated CpG Dinucleotides in SARS-CoV-2. SSRN Electronic Journal, 2020, , 3611280.	0.4	3
1039	Profiling of immune dysfunction in COVID-19 patients allows early prediction of disease progression. Life Science Alliance, 2021, 4, e202000955.	1.3	56
1040	Repurposing of Biologic and Targeted Synthetic Anti-Rheumatic Drugs in COVID-19 and Hyper-Inflammation: A Comprehensive Review of Available and Emerging Evidence at the Peak of the Pandemic. Frontiers in Pharmacology, 2020, 11, 598308.	1.6	29
1041	The PIKfyve Inhibitor Apilimod: A Double-Edged Sword against COVID-19. Cells, 2021, 10, 30.	1.8	30
1042	Endothelium Infection and Dysregulation by SARS-CoV-2: Evidence and Caveats in COVID-19. Viruses, 2021, 13, 29.	1.5	118
1043	Interferon-α2b Treatment for COVID-19 Is Associated with Improvements in Lung Abnormalities. Viruses, 2021, 13, 44.	1.5	29
1044	SARS-CoV-2 Nucleocapsid Protein Interacts with RIG-I and Represses RIG-Mediated IFN-Î ² Production. Viruses, 2021, 13, 47.	1.5	114

	Cit	tation Report	
#	Article	IF	CITATIONS
1045	Harnessing Cellular Immunity for Vaccination against Respiratory Viruses. Vaccines, 2020, 8, 783.	2.1	13
1046	An integrative look at SARS‑CoV‑2 (Review). International Journal of Molecular Medicine, 2020, 47 415-434.	7, 1.8	17
1047	Interferon therapy for COVID-19 and emerging infections: Prospects and concerns. Cleveland Clinic Journal of Medicine, 2020, , .	0.6	22
1048	Factors of Severity in Patients with COVID-19: Cytokine/Chemokine Concentrations, Viral Load, and Antibody Responses. American Journal of Tropical Medicine and Hygiene, 2020, 103, 2412-2418.	0.6	60
1049	Obesity in COVID-19: A Systematic Review and Meta-analysis. Annals of the Academy of Medicine, Singapore, 2020, 49, 996-1008.	0.2	57
1050	ACE2: Evidence of role as entry receptor for SARS-CoV-2 and implications in comorbidities. ELife, 2020 9, .), 2.8	266
1051	Immunology of SARS-CoV-2 infections and vaccines. Advances in Immunology, 2021, 151, 49-97.	1.1	12
1052	Comparative analysis of candidate vaccines to prevent covid 19 pandemic. E3S Web of Conferences, 2021, 309, 01038.	0.2	0
1053	Impact of computational approaches in the fight against COVID-19: an Al guided review of 17 000 studies. Briefings in Bioinformatics, 2022, 23, .	3.2	20
1054	SARS-CoV-2 mechanisms of action and impact on human organism, risk factors and potential treatments. An exhaustive survey. International Journal of Transgender Health, 2021, 14, 894-947.	1.1	0
1055	A review: Antibody-dependent enhancement in COVID-19: The not so friendly side of antibodies. International Journal of Immunopathology and Pharmacology, 2021, 35, 205873842110501.	1.0	26
1056	When Immunity Kills: The Lessons of SARS-CoV-2 Outbreak. Frontiers in Immunology, 2021, 12, 6925	98. 2.2	7
1057	Type I interferon response and vascular alteration in chilblainâ€like lesions during the COVIDâ€19 outbreak*. British Journal of Dermatology, 2021, 185, 1176-1185.	1.4	33
1058	An interferon-inducible signature of airway disease from blood gene expression profiling. European Respiratory Journal, 2022, 59, 2100569.	3.1	4
1059	Sex-related susceptibility in coronavirus disease 2019 (COVID-19): Proposed mechanisms. European Journal of Pharmacology, 2021, 912, 174548.	1.7	14
1060	Review: Development of SARS-CoV-2 immuno-enhanced COVID-19 vaccines with nano-platform. Nano Research, 2022, 15, 2196-2225.) 5.8	8
1061	SARSâ€CoVâ€2 Alpha, Beta, and Delta variants display enhanced Spikeâ€mediated syncytia formation Journal, 2021, 40, e108944.	n. EMBO 3.5	139
1064	Cutaneous coronavirus disease 2019 in children: a clinical primer for diagnosis and treatment. Current Opinion in Pediatrics, 2021, 33, 691-703.	1.0	7

.

ARTICLE IF CITATIONS # Comprehensive investigations revealed consistent pathophysiological alterations after vaccination 1065 58 3.1 with COVID-19 vaccines. Cell Discovery, 2021, 7, 99. Hallmarks of immune response in COVID-19: Exploring dysregulation and exhaustion. Seminars in 1066 2.7 Immunology, 2021, 55, 101508. Blood Transcriptomes of Anti-SARS-CoV-2 Antibody-Positive Healthy Individuals Who Experienced 1067 2.2 10 Asymptomatic Versus Clinical Infection. Frontiers in Immunology, 2021, 12, 746203. Diabetes, Heart Failure, and COVID-19: An Update. Frontiers in Physiology, 2021, 12, 706185. 1068 Coagulopathies after Vaccination against SARS-CoV-2 May Be Derived from a Combined Effect of 1069 SARS-CoV-2 Spike Protein and Adenovirus Vector-Triggered Signaling Pathways. International Journal 1.8 20 of Molecular Sciences, 2021, 22, 10791. Microvascular Skin Manifestations Caused by COVID-19. Hamostaseologie, 2021, 41, 387-396. Can the Cytokine Profile According to ABO Blood Groups Be Related to Worse Outcome in COVID-19 1071 2.2 9 Patients? Yes, They Can. Frontiers in Immunology, 2021, 12, 726283. COVID-toe - The Silent Symptom: Raising Awareness among Health Care Professionals and Community. 1072 0.6 Current Molecular Medicine, 2021, 21, Altered increase in STAT1 expression and phosphorylation in severe COVIDâ€19. European Journal of 1073 1.6 33 Immunology, 2022, 52, 138-148. Impaired function and delayed regeneration of dendritic cells in COVID-19. PLoS Pathogens, 2021, 17, 1074 2.1 e1009742. The Impact of SARS-CoV-2 Infection, and Application of Immunosuppressive Agents in Kidney Transplant 1075 1.7 5 Recipients Suffering from COVID-19. Pharmaceuticals, 2021, 14, 1054. Identification of driver genes for critical forms of COVID-19 in a deeply phenotyped young patient 5.8 cohort. Science Translational Medicine, 2022, 14, eabj7521. Novel Systemic Inflammation Markers to Predict COVID-19 Prognosis. Frontiers in Immunology, 2021, 1077 2.2 62 12,741061. Triple jeopardy in ageing: COVID-19, co-morbidities and inflamm-ageing. Ageing Research Reviews, 2022, 5.0 73, 101494. Immune Response in Severe and Non-Severe Coronavirus Disease 2019 (COVID-19) Infection: A 1079 2.2 24 Mechanistic Landscape. Frontiers in Immunology, 2021, 12, 738073. COVID-19 Is a Multi-Organ Aggressor: Epigenetic and Clinical Marks. Frontiers in Immunology, 2021, 12, 2.2 23 752380. A poor and delayed anti-SARS-CoV2 IgG response is associated to severe COVID-19 in children. 1081 2.7 14 EBioMedicine, 2021, 72, 103615. Host genetic factors determining COVID-19 susceptibility and severity. EBioMedicine, 2021, 72, 103629.

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
1083	Clash of the titans: interferons and SARS-CoV-2. Trends in Immunology, 2021, 42, 1069-1072.	2.9	10
1084	SARS-CoV-2 promotes RIPK1 activation to facilitate viral propagation. Cell Research, 2021, 31, 1230-1243.	5.7	62
1085	Immunometabolic Dysregulation at the Intersection of Obesity and COVID-19. Frontiers in Immunology, 2021, 12, 732913.	2.2	16
1086	The SARS-CoV-2 main protease Mpro causes microvascular brain pathology by cleaving NEMO in brain endothelial cells. Nature Neuroscience, 2021, 24, 1522-1533.	7.1	164
1087	An Integrated View of Deubiquitinating Enzymes Involved in Type I Interferon Signaling, Host Defense and Antiviral Activities. Frontiers in Immunology, 2021, 12, 742542.	2.2	4
1088	Cardiovascular diseases in combination with SARS-CoV-2 viral infection: cours and forecast. , 2021, 17, 97-105.	0.0	3
1089	Nod-like Receptors: Critical Intracellular Sensors for Host Protection and Cell Death in Microbial and Parasitic Infections. International Journal of Molecular Sciences, 2021, 22, 11398.	1.8	28
1090	Cardiac SARS-CoV-2 infection is associated with pro-inflammatory transcriptomic alterations within the heart. Cardiovascular Research, 2022, 118, 542-555.	1.8	42
1092	Efficacy of interferon beta-1a plus remdesivir compared with remdesivir alone in hospitalised adults with COVID-19: a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Respiratory Medicine,the, 2021, 9, 1365-1376.	5.2	119
1093	Role of neutrophils, platelets, and extracellular vesicles and their interactions in COVIDâ€19â€associated thrombopathy. Journal of Thrombosis and Haemostasis, 2022, 20, 17-31.	1.9	45
1094	SARS-CoV-2 Causes Lung Infection without Severe Disease in Human ACE2 Knock-In Mice. Journal of Virology, 2022, 96, JVI0151121.	1.5	58
1095	Cancer and Covid-19: Collectively catastrophic. Cytokine and Growth Factor Reviews, 2022, 63, 78-89.	3.2	10
1096	The Host Response to Viral Infections Reveals Common and Virus-Specific Signatures in the Peripheral Blood. Frontiers in Immunology, 2021, 12, 741837.	2.2	13
1097	COVID19 Disease Map, a computational knowledge repository of virus–host interaction mechanisms. Molecular Systems Biology, 2021, 17, e10387.	3.2	53
1098	Neurotropism of SARS-CoV-2 and neurological diseases of the central nervous system in COVID-19 patients. Experimental Brain Research, 2022, 240, 9-25.	0.7	38
1099	Subcutaneous interferon beta-1a in COVID-19: raking the ashes of an intervention trial. Lancet Respiratory Medicine,the, 2021, 9, 1344-1345.	5.2	0
1100	A call for discovery: Reâ€envisioning The Cancer Genome Atlas as a blueprint for a TCGA2.0—The COVIDâ€19 Genome Atlas. Clinical and Translational Discovery, 2021, 1, e7.	0.2	1
1101	COVID-19: A review of newly formed viral clades, pathophysiology, therapeutic strategies and current vaccination tasks. International Journal of Biological Macromolecules, 2021, , .	3.6	14

#	Article	IF	CITATIONS
1102	Microbiota and compartment matter in the COVID-19 response. Nature Immunology, 2021, 22, 1350-1352.	7.0	11
1103	Determinants of Ligand Specificity and Functional Plasticity in Type I Interferon Signaling. Frontiers in Immunology, 2021, 12, 748423.	2.2	4
1104	An Update on Innate Immune Responses during SARS-CoV-2 Infection. Viruses, 2021, 13, 2060.	1.5	10
1105	Similarities and Differences in the Acute-Phase Response to SARS-CoV-2 in Rhesus Macaques and African Green Monkeys. Frontiers in Immunology, 2021, 12, 754642.	2.2	6
1108	Off balance: Interferons in COVID-19 lung infections. EBioMedicine, 2021, 73, 103642.	2.7	31
1109	Immunopathological events surrounding IL-6 and IFN-α: A bridge for anti-lupus erythematosus drugs used to treat COVID-19. International Immunopharmacology, 2021, 101, 108254.	1.7	2
1110	SARS-CoV-2: Current trends in emerging variants, pathogenesis, immune responses, potential therapeutic, and vaccine development strategies. International Immunopharmacology, 2021, 101, 108232.	1.7	14
1113	The intersection of COVID-19 and autoimmunity. Journal of Clinical Investigation, 2021, 131, .	3.9	138
1114	What Happens to the Immune System after Vaccination or Recovery from COVID-19?. Life, 2021, 11, 1152.	1.1	5
1115	Dysregulated Inflammation During Obesity: Driving Disease Severity in Influenza Virus and SARS-CoV-2 Infections. Frontiers in Immunology, 2021, 12, 770066.	2.2	26
1116	Immune interventions in COVID-19: a matter of time?. Mucosal Immunology, 2022, 15, 198-210.	2.7	14
1117	Multi-omic approach identifies a transcriptional network coupling innate immune response to proliferation in the blood of COVID-19 cancer patients. Cell Death and Disease, 2021, 12, 1019.	2.7	3
1119	Distinct Roles of Type I and Type III Interferons during a Native Murine Î ² Coronavirus Lung Infection. Journal of Virology, 2022, 96, JVI0124121.	1.5	10
1121	Divergent COVID-19 Disease Trajectories Predicted by a DAMP-Centered Immune Network Model. Frontiers in Immunology, 2021, 12, 754127.	2.2	10
1122	Differential dynamics of peripheral immune responses to acute SARS-CoV-2 infection in older adults. Nature Aging, 2021, 1, 1038-1052.	5.3	10
1123	Insights into COVID-19 Vaccine Development Based on Immunogenic Structural Proteins of SARS-CoV-2, Host Immune Responses, and Herd Immunity. Cells, 2021, 10, 2949.	1.8	26
1124	Interferon-alpha or -beta facilitates SARS-CoV-2 pulmonary vascular infection by inducing ACE2. Angiogenesis, 2022, 25, 225-240.	3.7	27
1125	Possible harm from glucocorticoid drugs misuse in the early phase of SARS-CoV-2 infection: a narrative review of the evidence. Internal and Emergency Medicine, 2022, 17, 329-338.	1.0	13

TION

# 1126	ARTICLE A Case of Autosomal Recessive Interferon Alpha/Beta Receptor Alpha Chain (IFNAR1) Deficiency with Severe COVID-19. Journal of Clinical Immunology, 2022, 42, 19-24.	IF 2.0	CITATIONS
1127	Constitutive IFNÎ \pm Protein Production in Bats. Frontiers in Immunology, 2021, 12, 735866.	2.2	11
1128	Viral Infections and Nutrition: Influenza Virus as a Case Study. , 2021, , 133-163.		3
1130	Update on treatment and preventive interventions against COVID-19: an overview of potential pharmacological agents and vaccines. Molecular Biomedicine, 2020, 1, 16.	1.7	4
1132	Coagulation dysfunction in ICU patients with coronavirus disease 2019 in Wuhan, China: a retrospective observational study of 75 fatal cases. Aging, 2021, 13, 1591-1607.	1.4	3
1134	Extracorporeal Membrane Oxygenation and Inflammation in COVID-19. ASAIO Journal, 2021, 67, e72-e73.	0.9	0
1135	MicroRNAs based regulation of cytokine regulating immune expressed genes and their transcription factors in COVID-19. Meta Gene, 2022, 31, 100990.	0.3	17
1136	Mass Cytometry and Artificial Intelligence Define CD169 as a Marker of SARS-CoV2-Induced Acute Respiratory Distress Syndrome. SSRN Electronic Journal, 0, , .	0.4	0
1137	Deep RNA Sequencing of Intensive Care Unit Patients with COVID-19. SSRN Electronic Journal, 0, , .	0.4	2
1138	Human NLRP1 Is a Sensor of 3CL Proteases from Pathogenic Coronaviruses in Lung Epithelial Cells. SSRN Electronic Journal, 0, , .	0.4	0
1139	Dermatomyositis With Anti-MDA5 Antibodies: Bioclinical Features, Pathogenesis and Emerging Therapies. Frontiers in Immunology, 2021, 12, 773352.	2.2	105
1140	Complex Pathophysiological Mechanisms and the Propose of the Three-Dimensional Schedule For Future COVID-19 Treatment. Frontiers in Immunology, 2021, 12, 716940.	2.2	1
1141	Vitamin <scp>D</scp> Endocrine System and <scp>COVIDâ€19</scp> . JBMR Plus, 2021, 5, e10576.	1.3	13
1142	Chitinase 3-like-1 is a therapeutic target that mediates the effects of aging in COVID-19. JCI Insight, 2021, 6, .	2.3	23
1143	Sensing of cytoplasmic chromatin by cGAS activates innate immune response in SARS-CoV-2 infection. Signal Transduction and Targeted Therapy, 2021, 6, 382.	7.1	53
1144	COVID-19-Associated acute respiratory distress syndrome (CARDS): Mechanistic insights on therapeutic intervention and emerging trends. International Immunopharmacology, 2021, 101, 108328.	1.7	8
1145	Single-cell immunophenotyping of the fetal immune response to maternal SARS-CoV-2 infection in late gestation. Pediatric Research, 2022, 91, 1090-1098.	1.1	14
1146	Release of infectious virus and cytokines in nasopharyngeal swabs from individuals infected with non-alpha or alpha SARS-CoV-2 variants: an observational retrospective study. EBioMedicine, 2021, 73, 103637.	2.7	19

#	Article	IF	CITATIONS
1147	Pathogenic and transcriptomic differences of emerging SARS-CoV-2 variants in the Syrian golden hamster model. EBioMedicine, 2021, 73, 103675.	2.7	26
1148	Pathogenic Basis of Thromboinflammation and Endothelial Injury in COVID-19: Current Findings and Therapeutic Implications. International Journal of Molecular Sciences, 2021, 22, 12081.	1.8	21
1149	Myeloid dysregulation and therapeutic intervention in COVID-19. Seminars in Immunology, 2021, 55, 101524.	2.7	9
1150	A Deep Look Into COVID-19 Severity Through Dynamic Changes in Blood Cytokine Levels. Frontiers in Immunology, 2021, 12, 771609.	2.2	20
1151	Impaired innate antiviral defenses in COVID-19: Causes, consequences and therapeutic opportunities. Seminars in Immunology, 2021, 55, 101522.	2.7	12
1152	The Antiviral Activity of Bacterial, Fungal, and Algal Polysaccharides as Bioactive Ingredients: Potential Uses for Enhancing Immune Systems and Preventing Viruses. Frontiers in Nutrition, 2021, 8, 772033.	1.6	33
1153	Sub-optimal Humoral immunity in SARS CoV-2 infection and viral variant generation. Clinics in Laboratory Medicine, 2021, 42, 75-84.	0.7	1
1154	Aging whole blood transcriptome reveals candidate genes for SARS-CoV-2-related vascular and immune alterations. Journal of Molecular Medicine, 2022, 100, 285-301.	1.7	16
1155	Age-related Differences in the Nasal Mucosal Immune Response to SARS-CoV-2. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 206-222.	1.4	27
1156	Interferon-Lambda Intranasal Protection and Differential Sex Pathology in a Murine Model of SARS-CoV-2 Infection. MBio, 2021, 12, e0275621.	1.8	21
1158	Corticosteroid treatment in COVID-19 modulates host inflammatory responses and transcriptional signatures of immune dysregulation. Journal of Leukocyte Biology, 2021, 110, 1225-1239.	1.5	4
1159	Gut microbiome, Vitamin D, ACE2 interactions are critical factors in immune-senescence and inflammaging: key for vaccine response and severity of COVID-19 infection. Inflammation Research, 2022, 71, 13-26.	1.6	10
1172	Comparative genomic analysis of eutherian interferon genes. Genomics, 2020, 112, 4749-4759.	1.3	2
1177	Value of blood IFN-I levels in COVID-19 management. Turkish Journal of Biochemistry, 2020, 45, 673-675.	0.3	1
1178	Bovine Interferon Lambda Is a Potent Antiviral Against SARS-CoV-2 Infection in vitro. Frontiers in Veterinary Science, 2020, 7, 603622.	0.9	5
1179	Covid-19: features of the pathogenesis of the disease and targets for immunotherapeutic effects. Meditsinskii Akademicheskii Zhurnal, 2020, 20, 75-88.	0.2	0
1181	Let fever do its job. Evolution, Medicine and Public Health, 2021, 9, 26-35.	1.1	24
1184	Potential Implications of a Type 1 Interferon Gene Signature on COVID-19 Severity and Chronic Inflammation in Sickle Cell Disease. Frontiers in Medicine, 2021, 8, 679030.	1.2	Ο

	CHAHON		
#	Article	IF	CITATIONS
1185	Increased morbidity of obese mice infected with mouse-adapted SARS-CoV-2. Cell Discovery, 2021, 7, 74.	3.1	1
1187	On the Test Accuracy and Effective Control of the COVID-19 Pandemic: A Case Study in Singapore. SSRN Electronic Journal, 0, , .	0.4	0
1188	Devil's tools: SARS-CoV-2 antagonists against innate immunity. Current Research in Virological Science, 2021, 2, 100013.	1.8	19
1189	Overview of the immune response against SARS-CoV-2. , 2022, , 95-113.		Ο
1190	Host cell-intrinsic innate immune recognition of SARS-CoV-2. Current Opinion in Virology, 2022, 52, 30-38.	2.6	32
1191	TLRs in COVID-19: How they drive immunopathology and the rationale for modulation. Innate Immunity, 2021, 27, 503-513.	1.1	32
1192	Immune dysregulation and immunopathology induced by SARS-CoV-2 and related coronaviruses — are we our own worst enemy?. Nature Reviews Immunology, 2022, 22, 47-56.	10.6	118
1194	Interferon-α2 Auto-antibodies in Convalescent Plasma Therapy for COVID-19. Journal of Clinical Immunology, 2022, 42, 232-239.	2.0	26
1195	Upregulated type I interferon responses in asymptomatic COVID-19 infection are associated with improved clinical outcome. Scientific Reports, 2021, 11, 22958.	1.6	47
1196	Suppression and Activation of Intracellular Immune Response in Initial Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Frontiers in Microbiology, 2021, 12, 768740.	1.5	1
1197	Age-Related Expression of IFN-λ1 Versus IFN-I and Beta-Defensins in the Nasopharynx of SARS-CoV-2-Infected Individuals. Frontiers in Immunology, 2021, 12, 750279.	2.2	17
1198	Natalizumab administration in multiple sclerosis patients during active SARS-CoV-2 infection: a case series. BMC Neurology, 2021, 21, 462.	0.8	4
1199	SARS-CoV-2 Spike Protein and Its Receptor Binding Domain Promote a Proinflammatory Activation Profile on Human Dendritic Cells. Cells, 2021, 10, 3279.	1.8	16
1200	Severe COVID-19 is associated with hyperactivation of the alternative complement pathway. Journal of Allergy and Clinical Immunology, 2022, 149, 550-556.e2.	1.5	25
1201	Human immune diversity: from evolution to modernity. Nature Immunology, 2021, 22, 1479-1489.	7.0	64
1202	Immunological Biomarkers in Blood to Monitor the Course and Therapeutic Outcomes of COVID-19. Therapeutic Drug Monitoring, 2021, Publish Ahead of Print, .	1.0	1
1203	SARS-CoV-2 infection and oxidative stress: Pathophysiological insight into thrombosis and therapeutic opportunities. Cytokine and Growth Factor Reviews, 2022, 63, 44-57.	3.2	41
1204	Phytonutrient Inhibitors of SARS-CoV-2/NSP5-Encoded Main Protease (M ^{pro}) Autocleavage Enzyme Critical for COVID-19 Pathogenesis. Journal of Dietary Supplements, 2023, 20, 284-311.	1.4	4

	CIAIC	JN REPORT	
#	Article	IF	Citations
1205	The Use of COVID-19 Vaccines in Patients with SLE. Current Rheumatology Reports, 2021, 23, 79.	2.1	32
1206	Data-Driven Analysis of COVID-19 Reveals Persistent Immune Abnormalities in Convalescent Severe Individuals. Frontiers in Immunology, 2021, 12, 710217.	2.2	8
1208	Immunomodulatory and Anti-fibrotic Effects Following the Infusion of Umbilical Cord Mesenchymal Stromal Cells in a Critically III Patient With COVID-19 Presenting Lung Fibrosis: A Case Report. Frontiers in Medicine, 2021, 8, 767291.	1.2	3
1209	IMPACT of PCSK9 inhibition on clinical outcome in patients during the inflammatory stage of the SARS-COV-2 infection: Rationale and protocol of the IMPACT-SIRIO 5 study. Cardiology Journal, 2022, 29, 140-147.	0.5	9
1210	The Renin-Angiotensin System: A Key Role in SARS-CoV-2-Induced COVID-19. Molecules, 2021, 26, 6945.	1.7	41
1211	Nature of Acquired Immune Responses, Epitope Specificity and Resultant Protection from SARS-CoV-2. Journal of Personalized Medicine, 2021, 11, 1253.	1.1	3
1212	IL 33 Correlates With COVID-19 Severity, Radiographic and Clinical Finding. Frontiers in Medicine, 2021, 8, 749569.	1.2	29
1213	A hydrated 2,3-diaminophenazinium chloride as a promising building block against SARS-CoV-2. Scientific Reports, 2021, 11, 23122.	1.6	9
1214	The incidence, clinical characteristics, and outcome of COVID-19 in a prospectively followed cohort of patients with Behçet's syndrome. Rheumatology International, 2021, , 1.	1.5	8
1215	Efficacy of subcutaneous interferon-beta in COVID-19: a meta-analysis and systematic review. Journal of Community Hospital Internal Medicine Perspectives, 2021, 11, 760-768.	0.4	1
1216	Type I Interferon and the Spectrum of Susceptibility to Viral Infection and Autoimmune Disease: A Shared Genomic Signature. Frontiers in Immunology, 2021, 12, 757249.	2.2	17
1217	Corona Virus Disease 2019 (COVID-19) as a System-Level Infectious Disease With Distinct Sex Disparities. Frontiers in Immunology, 2021, 12, 778913.	2.2	5
1218	An Overview of Recent Insights into the Response of TLR to SARS-CoV-2 Infection and the Potential of TLR Agonists as SARS-CoV-2 Vaccine Adjuvants. Viruses, 2021, 13, 2302.	1.5	32
1219	Mutations of SARS-CoV-2 spike protein: Implications on immune evasion and vaccine-induced immunity. Seminars in Immunology, 2021, 55, 101533.	2.7	72
1220	Complexity of immune responses in COVID-19. Seminars in Immunology, 2021, 55, 101545.	2.7	10
1221	COVID-19 genetic risk variants are associated with expression of multiple genes in diverse immune cell types. Nature Communications, 2021, 12, 6760.	5.8	32
1222	Data-driven multi-scale mathematical modeling of SARS-CoV-2 infection reveals heterogeneity among COVID-19 patients. PLoS Computational Biology, 2021, 17, e1009587.	1.5	11
1224	Progress in the Diagnosis and Treatment of COVID-19 in Children: A Review. International Journal of General Medicine, 2021, Volume 14, 8097-8108.	0.8	10

#	Article	IF	Citations
1225	Why Females Do Better: The X Chromosomal TLR7 Gene-Dose Effect in COVID-19. Frontiers in Immunology, 2021, 12, 756262.	2.2	35
1226	Should we treat fever in critically ill COVID-19 patients?. Minerva Anestesiologica, 2021, 87, 1168-1170.	0.6	0
1227	The impact of DAMP-mediated inflammation in severe COVID-19 and related disorders. Biochemical Pharmacology, 2022, 195, 114847.	2.0	31
1230	Study of the effects of interferon βâ^'1a on hospitalized patients with COVIDâ€19: SBMU Taskforce on the COVIFERON study. Journal of Medical Virology, 2021, , .	2.5	6
1231	Cerebral dysfunctions caused by sepsis during ageing. Nature Reviews Immunology, 2022, 22, 444-458.	10.6	55
1232	SARS-CoV-2 B.1.1.7 (alpha) and B.1.351 (beta) variants induce pathogenic patterns in K18-hACE2 transgenic mice distinct from early strains. Nature Communications, 2021, 12, 6559.	5.8	75
1233	Metabolic imbalance of T cells in COVID-19 is hallmarked by basigin and mitigated by dexamethasone. Journal of Clinical Investigation, 2021, 131, .	3.9	25
1234	A regulatory T cell signature distinguishes the immune landscape of COVID-19 patients from those with other respiratory infections. Science Advances, 2021, 7, eabj0274.	4.7	28
1237	Co-Regulation of Protein Coding Genes by Transcription Factor and Long Non-Coding RNA in SARS-CoV-2 Infected Cells: An In Silico Analysis. Non-coding RNA, 2021, 7, 74.	1.3	5
1238	SARS-CoV-2: Emerging Role in the Pathogenesis of Various Thyroid Diseases. Journal of Inflammation Research, 2021, Volume 14, 6191-6221.	1.6	35
1240	Pathogenesis of Respiratory Viral and Fungal Coinfections. Clinical Microbiology Reviews, 2022, 35, e0009421.	5.7	64
1241	Seronegative Erosive Arthritis Following SARS-CoV-2 Infection. Rheumatology and Therapy, 2022, 9, 295-301.	1.1	8
1242	β-Glucans Could Be Adjuvants for SARS-CoV-2 Virus Vaccines (COVID-19). International Journal of Environmental Research and Public Health, 2021, 18, 12636.	1.2	12
1243	Innate Immune Response in Respiratory System. Infectious Diseases & Immunity, 2021, Publish Ahead of Print, .	0.2	1
1244	Total antioxidant capacity as a marker of severity of COVIDâ€19 infection: Possible prognostic and therapeutic clinical application. Journal of Medical Virology, 2022, 94, 1558-1565.	2.5	32
1246	Regulatory T Cells as Predictors of Clinical Course in Hospitalised COVID-19 Patients. Frontiers in Immunology, 2021, 12, 789735.	2.2	23
1247	Severe acute respiratory syndrome coronavirus 2 causes lung inflammation and injury. Clinical Microbiology and Infection, 2022, 28, 513-520.	2.8	12
1248	Immune mechanisms in cancer patients that lead to poor outcomes of SARS-CoV-2 infection. Translational Research, 2022, 241, 83-95.	2.2	12

#	Article	IF	CITATIONS
1249	Inhaled interferons beta and SARS-COV2 infection: a preliminary therapeutic perspective. Expert Review of Respiratory Medicine, 2022, 16, 257-261.	1.0	3
1251	Type I interferons: One stone to concurrently kill two birds, viral infections and cancers. Current Research in Virological Science, 2021, 2, 100014.	1.8	5
1252	MAIT Cells in Respiratory Viral Infections in Mouse and Human. Critical Reviews in Immunology, 2021, 41, 19-35.	1.0	7
1253	Post corona virus Disease-19 (COVID-19): Hyper inflammatory syndrome-associated bilateral anterior uveitis and multifocal serous retinopathy secondary to steroids. Indian Journal of Rheumatology, 2021, 16, 451.	0.2	9
1254	The immunology and immunotherapy for COVID-19. Expert Reviews in Molecular Medicine, 2021, 23, e24.	1.6	2
1255	The host immune responses to SARS-CoV-2 and therapeutic strategies in the treatment of COVID-19 cytokine storm. AIMS Allergy and Immunology, 2021, 5, 240-258.	0.3	1
1256	Alveolar macrophages: novel therapeutic targets for respiratory diseases. Expert Reviews in Molecular Medicine, 2021, 23, e18.	1.6	10
1257	The adaptation of SARS-CoV-2 to humans. Memorias Do Instituto Oswaldo Cruz, 2022, 116, e210127.	0.8	4
1258	COVID-19-Induced Cardiovascular Damage Differs from other Prevalent Viruses. Cardiology Plus, 2021, 6, 231-245.	0.2	7
1259	Early IFNÎ ² Secretion Determines Variable Downstream IL-12p70 Responses Upon TLR4 Activation. SSRN Electronic Journal, 0, , .	0.4	0
1260	Deep Time Course Proteomics of SARS-CoV- and SARS-CoV-2-Infected Human Lung Epithelial Cells (Calu-3) Reveals Strong Induction of Interferon-Stimulated Gene Expression by SARS-CoV-2 in Contrast to SARS-CoV. Journal of Proteome Research, 2022, 21, 459-469.	1.8	16
1261	The Type 2 Asthma Mediator IL-13 Inhibits Severe Acute Respiratory Syndrome Coronavirus 2 Infection of Bronchial Epithelium. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 391-401.	1.4	34
1262	Two-step fitness selection for intra-host variations in SARS-CoV-2. Cell Reports, 2022, 38, 110205.	2.9	38
1263	Translating known drivers of COVID-19 disease severity to design better SARS-CoV-2 vaccines. Current Opinion in Virology, 2022, 52, 89-101.	2.6	2
1264	Interferon gamma, lipopolysaccharide, and modified-live viral vaccines stimulation alter the mRNA expression of tumor necrosis factor α, inducible nitric oxide synthase, and interferon β in bovine alveolar macrophages. Veterinary Immunology and Immunopathology, 2022, 244, 110378.	0.5	0
1265	Oxysterols: From redox bench to industry. Redox Biology, 2022, 49, 102220.	3.9	21
1266	Targeting chronic COVID-19 lung injury; Tofacitinib can be used against tissue-resident memory T cells. Biomedicine and Pharmacotherapy, 2022, 147, 112614.	2.5	5
1267	477â€Deep learning to drive COVID-19 rapid drug repurposing. , 2020, , .		0

#	Article	IF	CITATIONS
1268	All hands on deck: SARS-CoV-2 proteins that block early anti-viral interferon responses. Current Research in Virological Science, 2021, 2, 100015.	1.8	26
1269	Increased morbidity of obese mice infected with mouse-adapted SARS-CoV-2. Cell Discovery, 2021, 7, 74.	3.1	10
1270	Basic Research Reveals the Unique Virologic Features of SARS-CoV-2. Trends in the Sciences, 2021, 26, 9_79-9_86.	0.0	0
1271	BRD2 inhibition blocks SARS-CoV-2 infection by reducing transcription of the host cell receptor ACE2. Nature Cell Biology, 2022, 24, 24-34.	4.6	47
1272	The cGAS–STING pathway drives type I IFN immunopathology in COVID-19. Nature, 2022, 603, 145-151.	13.7	272
1273	Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature, 2022, 603, 587-598.	13.7	216
1276	ls Covid-19 Severity Associated With ACE2 Degradation?. Frontiers in Drug Discovery, 2022, 1, .	1.1	25
1277	Studying the clinical, radiological, histological, microbiological, and immunological evolution during the different COVID-19 disease stages using minimal invasive autopsy. Scientific Reports, 2022, 12, 1360.	1.6	7
1278	Maternal-fetal immune responses in pregnant women infected with SARS-CoV-2. Nature Communications, 2022, 13, 320.	5.8	117
1280	Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nature Immunology, 2022, 23, 210-216.	7.0	486
1282	Sex Differences in Immunity. Annual Review of Immunology, 2022, 40, 75-94.	9.5	47
1283	COVID-19Â:Âles thérapeutiques. , 2022, 1, 13-13.		0
1284	Cardiovascular Risk After SARS-CoV-2 Infection Is Mediated by IL18/IL18R1/HIF-1 Signaling Pathway Axis. Frontiers in Immunology, 2021, 12, 780804.	2.2	15
1285	A benzimidazole scaffold as a promising inhibitor against SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 2023, 41, 1798-1810.	2.0	7
1288	SARS-CoV-2-Specific T Cell Responses Are Stronger in Children With Multisystem Inflammatory Syndrome Compared to Children With Uncomplicated SARS-CoV-2 Infection. Frontiers in Immunology, 2021, 12, 793197.	2.2	14
1289	A Natural Plant Source-Tea Polyphenols, a Potential Drug for Improving Immunity and Combating Virus. Nutrients, 2022, 14, 550.	1.7	9
1290	Resolution of viral load in mild COVID-19 patients is associated with both innate and adaptive immune responses. Journal of Clinical Virology, 2022, 146, 105060.	1.6	14
1291	Immune-Guided Therapy of COVID-19. Cancer Immunology Research, 2022, 10, 384-402.	1.6	20

#	Article	IF	CITATIONS
1292	Innate immunological pathways in COVID-19 pathogenesis. Science Immunology, 2022, 7, eabm5505.	5.6	101
1293	The interplay between SARS-CoV-2 infected airway epithelium and immune cells modulates regulatory/inflammatory signals. IScience, 2022, 25, 103854.	1.9	3
1294	Attenuation of SARS-CoV-2 infection by losartan in human kidney organoids. IScience, 2022, 25, 103818.	1.9	15
1295	Chronic Acral Lesions ("COVID Toesâ€): To Add to Long Post- COVID-19 Syndrome?. Angiology, 2022, 73, 788-789.	0.8	3
1296	Biomarker candidates for progression and clinical management of COVID-19 associated pneumonia at time of admission. Scientific Reports, 2022, 12, 640.	1.6	11
1298	Elimination of Aicardi–GoutiÔres syndrome protein SAMHD1 activates cellular innate immunity and suppresses SARS-CoV-2 replication. Journal of Biological Chemistry, 2022, 298, 101635.	1.6	9
1300	COVID-19: systemic pathology and its implications for therapy. International Journal of Biological Sciences, 2022, 18, 386-408.	2.6	27
1301	Roles of the gut microbiota in severe SARS-CoV-2 infection. Cytokine and Growth Factor Reviews, 2022, 63, 98-107.	3.2	12
1302	Toward an optimized strategy of using various airway mucus clearance techniques to treat critically ill COVID-19 patients. Biocell, 2022, 46, 855-871.	0.4	4
1303	Implications of the Immune Polymorphisms of the Host and the Genetic Variability of SARS-CoV-2 in the Development of COVID-19. Viruses, 2022, 14, 94.	1.5	7
1304	Compartmentalized immune responses and the local microbiota determine mucosal and systemic immunity against SARS-CoV-2. Cellular and Molecular Immunology, 2022, 19, 130-132.	4.8	3
1305	Evaluating the role of chemokines and chemokine receptors involved in coronavirus infection. Expert Review of Clinical Immunology, 2022, 18, 57-66.	1.3	4
1306	COVIDâ€19 immunopathology with emphasis on Th17 response and cellâ€based immunomodulation therapy: Potential targets and challenges. Scandinavian Journal of Immunology, 2022, 95, e13131.	1.3	19
1307	Sequential infections with rhinovirus and influenza modulate the replicative capacity of SARS-CoV-2 in the upper respiratory tract. Emerging Microbes and Infections, 2022, 11, 413-424.	3.0	23
1308	Hyperinflammatory environment drives dysfunctional myeloid cell effector response to bacterial challenge in COVID-19. PLoS Pathogens, 2022, 18, e1010176.	2.1	20
1309	Antibodies elicited by SARS-CoV-2 infection or mRNA vaccines have reduced neutralizing activity against Beta and Omicron pseudoviruses. Science Translational Medicine, 2022, 14, eabn7842.	5.8	92
1310	Effective Anti–SARS-CoV-2 Immune Response in Patients With Clonal Mast Cell Disorders. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 1356-1364.e2.	2.0	2
1311	Metabolomics study of COVID-19 patients in four different clinical stages. Scientific Reports, 2022, 12, 1650.	1.6	58

#	Article	IF	CITATIONS
1312	Current utilization of interferon alpha for the treatment of coronavirus disease 2019: A comprehensive review. Cytokine and Growth Factor Reviews, 2022, 63, 34-43.	3.2	16
1313	The Transient IFN Response and the Delay of Adaptive Immunity Feature the Severity of COVID-19. Frontiers in Immunology, 2021, 12, 816745.	2.2	9
1314	Limited Performance of Biomarkers and Clinical Parameters in COVID–19: Improving Interpretation and Exploration of New Immunological Markers. SSRN Electronic Journal, 0, , .	0.4	0
1315	Human NLRP1 Is a Sensor of Pathogenic Coronavirus 3CL Proteases in Lung Epithelial Cells. SSRN Electronic Journal, 0, , .	0.4	2
1316	Interferon Control of Human Coronavirus Infection and Viral Evasion: Mechanistic Insights and Implications for Antiviral Drug and Vaccine Development. Journal of Molecular Biology, 2022, 434, 167438.	2.0	7
1317	Immunoglobulin signature predicts risk of post-acute COVID-19 syndrome. Nature Communications, 2022, 13, 446.	5.8	146
1318	Coordinated regulation of interferon and inflammasome signaling pathways by SARS-CoV-2 proteins. Journal of Microbiology, 2022, 60, 300-307.	1.3	6
1319	SARS-CoV-2 infection induces a pro-inflammatory cytokine response through cGAS-STING and NF-ήB. Communications Biology, 2022, 5, 45.	2.0	133
1320	Cancer Occurrence as the Upcoming Complications of COVID-19. Frontiers in Molecular Biosciences, 2021, 8, 813175.	1.6	12
1321	Low levels of CIITA and high levels of SOCS1 predict COVID-19 disease severity in children and adults. IScience, 2022, 25, 103595.	1.9	2
1322	Mechanisms contributing to adverse outcomes of COVID-19 in obesity. Molecular and Cellular Biochemistry, 2022, 477, 1155-1193.	1.4	21
1323	B cell receptor repertoire kinetics after SARS-CoV-2 infection and vaccination. Cell Reports, 2022, 38, 110393.	2.9	29
1325	The T cell immune response against SARS-CoV-2. Nature Immunology, 2022, 23, 186-193.	7.0	785
1326	Strategies for fighting pandemic virus infections: Integration of virology and drug delivery. Journal of Controlled Release, 2022, 343, 361-378.	4.8	11
1329	Advances in clinical outcomes: What we have learned during the COVID-19 pandemic. Journal of Allergy and Clinical Immunology, 2022, 149, 569-578.	1.5	3
1330	Immunology of SARS-CoV-2 infection in children. Nature Immunology, 2022, 23, 177-185.	7.0	102
1331	SARS-CoV-2 Infection and Lung Regeneration. Clinical Microbiology Reviews, 2022, 35, e0018821.	5.7	24
1332	Hair and nail manifestations of COVIDâ€19. Journal of Cosmetic Dermatology, 2022, 21, 1339-1346.	0.8	4

#	Article	IF	CITATIONS
1333	Pathological sequelae of long-haul COVID. Nature Immunology, 2022, 23, 194-202.	7.0	408
1334	Human Milk Oligosaccharides: Potential Applications in COVID-19. Biomedicines, 2022, 10, 346.	1.4	15
1335	SIDT1 plays a key role in type I IFN responses to nucleic acids in plasmacytoid dendritic cells and mediates the pathogenesis of an imiquimod-induced psoriasis model. EBioMedicine, 2022, 76, 103808.	2.7	10
1336	Why the application of IVIG might be beneficial in patients with COVID-19 – Authors' reply. Lancet Respiratory Medicine,the, 2022, 10, e16.	5.2	2
1337	K63 ubiquitination in immune signaling. Trends in Immunology, 2022, 43, 148-162.	2.9	33
1338	Optical genome mapping identifies rare structural variations as predisposition factors associated with severe COVID-19. IScience, 2022, 25, 103760.	1.9	15
1339	New Discovery of Myeloid-Derived Suppressor Cell's Tale on Viral Infection and COVID-19. Frontiers in Immunology, 2022, 13, 842535.	2.2	7
1340	Innate immunity: the first line of defense against SARS-CoV-2. Nature Immunology, 2022, 23, 165-176.	7.0	303
1342	The impact of dawn to sunset fasting on immune system and its clinical significance in COVID-19 pandemic. Metabolism Open, 2022, 13, 100162.	1.4	7
1343	Immunoediting in SARS-CoV-2: Mutual relationship between the virus and the host. International Immunopharmacology, 2022, 105, 108531.	1.7	1
1345	A blood atlas of COVID-19 defines hallmarks of disease severity and specificity. Cell, 2022, 185, 916-938.e58.	13.5	164
1346	COVID-19 in cancer patients. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2022, 116, 767-797.	0.7	11
1347	A Novel Prophylaxis Strategy Using Liposomal Vaccine Adjuvant CAF09b Protects against Influenza Virus Disease. International Journal of Molecular Sciences, 2022, 23, 1850.	1.8	4
1348	Microbiota regulation of viral infections through interferon signaling. Trends in Microbiology, 2022, 30, 778-792.	3.5	41
1354	Targeting TNF-α for COVID-19: Recent Advanced and Controversies. Frontiers in Public Health, 2022, 10, 833967.	1.3	67
1355	RT-PCR cycle threshold value in combination with visual scoring of chest computed tomography at hospital admission predicts outcome in COVID-19. Infectious Diseases, 2022, , 1-10.	1.4	2
1356	Differential interferon-α subtype induced immune signatures are associated with suppression of SARS-CoV-2 infection. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	33
1358	SARS-CoV-2-mediated evasion strategies for antiviral interferon pathways. Journal of Microbiology, 2022, 60, 290-299.	1.3	24

#	Article	IF	CITATIONS
1359	Myeloid cell interferon responses correlate with clearance of SARS-CoV-2. Nature Communications, 2022, 13, 679.	5.8	30
1360	RIG-I-induced innate antiviral immunity protects mice from lethal SARS-CoV-2 infection. Molecular Therapy - Nucleic Acids, 2022, 27, 1225-1234.	2.3	14
1361	Oral famotidine versus placebo in non-hospitalised patients with COVID-19: a randomised, double-blind, data-intense, phase 2 clinical trial. Gut, 2022, 71, 879-888.	6.1	24
1362	The severe acute respiratory syndrome coronavirus 2 non-structural proteins 1 and 15 proteins mediate antiviral immune evasion. Current Research in Virological Science, 2022, 3, 100021.	1.8	6
1363	The risk of intrauterine exposure to SARSâ€CoVâ€2 in female COVIDâ€19 patients: A comprehensive review. American Journal of Reproductive Immunology, 2023, 89, .	1.2	4
1364	Imiquimod Boosts Interferon Response, and Decreases ACE2 and Pro-Inflammatory Response of Human Bronchial Epithelium in Asthma. Frontiers in Immunology, 2021, 12, 743890.	2.2	3
1365	Modeling SARS-CoV-2 Infection in Mice Using Lentiviral hACE2 Vectors Infers Two Modes of Immune Responses to SARS-CoV-2 Infection. Viruses, 2022, 14, 11.	1.5	0
1366	Efficacy and safety of current treatment interventions for patients with severe COVIDâ€19 infection: A network metaâ€analysis of randomized controlled trials. Journal of Medical Virology, 2022, 94, 1617-1626.	2.5	11
1367	Untargeted metabolomics of COVID-19 patient serum reveals potential prognostic markers of both severity and outcome. Metabolomics, 2022, 18, 6.	1.4	60
1368	The mechanisms of action of ivermectin against SARS-CoV-2—an extensive review. Journal of Antibiotics, 2022, 75, 60-71.	1.0	37
1369	Delayed induction of type I and III interferons mediates nasal epithelial cell permissiveness to SARS-CoV-2. Nature Communications, 2021, 12, 7092.	5.8	65
1370	Intravenous administration of BCG protects mice against lethal SARS-CoV-2 challenge. Journal of Experimental Medicine, 2022, 219, .	4.2	62
1371	Longitudinal dynamics of SARS-CoV-2-specific cellular and humoral immunity after natural infection or BNT162b2 vaccination. PLoS Pathogens, 2021, 17, e1010211.	2.1	37
1372	Synergistic Interferon-Alpha-Based Combinations for Treatment of SARS-CoV-2 and Other Viral Infections. Viruses, 2021, 13, 2489.	1.5	20
1373	SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway. ELife, 2021, 10, .	2.8	215
1374	Evidence for a connection between coronavirus disease-19 and exposure to radiofrequency radiation from wireless communications including 5G. Journal of Clinical and Translational Research, 2021, 7, 666-681.	0.3	1
1375	Regulation of early growth response-1 (Egr-1) gene expression by Stat1-independent type I interferon signaling and respiratory viruses. Computational and Mathematical Biophysics, 2021, 9, 289-303.	0.6	2
1376	Antiviral cyclic peptides targeting the main protease of SARS-CoV-2. Chemical Science, 2022, 13, 3826-3836.	3.7	29

#	Article	IF	CITATIONS
1377	The role of respiratory microbiota in the protection against viral diseases: respiratory commensal bacteria as next-generation probiotics for COVID-19. Bioscience of Microbiota, Food and Health, 2022, , .	0.8	8
1378	Host and Microbiome Features of Secondary Infections in Lethal COVID-19. SSRN Electronic Journal, 0,	0.4	0
1380	Immunopathological signatures in multisystem inflammatory syndrome in children and pediatric COVID-19. Nature Medicine, 2022, 28, 1050-1062.	15.2	144
1381	Cell specific peripheral immune responses predict survival in critical COVID-19 patients. Nature Communications, 2022, 13, 882.	5.8	19
1382	NaÃ⁻ve Human Macrophages Are Refractory to SARS-CoV-2 Infection and Exhibit a Modest Inflammatory Response Early in Infection. Viruses, 2022, 14, 441.	1.5	10
1383	Cytokine producing ability of peripheral blood cells from COVID-19 patients after unspecific in vitro stimulation. Inflammation Research, 2022, 71, 331-341.	1.6	5
1384	COVID 19 in a family with rare genetic disease of the nervous system. Nevrologiya, Neiropsikhiatriya, Psikhosomatika, 2022, 14, 108-114.	0.2	3
1386	Prevention, treatment and potential mechanism of herbal medicine for Corona viruses: A review. Bioengineered, 2022, 13, 5480-5508.	1.4	11
1387	Analysis of serum microRNAs and rs2910164 GC single-nucleotide polymorphism of miRNA-146a in COVID-19 patients. Journal of Immunoassay and Immunochemistry, 2022, 43, 347-364.	0.5	7
1389	Targeting the Ubiquitylation and ISGylation Machinery for the Treatment of COVID-19. Biomolecules, 2022, 12, 300.	1.8	11
1390	Biomarkers during COVID-19: Mechanisms of Change and Implications for Patient Outcomes. Diagnostics, 2022, 12, 509.	1.3	21
1391	Significance of Immune Status of SARS-CoV-2 Infected Patients in Determining the Efficacy of Therapeutic Interventions. Journal of Personalized Medicine, 2022, 12, 349.	1.1	3
1392	The TCM Preparation Feilike Mixture for the Treatment of Pneumonia: Network Analysis, Pharmacological Assessment and Silico Simulation. Frontiers in Pharmacology, 2022, 13, 794405.	1.6	6
1393	A Hybrid Soluble gp130/Spike-Nanobody Fusion Protein Simultaneously Blocks Interleukin-6 <i>trans</i> -Signaling and Cellular Infection with SARS-CoV-2. Journal of Virology, 2022, 96, JVI0162221.	1.5	5
1394	Circulating Type I Interferon Levels in the Early Phase of COVID-19 Are Associated With the Development of Respiratory Failure. Frontiers in Immunology, 2022, 13, 844304.	2.2	11
1395	The mechanism underlying extrapulmonary complications of the coronavirus disease 2019 and its therapeutic implication. Signal Transduction and Targeted Therapy, 2022, 7, 57.	7.1	34
1396	Exploiting natural antiviral immunity for the control of pandemics: Lessons from Covid-19. Cytokine and Growth Factor Reviews, 2022, 63, 23-33.	3.2	7
1397	Executable network of SARS-CoV-2-host interaction predicts drug combination treatments. Npj Digital Medicine, 2022, 5, 18.	5.7	5

#	Article	IF	CITATIONS
1399	Chronic Inflammation Might Protect Hemodialysis Patients From Severe COVID-19. Frontiers in Immunology, 2022, 13, 821818.	2.2	7
1400	Depletion and Dysfunction of Dendritic Cells: Understanding SARS-CoV-2 Infection. Frontiers in Immunology, 2022, 13, 843342.	2.2	23
1401	BNT162b2 vaccination enhances interferon-JAK-STAT-regulated antiviral programs in COVID-19 patients infected with the SARS-CoV-2 Beta variant. Communications Medicine, 2022, 2, .	1.9	18
1402	SARS-CoV-2 learned the â€~Alpha'bet of immune evasion. Nature Immunology, 2022, 23, 351-353.	7.0	3
1404	Specialized interferon action in COVID-19. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	56
1405	Nearâ€Infrared Responsive Droplet for Digital PCR. Small, 2022, 18, e2107858.	5.2	9
1406	Protective immune trajectories in early viral containment of non-pneumonic SARS-CoV-2 infection. Nature Communications, 2022, 13, 1018.	5.8	16
1407	Low Serum Levels of Interferon Alpha in COVID-19 Patients Are Associated with Older Age. Journal of Clinical Medicine, 2022, 11, 961.	1.0	1
1408	Integrating single-cell sequencing data with GWAS summary statistics reveals CD16+monocytes and memory CD8+T cells involved in severe COVID-19. Genome Medicine, 2022, 14, 16.	3.6	25
1409	Innate Immune Response in SARS-CoV-2 Infection. Microorganisms, 2022, 10, 501.	1.6	13
1410	Multi-Design Differential Expression Profiling of COVID-19 Lung Autopsy Specimens Reveals Significantly Deregulated Inflammatory Pathways and SFTPC Impaired Transcription. Cells, 2022, 11, 1011.	1.8	5
1411	Cellular therapies for the treatment and prevention of SARS-CoV-2 infection. Blood, 2022, 140, 208-221.	0.6	13
1412	Mesenchymal stem/stromal cell therapy for COVID-19 pneumonia: potential mechanisms, current clinical evidence, and future perspectives. Stem Cell Research and Therapy, 2022, 13, 124.	2.4	17
1413	Genome-wide analysis provides genetic evidence that ACE2 influences COVID-19 risk and yields risk scores associated with severe disease. Nature Genetics, 2022, 54, 382-392.	9.4	97
1414	Programmed cell death: the pathways to severe COVID-19?. Biochemical Journal, 2022, 479, 609-628.	1.7	30
1415	COVID-19-Associated Myocarditis: An Evolving Concern in Cardiology and Beyond. Biology, 2022, 11, 520.	1.3	8
1416	Distinct Expression Patterns of Interleukin-22 Receptor 1 on Blood Hematopoietic Cells in SARS-CoV-2 Infection. Frontiers in Immunology, 2022, 13, 769839.	2.2	10
1418	Review of Immunologic Manifestations of COVID-19 Infection and Vaccination. Cardiology Clinics, 2022, 40, 301-308.	0.9	4

#	Article	IF	CITATIONS
1419	Efficacy and Safety of Interferon Alpha-2b in COVID-19: A Systematic Review. Biomedical and Pharmacology Journal, 2022, 15, 27-32.	0.2	1
1420	Translational Control of COVID-19 and Its Therapeutic Implication. Frontiers in Immunology, 2022, 13, 857490.	2.2	9
1421	C-reactive protein cut-off for early tocilizumab and dexamethasone prescription in hospitalized patients with COVID-19. Scientific Reports, 2022, 12, 5250.	1.6	11
1422	Association of renalase with clinical outcomes in hospitalized patients with COVID-19. PLoS ONE, 2022, 17, e0264178.	1.1	4
1423	COVID-19: impact on Public Health and hypothesis-driven investigations on genetic susceptibility and severity. Immunogenetics, 2022, 74, 381-407.	1.2	5
1424	When to operate after SARS-CoV-2 infection? A review on the recent consensus recommendation of the DGC/BDC and the DGAI/BDA. Langenbeck's Archives of Surgery, 2022, 407, 1315-1332.	0.8	5
1425	ACE2 Expression in Organotypic Human Airway Epithelial Cultures and Airway Biopsies. Frontiers in Pharmacology, 2022, 13, 813087.	1.6	6
1427	Mesenchymal stem cell treatment for COVID-19. EBioMedicine, 2022, 77, 103920.	2.7	36
1429	A urinary proteomic landscape of COVID-19 progression identifies signaling pathways and therapeutic options. Science China Life Sciences, 2022, 65, 1866-1880.	2.3	12
1430	Transcriptome Analysis of Lungs in a Mouse Model of Severe COVID-19. Frontiers in Virology, 2022, 2, .	0.7	3
1431	The immunology and immunopathology of COVID-19. Science, 2022, 375, 1122-1127.	6.0	434
1432	Recombinant human interleukin-7 reverses T cell exhaustion ex vivo in critically ill COVID-19 patients. Annals of Intensive Care, 2022, 12, 21.	2.2	10
1433	Combination treatmnet of breast cancer patients during the COVID-19 pandemic. Siberian Journal of Oncology, 2022, 21, 99-106.	0.1	0
1434	Early IFN-β administration protects cigarette smoke exposed mice against lethal influenza virus infection without increasing lung inflammation. Scientific Reports, 2022, 12, 4080.	1.6	5
1436	SARS-CoV-2 pathogenesis. Nature Reviews Microbiology, 2022, 20, 270-284.	13.6	404
1437	Molecular and Clinical Prognostic Biomarkers of COVID-19 Severity and Persistence. Pathogens, 2022, 11, 311.	1.2	16
1438	Putative Role of the Lung–Brain Axis in the Pathogenesis of COVID-19-Associated Respiratory Failure: A Systematic Review. Biomedicines, 2022, 10, 729.	1.4	5
1439	Hematological Abnormalities in COVID-19 Disease: Association With Type I Interferon Pathway Activation and Disease Outcomes. Frontiers in Medicine, 2022, 9, 850472.	1.2	10

#	Article	IF	Citations
1440	TLR2 and TLR7 mediate distinct immunopathological and antiviral plasmacytoid dendritic cell responses to SARS oVâ€2 infection. EMBO Journal, 2022, 41, e109622.	3.5	46
1441	Differentially expressed plasmatic microRNAs in Brazilian patients with Coronavirus disease 2019 (COVID-19): preliminary results. Molecular Biology Reports, 2022, 49, 6931-6943.	1.0	12
1442	Molecular Virology of SARS-CoV-2 and Related Coronaviruses. Microbiology and Molecular Biology Reviews, 2022, 86, e0002621.	2.9	22
1444	SARS-CoV-2 NSP13 helicase suppresses interferon signaling by perturbing JAK1 phosphorylation of STAT1. Cell and Bioscience, 2022, 12, 36.	2.1	29
1445	On the Test Accuracy and Effective Control of the COVID-19 Pandemic: A Case Study in Singapore. INFORMS Journal on Applied Analytics, 2022, 52, 524-538.	0.7	2
1446	Safety and long-term improvement of mesenchymal stromal cell infusion in critically COVID-19 patients: a randomized clinical trial. Stem Cell Research and Therapy, 2022, 13, 122.	2.4	29
1447	Mild SARS-CoV-2 infection in rhesus macaques is associated with viral control prior to antigen-specific T cell responses in tissues. Science Immunology, 2022, 7, eabo0535.	5.6	17
1449	Combinatorial analysis reveals highly coordinated early-stage immune reactions that predict later antiviral immunity in mild COVID-19 patients. Cell Reports Medicine, 2022, 3, 100600.	3.3	10
1451	Humanized mice reveal a macrophage-enriched gene signature defining human lung tissue protection during SARS-CoV-2 infection. Cell Reports, 2022, 39, 110714.	2.9	14
1452	Multi-Omics Integration Reveals Only Minor Long-Term Molecular and Functional Sequelae in Immune Cells of Individuals Recovered From COVID-19. Frontiers in Immunology, 2022, 13, 838132.	2.2	10
1453	Early Th2 inflammation in the upper respiratory mucosa as a predictor of severe COVID-19 and modulation by early treatment with inhaled corticosteroids: a mechanistic analysis. Lancet Respiratory Medicine,the, 2022, 10, 545-556.	5.2	30
1454	Functional reprogramming of monocytes in patients with acute and convalescent severe COVID-19. JCI Insight, 2022, 7, .	2.3	19
1455	Applying Modeling and Simulations for Rational Dose Selection of Novel Tollâ€Like Receptor 7/8 Inhibitor Enpatoran for Indications of High Medical Need. Clinical Pharmacology and Therapeutics, 2022, 112, 297-306.	2.3	7
1456	Temporal transcriptomic analysis using TrendCatcher identifies early and persistent neutrophil activation in severe COVID-19. JCI Insight, 2022, 7, .	2.3	7
1457	Convergence of signalling pathways in innate immune responses and genetic forms of Parkinson's disease. Neurobiology of Disease, 2022, 169, 105721.	2.1	6
1459	Cellular, Antibody and Cytokine Pathways in Children with Acute SARS-CoV-2 Infection and MIS-C—Can We Match the Puzzle?. Antibodies, 2022, 11, 25.	1.2	11
1460	The Role of Cytokines and Chemokines in Severe Acute Respiratory Syndrome Coronavirus 2 Infections. Frontiers in Immunology, 2022, 13, 832394.	2.2	56
1461	The effect of immunization with inactivated SARS-CoV-2 vaccine (CoronaVac) and/or SARS-CoV-2 infection on antibody levels, plasmablasts, long-lived-plasma-cells, and IFN-γ release by natural killer cells. Vaccine, 2022, 40, 2619-2625.	1.7	6

#	Article	IF	CITATIONS
1462	Interferon antagonists encoded by SARS-CoV-2 at a glance. Medical Microbiology and Immunology, 2023, 212, 125-131.	2.6	20
1464	Fcl ³ R-mediated SARS-CoV-2 infection of monocytes activates inflammation. Nature, 2022, 606, 576-584.	13.7	314
1465	Cardiovascular signatures of COVID-19 predict mortality and identify barrier stabilizing therapies. EBioMedicine, 2022, 78, 103982.	2.7	17
1466	A randomized, double-blind, placebo-controlled trial of intravenous alpha-1 antitrypsin for ARDS secondary to COVID-19. Med, 2022, 3, 233-248.e6.	2.2	17
1467	The effect of age on the magnitude and longevity of Th1â€directed <scp>CD4</scp> T cell responses to <scp>SARS oV</scp> â€2. Immunology, 2022, , .	2.0	2
1468	Hyper/neuroinflammation in COVID-19 and suicide etiopathogenesis: Hypothesis for a nefarious collision?. Neuroscience and Biobehavioral Reviews, 2022, 136, 104606.	2.9	15
1469	Expression analysis of IFNAR1 and TYK2 transcripts in COVID-19 patients. Cytokine, 2022, 153, 155849.	1.4	4
1470	The role of antigen-presenting cells in the pathogenesis of COVID-19. Pathology Research and Practice, 2022, 233, 153848.	1.0	17
1471	Breakthrough infections after COVID-19 vaccination: Insights, perspectives and challenges. Metabolism Open, 2022, 14, 100180.	1.4	41
1472	Beneficial effects of aloperine on inflammation and oxidative stress by suppressing necroptosis in lipopolysaccharide-induced acute lung injury mouse model. Phytomedicine, 2022, 100, 154074.	2.3	18
1473	A multi-tissue study of immune gene expression profiling highlights the key role of the nasal epithelium in COVID-19 severity. Environmental Research, 2022, 210, 112890.	3.7	23
1474	Viral load is associated with mitochondrial dysfunction and altered monocyte phenotype in acute severe SARS-CoV-2 infection. International Immunopharmacology, 2022, 108, 108697.	1.7	19
1475	In silico anti-SARS-CoV-2 activities of five-membered heterocycle-substituted benzimidazoles. Journal of Molecular Structure, 2022, 1261, 132869.	1.8	4
1476	Adverse Effects and Antibody Titers in Response to the BNT162b2 mRNA COVID-19 Vaccine in a Prospective Study of Healthcare Workers. Open Forum Infectious Diseases, 2022, 9, ofab575.	0.4	43
1477	The potential of COVID-19 patients' sera to cause antibody-dependent enhancement of infection and IL-6 production. Scientific Reports, 2021, 11, 23713.	1.6	11
1478	Interplay of Nutrition and Psychoneuroendocrineimmune Modulation: Relevance for COVID-19 in BRICS Nations. Frontiers in Microbiology, 2021, 12, 769884.	1.5	3
1479	Local and systemic responses to SARS-CoV-2 infection in children and adults. Nature, 2022, 602, 321-327.	13.7	179
1480	Kinetics and persistence of anti‣ARS oVâ€2 neutralisation and antibodies after BNT162b2 vaccination in a Swiss cohort. Immunity, Inflammation and Disease, 2022, 10, .	1.3	5

#	Article	IF	CITATIONS
1481	Clinical Management of COVID-19 in Cancer Patients with the STAT3 Inhibitor Silibinin. Pharmaceuticals, 2022, 15, 19.	1.7	2
1482	Differential Co-Expression Network Analysis Reveals Key Hub-High Traffic Genes as Potential Therapeutic Targets for COVID-19 Pandemic. Frontiers in Immunology, 2021, 12, 789317.	2.2	34
1483	Clinical Experience with Ropeginterferon Alfa-2b in the Off-Label Use for the Treatment of COVID-19 Patients in Taiwan. Advances in Therapy, 2022, 39, 910-922.	1.3	6
1485	Drug repurposing and other strategies for rapid coronavirus antiviral development: lessons from the early stage of the COVID-19 pandemic. , 2021, , 39-68.		0
1486	SARS-CoV-2-Encoded MiRNAs Inhibit Host Type I Interferon Pathway and Mediate Allelic Differential Expression of Susceptible Gene. Frontiers in Immunology, 2021, 12, 767726.	2.2	17
1487	Immunomonitoring of Monocyte and Neutrophil Function in Critically Ill Patients: From Sepsis and/or Trauma to COVID-19. Journal of Clinical Medicine, 2021, 10, 5815.	1.0	6
1488	Sex differences in innate anti-viral immune responses to respiratory viruses and in their clinical outcomes in a birth cohort study. Scientific Reports, 2021, 11, 23741.	1.6	6
1489	Antiviral Immunity in SARS-CoV-2 Infection: From Protective to Deleterious Responses. Microorganisms, 2021, 9, 2578.	1.6	1
1490	<i>Interleukin-1</i> in COVID-19 Infection: Immunopathogenesis and Possible Therapeutic Perspective. Viral Immunology, 2021, 34, 679-688.	0.6	35
1491	Longitudinal Cytokine Profile in Patients With Mild to Critical COVID-19. Frontiers in Immunology, 2021, 12, 763292.	2.2	50
1492	Innate Receptors Expression by Lung Nociceptors: Impact on COVID-19 and Aging. Frontiers in Immunology, 2021, 12, 785355.	2.2	3
1493	Plasma Soluble CD14 Subtype Levels Are Associated With Clinical Outcomes in Critically Ill Subjects With Coronavirus Disease 2019. , 2021, 3, e0591.		9
1494	Elucidating T Cell and B Cell Responses to SARS-CoV-2 in Humans: Gaining Insights into Protective Immunity and Immunopathology. Cells, 2022, 11, 67.	1.8	7
1496	Circulating Ubiquitous RNA, A Highly Predictive and Prognostic Biomarker in Hospitalized Coronavirus Disease 2019 (COVID-19) Patients. Clinical Infectious Diseases, 2021, , .	2.9	3
1497	Elevated temperature inhibits SARS-CoV-2 replication in respiratory epithelium independently of IFN-mediated innate immune defenses. PLoS Biology, 2021, 19, e3001065.	2.6	26
1498	Severe Type of COVID-19: Pathogenesis, Warning Indicators and Treatment. Chinese Journal of Integrative Medicine, 2022, 28, 3-11.	0.7	5
1499	Cytokine status indicators in children with acute respiratory viral infections after treatment with intranasal interferon-based medicine. Detskie Infekcii (Moskva), 2021, 20, 6-12.	0.1	1
1500	A virus-specific monocyte inflammatory phenotype is induced by SARS-CoV-2 at the immune–epithelial interface. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	21

ARTICLE IF CITATIONS A virusâ€derived microRNA targets immune response genes during SARSâ€CoVâ€2 infection. EMBO Reports, 1501 2.0 30 2022, 23, e54341. Pandemics of the 21st Century: The Risk Factor for Obese People. Viruses, 2022, 14, 25. 1.5 Prolonged activation of nasal immune cell populations and development of tissue-resident 1504 7.0 74 SARS-CoV-2-specific CD8+ T cell responses following COVID-19. Nature Immunology, 2022, 23, 23-32. Severe COVIDâ€19 represents an undiagnosed primary immunodeficiency in a high proportion of infected individuals. Clinical and Translational Immunology, 2022, 11, e1365. Risk factors of the severe course and fatal outcome in COVID-19. Physical and Rehabilitation Medicine 1506 0.1 11 Medical Rehabilitation, 2022, 4, 14-36. Dysregulation of the leukocyte signaling landscape during acute COVID-19. PLoS ONE, 2022, 17, e0264979. 1.1 Antiâ€IFNâ€Î±/â€Ĩ‰ neutralizing antibodies from COVIDâ€19 patients correlate with downregulation of IFN 1508 response and laboratory biomarkers of disease severity. European Journal of Immunology, 2022, 52, 1.6 29 1120-1128. COVID-19: A Systematic Review of the Transmissibility, Pathogenesis, Entry Factors, and Signature 1509 0.5 Immune Response. Biochem, 2022, 2, 115-144. The Evolution of Blood Cell Phenotypes, Intracellular and Plasma Cytokines and Morphological 1510 1.4 4 Changes in Critically III COVID-19 Patients. Biomedicines, 2022, 10, 934. Surviving the Storm: Cytokine Biosignature in SARS-CoV-2 Severity Prediction. Vaccines, 2022, 10, 614. 2.1 Characterization of COVID-19-associated cardiac injury: evidence for a multifactorial disease in an 1512 19 1.7 autopsy cohort. Laboratory Investigation, 2022, 102, 814-825. Innate immune suppression by SARS-CoV-2 mRNA vaccinations: The role of G-quadruplexes, exosomes, 1514 1.8 and MicroRNAs. Food and Chémical Toxicology, 2022, 164, 113008. Interferon Treatments for SARS-CoV-2: Challenges and Opportunities. Infectious Diseases and Therapy, 1521 1.8 19 2022, 11, 953-972. Angiopoietin 2 Is Associated with Vascular Necroptosis Induction in Coronavirus Disease 2019 Acute 1.9 Respiratory Distress Syndrome. American Journal of Pathology, 2022, 192, 1001-1015. Psychiatric Adverse Drug Reactions and Potential Anti-COVID-19 Drug Interactions with Psychotropic 1523 0.33 Médications.. Iranian Journal of Pharmaceutical Research, 2021, 20, 66-77. Cytokine Elevation in Severe COVID-19 From Longitudinal Proteomics Analysis: Comparison With 1524 2.2 19 Sépsis. Frontiers in Immunology, 2021, 12, 798338. Potential Implications of a Type 1 Interferon Gene Signature on COVID-19 Severity and Chronic 1525 1.2 4 Inflammation in Sickle Cell Disease. Frontiers in Medicine, 2021, 8, 679030. Role of SARS-CoV-2 in Modifying Neurodegenerative Processes in Parkinson's Disease: A Narrative 1.1 Review. Brain Sciences, 2022, 12, 536.

#	Article	IF	CITATIONS
1528	Pathology Assessments of Multiple Organs in Fatal COVID-19 in Intensive Care Unit vs. Non-intensive Care Unit Patients. Frontiers in Medicine, 2022, 9, 837258.	1.2	1
1529	Immune Signature of COVID-19: In-Depth Reasons and Consequences of the Cytokine Storm. International Journal of Molecular Sciences, 2022, 23, 4545.	1.8	11
1530	SARS-CoV-2 and Multiple Sclerosis: Potential for Disease Exacerbation. Frontiers in Immunology, 2022, 13, 871276.	2.2	13
1531	Case Report: Generalised Panniculitis as a Post-COVID-19 Presentation in Aicardi-Goutières Syndrome Treated With Ruxolitinib. Frontiers in Pediatrics, 2022, 10, 837568.	0.9	3
1532	SARS-CoV-2 Omicron variant: recent progress and future perspectives. Signal Transduction and Targeted Therapy, 2022, 7, 141.	7.1	315
1533	Déficits immunitaires héréditaires. Option/Bio, 2022, 33, 26-28.	0.0	0
1534	Landscape of Peripheral Blood Mononuclear Cells and Soluble Factors in Severe COVID-19 Patients With Pulmonary Fibrosis Development. Frontiers in Immunology, 2022, 13, 831194.	2.2	3
1535	Myeloid-Derived Suppressor Cells in COVID-19: The Paradox of Good. Frontiers in Immunology, 2022, 13, 842949.	2.2	16
1536	Clinical Presentation and Outcome of COVID-19 in a Latin American Versus Spanish Population: Matched Case-Control Study. Infectious Diseases and Therapy, 2022, 11, 1243-1251.	1.8	2
1537	Identification of serum metabolites enhancing inflammatory responses in COVID-19. Science China Life Sciences, 2022, 65, 1971-1984.	2.3	6
1538	Exploring the Utility of NK Cells in COVID-19. Biomedicines, 2022, 10, 1002.	1.4	12
1539	Recommendations for the management of COVID-19 in patients with haematological malignancies or haematopoietic cell transplantation, from the 2021 European Conference on Infections in Leukaemia (ECIL 9). Leukemia, 2022, 36, 1467-1480.	3.3	63
1540	Inflammasome activation in infected macrophages drives COVID-19 pathology. Nature, 2022, 606, 585-593.	13.7	276
1541	Virus particle propagation and infectivity along the respiratory tract and a case study for SARS-CoV-2. Scientific Reports, 2022, 12, 7666.	1.6	5
1542	Single-cell transcriptomics reveal a unique memory-like NK cell subset that accumulates with ageing and correlates with disease severity in COVID-19. Genome Medicine, 2022, 14, 46.	3.6	19
1543	Mapping the epithelial–immune cell interactome upon infection in the gut and the upper airways. Npj Systems Biology and Applications, 2022, 8, 15.	1.4	3
1544	Immunouniverse of SARS-CoV-2. Immunological Medicine, 2022, 45, 186-224.	1.4	8
1545	Multiomic Profiling Identified EGF Receptor Signaling as a Potential Inhibitor of Type I Interferon Response in Models of Oncolytic Therapy by Vesicular Stomatitis Virus. International Journal of Molecular Sciences, 2022, 23, 5244.	1.8	3

#	Article	IF	Citations
1547	The effects of SARS-CoV-2 infection on modulating innate immunity and strategies of combating inflammatory response for COVID-19 therapy. Journal of Biomedical Science, 2022, 29, 27.	2.6	9
1548	Mechanisms of Cardiovascular System Injury Induced by COVID-19 in Elderly Patients With Cardiovascular History. Frontiers in Cardiovascular Medicine, 2022, 9, .	1.1	1
1549	Intracellular mono-ADP-ribosyltransferases at the host–virus interphase. Cellular and Molecular Life Sciences, 2022, 79, 288.	2.4	7
1550	HMGB1: A Potential Target of Nervus Vagus Stimulation in Pediatric SARS-CoV-2-Induced ALI/ARDS. Frontiers in Pediatrics, 2022, 10, .	0.9	3
1551	Type I interferon regulates proteolysis by macrophages to prevent immunopathology following viral infection. PLoS Pathogens, 2022, 18, e1010471.	2.1	5
1552	Identification of DAXX as a restriction factor of SARS-CoV-2 through a CRISPR/Cas9 screen. Nature Communications, 2022, 13, 2442.	5.8	25
1553	An open-label randomized, controlled trial of the effect of lopinavir and ritonavir, lopinavir and ritonavir, lopinavir and ritonavir plus interferon-1²-1a, and hydroxychloroquine in hospitalized patients with COVID-19: final results. Clinical Microbiology and Infection, 2022, 28, 1293-1296.	2.8	3
1554	Weathering the Storm: Harnessing the Resolution of Inflammation to Limit COVID-19 Pathogenesis. Frontiers in Immunology, 2022, 13, .	2.2	11
1555	Interferon Signaling-Dependent Contribution of Glycolysis to Rubella Virus Infection. Pathogens, 2022, 11, 537.	1.2	2
1556	From COVID-19 to Sarcoidosis: How Similar Are These Two Diseases?. Frontiers in Immunology, 2022, 13, .	2.2	7
1558	In-vitro NET-osis induced by COVID-19 sera is associated to severe clinical course in not vaccinated patients and immune-dysregulation in breakthrough infection. Scientific Reports, 2022, 12, 7237.	1.6	2
1559	SARS-CoV-2 infection induces inflammatory bone loss in golden Syrian hamsters. Nature Communications, 2022, 13, 2539.	5.8	22
1560	The Evolutionary Dance between Innate Host Antiviral Pathways and SARS-CoV-2. Pathogens, 2022, 11, 538.	1.2	4
1561	A phase I trial of cyclosporine for hospitalized patients with COVID-19. JCI Insight, 2022, 7, .	2.3	8
1562	Immunological defense of CNS barriers against infections. Immunity, 2022, 55, 781-799.	6.6	14
1563	C1 esterase inhibitor-mediated immunosuppression in COVID-19: Friend or foe?. Clinical Immunology Communications, 2022, 2, 83-90.	0.5	3
1564	Airway epithelial interferon response to SARS-CoV-2 is inferior to rhinovirus and heterologous rhinovirus infection suppresses SARS-CoV-2 replication. Scientific Reports, 2022, 12, 6972.	1.6	12
1565	Tâ€cell recovery and evidence of persistent immune activation 12 months after severe <scp>COVID</scp> â€19. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 2468-2481.	2.7	20

#	Article	IF	CITATIONS
1566	Combination of Metalâ€Phenolic Networkâ€Based Immunoactive Nanoparticles and Bipolar Irreversible Electroporation for Effective Cancer Immunotherapy. Small, 2022, 18, e2200316.	5.2	20
1567	How SARS-CoV-2 dodges immune surveillance and facilitates infection: an analytical review. Expert Review of Anti-Infective Therapy, 2022, 20, 1119-1127.	2.0	1
1568	Dysregulated Interferon Response and Immune Hyperactivation in Severe COVID-19: Targeting STATs as a Novel Therapeutic Strategy. Frontiers in Immunology, 2022, 13, .	2.2	29
1569	Immune-based Therapeutic Approaches in COVID-19. Biomedicine and Pharmacotherapy, 2022, , 113107.	2.5	4
1570	Human NLRP1 is a sensor of pathogenic coronavirus 3CL proteases in lung epithelial cells. Molecular Cell, 2022, 82, 2385-2400.e9.	4.5	61
1571	Mature neutrophils and a NFkB-to-IFN transition determine the unifying disease recovery dynamics in COVID-19. Cell Reports Medicine, 2022, , 100652.	3.3	9
1572	Inhibition of IRAK4 dysregulates SARS-CoV-2 spike protein-induced macrophage inflammatory and glycolytic reprogramming. Cellular and Molecular Life Sciences, 2022, 79, 301.	2.4	9
1573	Effective Interferon Lambda Treatment Regimen To Control Lethal MERS-CoV Infection in Mice. Journal of Virology, 2022, 96, e0036422.	1.5	8
1574	Prevalence of post-COVID-19 in patients with fibromyalgia: a comparative study with other inflammatory and autoimmune rheumatic diseases. BMC Musculoskeletal Disorders, 2022, 23, 471.	0.8	5
1576	Prospective Medicinal Plants and Their Phytochemicals Shielding Autoimmune and Cancer Patients Against the SARS-CoV-2 Pandemic: A Special Focus on Matcha. Frontiers in Oncology, 2022, 12, .	1.3	5
1577	Immunopathogenic overlap between COVID-19 and tuberculosis identified from transcriptomic meta-analysis and human macrophage infection. IScience, 2022, 25, 104464.	1.9	19
1578	Type-I interferons in the immunopathogenesis and treatment of Coronavirus disease 2019. European Journal of Pharmacology, 2022, 927, 175051.	1.7	9
1579	The effect of the probiotic consortia on SARS-CoV-2 infection in ferrets and on human immune cell response in vitro. IScience, 2022, 25, 104445.	1.9	3
1580	COVID-19 Outcomes and Vaccination in Patients with Spondyloarthritis. Rheumatology and Therapy, 0, , .	1.1	1
1581	Pyronaridine Protects against SARS-CoV-2 Infection in Mouse. ACS Infectious Diseases, 2022, 8, 1147-1160.	1.8	14
1582	ĐŸĐ°Ñ,Đ¾Đ³ĐµĐ½ĐµÑ,Đ,Ñ‡Đ½Đ° Ñ,ĐµÑ€Đ°Đ¿Ñ−Ñ•COVID-19: у Ñ†ĐµĐ½Ñ,Ñ€Ñ− ÑƒĐ²Đ°Đ³Đ, Đ³Đ»ŇŽĐ	₽₽¾₽₽¾	áÑ€Ñ,Ð,ĐºĐ
1583	Clinical Characteristics of Immune Response in Asymptomatic Carriers and Symptomatic Patients With COVID-19. Frontiers in Microbiology, 2022, 13, .	1.5	0
1584	Severe Acute Respiratory Syndrome Coronavirus 2 ORF8 Protein Inhibits Type I Interferon Production by Targeting HSP90B1 Signaling. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	1.8	9

#	Article	IF	CITATIONS
1585	Gene Set Enrichment Analysis Reveals That Fucoidan Induces Type I IFN Pathways in BMDC. Nutrients, 2022, 14, 2242.	1.7	5
1586	Could a Lower Toll-like Receptor (TLR) and NF-κB Activation Due to a Changed Charge Distribution in the Spike Protein Be the Reason for the Lower Pathogenicity of Omicron?. International Journal of Molecular Sciences, 2022, 23, 5966.	1.8	9
1587	Premortem Skin Biopsy Assessing Microthrombi, Interferon Type I Antiviral and Regulatory Proteins, and Complement Deposition Correlates with Coronavirus Disease 2019 Clinical Stage. American Journal of Pathology, 2022, 192, 1282-1294.	1.9	13
1588	Hypoxia shapes the immune landscape in lung injury and promotes the persistence of inflammation. Nature Immunology, 2022, 23, 927-939.	7.0	21
1589	The Role of Antibodies in the Treatment of SARS-CoV-2 Virus Infection, and Evaluating Their Contribution to Antibody-Dependent Enhancement of Infection. International Journal of Molecular Sciences, 2022, 23, 6078.	1.8	4
1590	SARS-CoV-2 N Protein Antagonizes Stress Granule Assembly and IFN Production by Interacting with G3BPs to Facilitate Viral Replication. Journal of Virology, 2022, 96, .	1.5	33
1591	Bioinformatics and System Biology Approach to Reveal the Interaction Network and the Therapeutic Implications for Non-Small Cell Lung Cancer Patients With COVID-19. Frontiers in Pharmacology, 2022, 13, .	1.6	4
1592	A comprehensive review on modulation of <scp>SIRT1</scp> signaling pathways in the immune system of <scp>COVID</scp> â€19 patients by phytotherapeutic melatonin and epigallocatechinâ€3â€gallate. Journal of Food Biochemistry, 2022, 46, .	1.2	7
1593	COVID-19–associated Lung Microvascular Endotheliopathy: A "From the Bench―Perspective. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 961-972.	2.5	30
1594	Implicating effector genes at COVID-19 GWAS loci using promoter-focused Capture-C in disease-relevant immune cell types. Genome Biology, 2022, 23, .	3.8	12
1595	Vaccine Toes Are the New COVID Toes. Skin Appendage Disorders, 0, , 1-4.	0.5	0
1596	Independent predictors of in-hospital mortality and the need for intensive care in hospitalized non-critical COVID-19 patients: a prospective cohort study. Internal and Emergency Medicine, 2022, 17, 1413-1424.	1.0	5
1597	Cytokine Profiling among Children with Multisystem Inflammatory Syndrome versus Simple COVID-19 Infection: A Study from Northwest Saudi Arabia. Biology, 2022, 11, 946.	1.3	8
1598	Vitamin D: A Potential Mitigation Tool for the Endemic Stage of the COVID-19 Pandemic?. Frontiers in Public Health, 0, 10, .	1.3	8
1599	Prospects for the use of macrocyclic photosensitizers for inactivation of SARS-CoV-2: selection of compounds leaders based on the molecular docking data. Journal of Biomolecular Structure and Dynamics, 0, , 1-10.	2.0	1
1600	Body temperature variation controls pre-mRNA processing and transcription of antiviral genes and SARS-CoV-2 replication. Nucleic Acids Research, 2022, 50, 6769-6785.	6.5	6
1601	Identification of bronchoalveolar and blood immune-inflammatory biomarker signature associated with poor 28-day outcome in critically ill COVID-19 patients. Scientific Reports, 2022, 12, .	1.6	12
1602	Low levels of the key B cell activation marker, HLA-DR, in COVID-19 hospitalized cases are associated with disease severity, dexamethasone treatment, and circulating IL-6 levels. Immunologic Research, 2022, 70, 714-719.	1.3	3

#	Article	IF	CITATIONS
1603	Identifying enhancers of innate immune signaling as broad-spectrum antivirals active against emerging viruses. Cell Chemical Biology, 2022, 29, 1113-1125.e6.	2.5	10
1604	Cytokines and microRNAs in SARS-CoV-2: What do we know?. Molecular Therapy - Nucleic Acids, 2022, 29, 219-242.	2.3	18
1605	What SARS-CoV-2 does to our brains. Immunity, 2022, 55, 1159-1172.	6.6	28
1606	SARS-CoV-2: A Master of Immune Evasion. Biomedicines, 2022, 10, 1339.	1.4	24
1607	Bronchial epithelia from adults and children: SARS-CoV-2 spread via syncytia formation and type III interferon infectivity restriction. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	14
1608	From Innate Immunity to Inflammation: A Primer on Multiple Facets of NF-κB Signaling in COVID-19. Physiologia, 2022, 2, 34-45.	0.6	3
1609	Biological Actions, Implications, and Cautions of Statins Therapy in COVID-19. Frontiers in Nutrition, 0, 9, .	1.6	5
1610	Lessons from SARS‑CoV‑2 and its variants (Review). Molecular Medicine Reports, 2022, 26, .	1.1	5
1611	Resistin Associated With Cytokines and Endothelial Cell Adhesion Molecules Is Related to Worse Outcome in COVID-19. Frontiers in Immunology, 0, 13, .	2.2	10
1612	Effective Natural Killer Cell Degranulation Is an Essential Key in COVID-19 Evolution. International Journal of Molecular Sciences, 2022, 23, 6577.	1.8	3
1613	Potential mechanism of <scp>SARSâ€CoV</scp> â€2â€associated central and peripheral nervous system impairment. Acta Neurologica Scandinavica, 2022, 146, 225-236.	1.0	6
1614	The SARS-CoV-2 protein NSP2 impairs the silencing capacity of the human 4EHP-GIGYF2 complex. IScience, 2022, 25, 104646.	1.9	15
1615	Nucleopore Traffic Is Hindered by SARS-CoV-2 ORF6 Protein to Efficiently Suppress IFN-β and IL-6 Secretion. Viruses, 2022, 14, 1273.	1.5	11
1616	Neutrophil Extracellular Traps, Sepsis and COVID-19 â \in " A Tripod Stand. Frontiers in Immunology, 0, 13, .	2.2	9
1617	Investigation of target sequencing of SARS-CoV-2 and immunogenic GWAS profiling in host cells of COVID-19 in Vietnam. BMC Infectious Diseases, 2022, 22, .	1.3	2
1618	"COVID toesâ€: A true viral phenomenon or a diagnosis without a leg to stand on?. JAAD International, 2022, 9, 1-6.	1.1	7
1619	HYGIEIA: HYpothesizing the Genesis of Infectious Diseases and Epidemics through an Integrated Systems Biology Approach. Viruses, 2022, 14, 1373.	1.5	2
1620	Biochemical, biophysical, and immunological characterization of respiratory secretions in severe SARS-CoV-2 infections. JCI Insight, 2022, 7, .	2.3	16

#	Article	IF	CITATIONS
1621	SARS-CoV-2 infection in hamsters and humans results in lasting and unique systemic perturbations after recovery. Science Translational Medicine, 2022, 14, .	5.8	129
1622	Uncovering the genetic links of SARSâ€CoVâ€2 infections on heart failure coâ€morbidity by a systems biology approach. ESC Heart Failure, 2022, 9, 2937-2954.	1.4	8
1623	Defining resistance and tolerance traits in Covid-19: towards a stratified medicine approach. QJM - Monthly Journal of the Association of Physicians, 0, , .	0.2	0
1624	Coronavirus disease 2019 (COVIDâ€19) update: From metabolic reprogramming to immunometabolism. Journal of Medical Virology, 2022, 94, 4611-4627.	2.5	18
1625	Comprehensive Analysis of Disease Pathology in Immunocompetent and Immunocompromised Hosts following Pulmonary SARS-CoV-2 Infection. Biomedicines, 2022, 10, 1343.	1.4	11
1626	Cellular immunity in patients with COVID-19: molecular biology, pathophysiology, and clinical implications. Journal of Clinical Practice, 2022, 13, 66-87.	0.2	1
1627	Characterization of SARS-CoV-2 Evasion: Interferon Pathway and Therapeutic Options. Viruses, 2022, 14, 1247.	1.5	24
1628	Longitudinal Analysis of Biologic Correlates of COVID-19 Resolution: Case Report. Frontiers in Medicine, 0, 9, .	1.2	1
1629	Inflammasomes and IL-1 family cytokines in SARS-CoV-2 infection: from prognostic marker to therapeutic agent. Cytokine, 2022, 157, 155934.	1.4	19
1630	COVID-19 Clinical Severity, T Cell-Mediated Immune Response, and Correlates of Inflammation: Not an Intuitive Guess. SSRN Electronic Journal, 0, , .	0.4	0
1631	Lungs—Inflammatory and respiratory system. , 2022, , 231-242.		0
1632	SARS-CoV-2 nucleocapsid protein: Importance in viral infection. , 2022, 52, 1.		1
1633	Integration and Reanalysis of Four RNA-Seq Datasets Including BALF, Nasopharyngeal Swabs, Lung Biopsy, and Mouse Models Reveals Common Immune Features of COVID-19. Immune Network, 2022, 22, .	1.6	4
1634	Origin, evolution, and pathogenesis of coronaviruses. , 2022, , 253-277.		0
1635	Examining Male Predominance of Severe COVID-19 Outcomes: A Systematic Review. Androgens: Clinical Research and Therapeutics, 2022, 3, 41-53.	0.2	4
1636	Piel y SARS-CoV-2 en pediatrÃa. Revista Alergia Mexico, 2022, 69, 14-20.	0.9	0
1637	Toll-Like Receptor Signaling in Severe Acute Respiratory Syndrome Coronavirus 2-Induced Innate Immune Responses and the Potential Application Value of Toll-Like Receptor Immunomodulators in Patients With Coronavirus Disease 2019. Frontiers in Microbiology, 0, 13, .	1.5	18
1638	Antigenic Determinants of SARS-CoV-2-Specific CD4+ T Cell Lines Reveals M Protein-Driven Dysregulation of Interferon Signaling. Frontiers in Immunology, 0, 13, .	2.2	2

#	Article	IF	CITATIONS
1639	Comparing the Cytokine Storms of COVID-19 and Pandemic Influenza. Journal of Interferon and Cytokine Research, 2022, 42, 369-392.	0.5	9
1640	Viral E protein neutralizes BET protein-mediated post-entry antagonism of SARS-CoV-2. Cell Reports, 2022, 40, 111088.	2.9	15
1641	Integrated plasma proteomic and single-cell immune signaling network signatures demarcate mild, moderate, and severe COVID-19. Cell Reports Medicine, 2022, 3, 100680.	3.3	19
1642	Effect of Casirivimab/Imdevimab Treatment on Serum Type I Interferon Levels in SARS-CoV-2 Infection. Viruses, 2022, 14, 1399.	1.5	4
1643	Anti-MDA5 Antibody Linking COVID-19, Type I Interferon, and Autoimmunity: A Case Report and Systematic Literature Review. Frontiers in Immunology, 0, 13, .	2.2	11
1644	Neutralizing Type I Interferon Autoantibodies in Japanese Patients with Severe COVID-19. Journal of Clinical Immunology, 2022, 42, 1360-1370.	2.0	24
1645	Early IFNÎ ² secretion determines variable downstream IL-12p70 responses upon TLR4 activation. Cell Reports, 2022, 39, 110989.	2.9	4
1646	Learning the chemical grammar of biomolecular condensates. Nature Chemical Biology, 2022, 18, 1298-1306.	3.9	56
1647	Host genomics of SARS-CoV-2 infection. European Journal of Human Genetics, 0, , .	1.4	10
1648	Exposing and Overcoming Limitations of Clinical Laboratory Tests in COVID-19 by Adding Immunological Parameters; A Retrospective Cohort Analysis and Pilot Study. Frontiers in Immunology, 0, 13, .	2.2	1
1649	The humoral response and antibodies against SARS-CoV-2 infection. Nature Immunology, 2022, 23, 1008-1020.	7.0	84
1650	Tissue immunity to SARS oVâ€2: Role in protection and immunopathology*. Immunological Reviews, 2022, 309, 25-39.	2.8	11
1651	Distinct airway epithelial immune responses after infection with SARS-CoV-2 compared to H1N1. Mucosal Immunology, 2022, 15, 952-963.	2.7	15
1652	Virus Infection and Systemic Inflammation: Lessons Learnt from COVID-19 and Beyond. Cells, 2022, 11, 2198.	1.8	9
1654	Genetic regulation of OAS1 nonsense-mediated decay underlies association with COVID-19 hospitalization in patients of European and African ancestries. Nature Genetics, 2022, 54, 1103-1116.	9.4	54
1655	Interferon induction, evasion, and paradoxical roles during SARSâ€CoVâ€2 infection*. Immunological Reviews, 2022, 309, 12-24.	2.8	39
1656	Attenuation of <scp>SARSâ€CoV</scp> â€2 replication and associated inflammation by concomitant targeting of viral and host cap 2'â€Oâ€ribose methyltransferases. EMBO Journal, 2022, 41, .	3.5	18
1657	Current Therapeutics for COVID-19, What We Know about the Molecular Mechanism and Efficacy of Treatments for This Novel Virus. International Journal of Molecular Sciences, 2022, 23, 7702.	1.8	2

#	Article	IF	CITATIONS
1658	Tetracycline-induced mitohormesis mediates disease tolerance against influenza. Journal of Clinical Investigation, 2022, 132, .	3.9	15
1659	Immunity after COVID-19 Recovery and Vaccination: Similarities and Differences. Vaccines, 2022, 10, 1068.	2.1	9
1660	Additional Evidence for Commonalities between COVID-19 and Radiation Injury: Novel Insight into COVID-19 Candidate Drugs. Radiation Research, 2022, 198, .	0.7	4
1661	Significance of interferon signaling based on mRNA-microRNA integration and plasma protein analyses in critically ill COVID-19 patients. Molecular Therapy - Nucleic Acids, 2022, 29, 343-353.	2.3	10
1662	Pacritinib Inhibition of IRAK1 Blocks Aberrant TLR8 Signalling by SARS-CoV-2 and HIV-1-Derived RNA. Journal of Innate Immunity, 2023, 15, 96-106.	1.8	8
1663	Pathogenic Mechanism and Multi-omics Analysis of Oral Manifestations in COVID-19. Frontiers in Immunology, 0, 13, .	2.2	4
1664	In Vitro Exposure of Primary Human T Cells and Monocytes to Polyclonal Stimuli Reveals a Basal Susceptibility to Display an Impaired Cellular Immune Response and Develop Severe COVID-19. Frontiers in Immunology, 0, 13, .	2.2	2
1665	SARS-CoV-2 Delta spike protein enhances the viral fusogenicity and inflammatory cytokine production. IScience, 2022, 25, 104759.	1.9	11
1667	Exploring the Immunomodulatory Aspect of Mesenchymal Stem Cells for Treatment of Severe Coronavirus Disease 19. Cells, 2022, 11, 2175.	1.8	7
1668	Characterisation of the blood RNA host response underpinning severity in COVID-19 patients. Scientific Reports, 2022, 12, .	1.6	18
1669	Innate immunity to SARS-CoV-2 infection: A review. Epidemiology and Infection, 0, , 1-49.	1.0	9
1670	Plasmacytoid dendritic cells during COVID-19: Ally or adversary?. Cell Reports, 2022, 40, 111148.	2.9	14
1671	Serum cystatin C and CRP are early predictive biomarkers for emergence of hypoxia in COVID-19. American Journal of the Medical Sciences, 2022, 364, 706-713.	0.4	1
1672	A comprehensive evaluation of the immune system response and type-I Interferon signaling pathway in hospitalized COVID-19 patients. Cell Communication and Signaling, 2022, 20, .	2.7	19
1673	Fine Analysis of Lymphocyte Subpopulations in SARS-CoV-2 Infected Patients: Differential Profiling of Patients With Severe Outcome. Frontiers in Immunology, 0, 13, .	2.2	2
1674	The deciphering of the immune cells and marker signature in COVIDâ€19 pathogenesis: An update. Journal of Medical Virology, 2022, 94, 5128-5148.	2.5	12
1675	Transcriptome innovations in primates revealed by single-molecule long-read sequencing. Genome Research, 2022, 32, 1448-1462.	2.4	6
1677	Angiotensin-Converting Enzyme 2 Potentiates SARS-CoV-2 Infection by Antagonizing Type I Interferon Induction and Its Down-Stream Signaling Pathway. MSphere, 2022, 7, .	1.3	3

#		IF	Citations
1678	Impaired type I interferon signaling activity implicated in the peripheral blood transcriptome of preclinical Alzheimer's disease. EBioMedicine, 2022, 82, 104175.	2.7	15
1679	Understanding the epigenetic mechanisms in SARS CoV-2 infection and potential therapeutic approaches. Virus Research, 2022, 318, 198853.	1.1	11
1680	Nervous system manifestations related to COVID-19 and their possible mechanisms. Brain Research Bulletin, 2022, 187, 63-74.	1.4	2
1681	Molecular mechanisms involved in pathogenicity of SARS-CoV-2: Immune evasion and implications for therapeutic strategies. Biomedicine and Pharmacotherapy, 2022, 153, 113368.	2.5	6
1682	Coronaviruses., 2023,, 277-306.		0
1683	Singleâ€cell immune profiling reveals longâ€term changes in myeloid cells and identifies a novel subset of CD9 ⁺ monocytes associated with COVIDâ€19 hospitalization. Journal of Leukocyte Biology, 0, , .	1.5	5
1684	SARS-CoV-2 impairs interferon production via NSP2-induced repression of mRNA translation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	28
1685	A soluble DR5â€Fc chimeric protein attenuates inflammatory responses induced by coronavirus MHVâ€A59 and SARSâ€CoVâ€2. Journal of Medical Virology, 2022, 94, 5574-5581.	2.5	3
1686	Can iron, zinc, copper and selenium status be a prognostic determinant in COVID-19 patients?. Environmental Toxicology and Pharmacology, 2022, 95, 103937.	2.0	12
1687	Immunomodulation of Mesenchymal Stem Cells in Acute Lung Injury: From Preclinical Animal Models to Treatment of Severe COVID-19. International Journal of Molecular Sciences, 2022, 23, 8196.	1.8	9
1688	Impact of X-radiation in the management of COVID-19 disease. World Journal of Radiology, 2022, 14, 219-228.	0.5	0
1690	Acute kidney injury associated to COVID-19 leads to a strong unbalance of circulant immune mediators. Cytokine, 2022, 157, 155974.	1.4	12
1691	Distinct type I interferon responses between younger women and older men contribute to the variability of COVID-19 outcomes: Hypothesis generating insights from COVID-19 convalescent individuals. Cytokine, 2022, 157, 155964.	1.4	1
1692	In vitro and in vivo pharmacodynamic activity of the new compound XC221GI in models of the viral inflammation of the respiratory tract. Microbiology Independent Research Journal, 0, 9, .	0.2	4
1693	Pro-inflammatory cytokines in cystic glioblastoma: A quantitative study with a comparison with bacterial brain abscesses. With an MRI investigation of displacement and destruction of the brain tissue surrounding a glioblastoma. Frontiers in Oncology, 0, 12, .	1.3	4
1694	Inflammatory mediators profile in patients hospitalized with COVID-19: A comparative study. Frontiers in Immunology, 0, 13, .	2.2	16
1695	Melatonin: Regulation of Viral Phase Separation and Epitranscriptomics in Post-Acute Sequelae of COVID-19. International Journal of Molecular Sciences, 2022, 23, 8122.	1.8	7
1697	Comprehensive Cytokine Profiling of Patients with COVID-19 Receiving Tocilizumab Therapy. International Journal of Molecular Sciences, 2022, 23, 7937.	1.8	2

#	Article	IF	CITATIONS
1698	Elevated Myl9 reflects the Myl9-containing microthrombi in SARS-CoV-2–induced lung exudative vasculitis and predicts COVID-19 severity. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	12
1700	Exposing the Two Contrasting Faces of STAT2 in Inflammation. Journal of Interferon and Cytokine Research, 2022, 42, 467-481.	0.5	3
1701	Coordinated innate and T-cell immune responses in mild COVID-19 patients from household contacts of COVID-19 cases during the first pandemic wave. Frontiers in Immunology, 0, 13, .	2.2	12
1702	Identification of genomic determinants contributing to cytokine release in immunotherapies and human diseases. Journal of Translational Medicine, 2022, 20, .	1.8	1
1703	High Circulating Levels of the Homeostatic Chemokines CCL19 and CCL21 Predict Mortality and Disease Severity in COVID-19. Journal of Infectious Diseases, 2022, 226, 2150-2160.	1.9	12
1704	Immune responses to SARS-CoV-2 in dialysis and kidney transplantation. CKJ: Clinical Kidney Journal, 2022, 15, 1816-1828.	1.4	9
1705	Innate Immune Response and Inflammasome Activation During SARS-CoV-2 Infection. Inflammation, 2022, 45, 1849-1863.	1.7	8
1706	Herpes Simplex Virus 1 (HSV-1) Reactivation in Critically Ill COVID-19 Patients: A Brief Narrative Review. Infectious Diseases and Therapy, 2022, 11, 1779-1791.	1.8	16
1707	Inflammatory pathways in COVIDâ \in 19: Mechanism and therapeutic interventions. MedComm, 2022, 3, .	3.1	17
1708	Clinical implications of host genetic variation and susceptibility to severe or critical COVID-19. Genome Medicine, 2022, 14, .	3.6	28
1709	The immune response as a doubleâ€edged sword: The lesson learnt during the <scp>COVID</scp> â€19 pandemic. Immunology, 2022, 167, 287-302.	2.0	15
1710	Human coronaviruses disassemble processing bodies. PLoS Pathogens, 2022, 18, e1010724.	2.1	9
1712	NET Formation in Systemic Lupus Erythematosus: Changes during the COVID-19 Pandemic. Cells, 2022, 11, 2619.	1.8	4
1713	Dysregulation of immunity in COVID-19 and SLE. Inflammopharmacology, 2022, 30, 1517-1531.	1.9	6
1714	Detection of the Serum Cytokines Predicts COVID-19 Pathogenesis in Egyptian Patients. Viral Immunology, 0, , .	0.6	0
1715	Cellular heterogeneity in disease severity and clinical outcome: Granular understanding of immune response is key. Frontiers in Immunology, 0, 13, .	2.2	3
1716	Self-assembling short immunostimulatory duplex RNAs with broad-spectrum antiviral activity. Molecular Therapy - Nucleic Acids, 2022, 29, 923-940.	2.3	7
1717	Assessing the suitability of long non-coding RNAs as therapeutic targets and biomarkers in SARS-CoV-2 infection. Frontiers in Molecular Biosciences, 0, 9, .	1.6	6

#	Article	IF	CITATIONS
1718	l've looked at gut from both sides now: Gastrointestinal tract involvement in the pathogenesis of SARS-CoV-2 and HIV/SIV infections. Frontiers in Immunology, 0, 13, .	2.2	3
1719	Lessons from SARS-CoV, MERS-CoV, and SARS-CoV-2 Infections: What We Know So Far. Canadian Journal of Infectious Diseases and Medical Microbiology, 2022, 2022, 1-13.	0.7	5
1720	Challenges in Diagnosing COVID-19-Associated Pulmonary Aspergillosis in Critically Ill Patients: The Relationship between Case Definitions and Autoptic Data. Journal of Fungi (Basel, Switzerland), 2022, 8, 894.	1.5	9
1721	Roles and functions of SARS-CoV-2 proteins in host immune evasion. Frontiers in Immunology, 0, 13, .	2.2	53
1722	A simple model of COVID-19 explains disease severity and the effect of treatments. Scientific Reports, 2022, 12, .	1.6	14
1723	Celastrol: A lead compound that inhibits SARSâ€CoVâ€2 replication, the activity of viral and human cysteine proteases, and virusâ€induced ILâ€6 secretion. Drug Development Research, 2022, 83, 1623-1640.	1.4	6
1725	COVID-19-associated fungal infections. Nature Microbiology, 2022, 7, 1127-1140.	5.9	183
1726	Importancia de los Interferones en la respuesta inmune antiviral contra SARS-CoV-2. Revista De La Universidad Industrial De Santander Salud, 2022, 54, .	0.0	0
1727	Microbiota and COVID-19: Long-term and complex influencing factors. Frontiers in Microbiology, 0, 13,	1.5	25
1728	Two Years into the COVID-19 Pandemic: Lessons Learned. ACS Infectious Diseases, 2022, 8, 1758-1814.	1.8	47
1730	Stroke-induced changes to immune function and their relevance to increased risk of severe COVID-19 disease. , 0, , .		0
1731	Utility of NO and H2S donating platforms in managing COVID-19: Rationale and promise. Nitric Oxide - Biology and Chemistry, 2022, , .	1.2	4
1732	Respiratory and systemic monocytes, dendritic cells, and myeloidâ€derived suppressor cells in COVIDâ€19: Implications for disease severity. Journal of Internal Medicine, 2023, 293, 130-143.	2.7	16
1733	COVID-19 pandemic: A multidisciplinary perspective on the pathogenesis of a novel coronavirus from infection, immunity and pathological responses. Frontiers in Immunology, 0, 13, .	2.2	3
1734	Whole blood DNA methylation analysis reveals respiratory environmental traits involved in COVID-19 severity following SARS-CoV-2 infection. Nature Communications, 2022, 13, .	5.8	14
1735	Interferon α-2b spray shortened viral shedding time of SARS-CoV-2 Omicron variant: An open prospective cohort study. Frontiers in Immunology, 0, 13, .	2.2	2
1736	Identifying novel host-based diagnostic biomarker panels for COVID-19: a whole-blood/nasopharyngeal transcriptome meta-analysis. Molecular Medicine, 2022, 28, .	1.9	9
1737	Host and microbiome features of secondary infections in lethal covid-19. IScience, 2022, 25, 104926.	1.9	10

#	Article	IF	CITATIONS
1738	Correlation between thymic output and disease severity in critically ill COVID-19 patients: extended abstract. Mediastinum, 0, 6, 30-30.	0.6	0
1739	Unique mutations in SARS-CoV-2 Omicron subvariants' non-spike proteins: Potential impacts on viral pathogenesis and host immune evasion. Microbial Pathogenesis, 2022, 170, 105699.	1.3	37
1740	IL-6 drives T cell death to participate in lymphopenia in COVID-19. International Immunopharmacology, 2022, 111, 109132.	1.7	5
1741	Simultaneous Detection of RIG-1, MDA5, and IFIT-1 Expression Is a Convenient Tool for Evaluation of the Interferon-Mediated Response. Viruses, 2022, 14, 2090.	1.5	4
1742	Redox imbalance in COVID-19 pathophysiology. Redox Biology, 2022, 56, 102465.	3.9	10
1743	Cystatin C is associated with adverse COVID-19 outcomes in diverse populations. IScience, 2022, 25, 105040.	1.9	2
1744	Long COVID and its Management. International Journal of Biological Sciences, 2022, 18, 4768-4780.	2.6	76
1745	The immunopathogenesis of <scp>SARS</scp> â€CoVâ€2 infection in children: diagnostics, treatment and prevention. Clinical and Translational Immunology, 2022, 11, .	1.7	4
1746	Signaling mechanisms of SARS-CoV-2 Nucleocapsid protein in viral infection, cell death and inflammation. International Journal of Biological Sciences, 2022, 18, 4704-4713.	2.6	26
1747	Step-Dose IL-7 Treatment Promotes Systemic Expansion of T Cells and Alters Immune Cell Landscape in Blood and Lymph Nodes. SSRN Electronic Journal, 0, , .	0.4	0
1748	<scp>SARS oV</scp> â€2 triggers complement activation through interactions with heparan sulfate. Clinical and Translational Immunology, 2022, 11, .	1.7	14
1749	A Randomized, Double-Blind, Placebo-Controlled Phase I Trial of Inhalation Treatment of Recombinant TFF2/IFN Protein: A Multifunctional Candidate for Treatment of COVID-19. SSRN Electronic Journal, 0, ,	0.4	0
1750	Dynamic Single-Cell RNA Sequencing Reveals that Intravenous BCG Vaccination Curtails SARS-CoV-2 Induced Disease Severity and Lung Inflammation. SSRN Electronic Journal, 0, , .	0.4	0
1751	COVID-19 and the potential of Janus family kinase (JAK) pathway inhibition: A novel treatment strategy. Frontiers in Medicine, 0, 9, .	1.2	4
1753	The Severity of COVID-19 Affects the Plasma Soluble Levels of the Immune Checkpoint HLA-G Molecule. International Journal of Molecular Sciences, 2022, 23, 9736.	1.8	4
1754	After the virus has cleared—Can preclinical models be employed for Long COVID research?. PLoS Pathogens, 2022, 18, e1010741.	2.1	10
1755	Identification of methylation signatures and rules for predicting the severity of SARS-CoV-2 infection with machine learning methods. Frontiers in Microbiology, 0, 13, .	1.5	2
1757	COVID-19 patients exhibit unique transcriptional signatures indicative of disease severity. Frontiers in Immunology, 0, 13, .	2.2	5

#	Article	IF	CITATIONS
1758	COVIDâ€19 is associated with bystander polyclonal autoreactive B cell activation as reflected by a broad autoantibody production, but none is linked to disease severity. Journal of Medical Virology, 2023, 95, .	2.5	14
1759	Time evolution of cytokine profiles associated with mortality in COVID-19 hospitalized patients. Frontiers in Immunology, 0, 13, .	2.2	8
1760	Low baseline IFN-Î ³ response could predict hospitalization in COVID-19 patients. Frontiers in Immunology, 0, 13, .	2.2	11
1761	NSP4 and ORF9b of SARS-CoV-2 Induce Pro-Inflammatory Mitochondrial DNA Release in Inner Membrane-Derived Vesicles. Cells, 2022, 11, 2969.	1.8	18
1763	Impaired immune response drives age-dependent severity of COVID-19. Journal of Experimental Medicine, 2022, 219, .	4.2	26
1764	Obesity and COVID-19 Disease: To Inflame or Not. American Journal of Respiratory and Critical Care Medicine, 0, , .	2.5	0
1765	Role of lymphoid lineage cells aberrantly expressing alarmins S100A8/A9 in determining the severity of COVID-19. Genes and Genomics, 0, , .	0.5	2
1766	Endometrial gene expression differences in women with coronavirus disease 2019. Fertility and Sterility, 2022, 118, 1159-1169.	0.5	10
1767	Regulation of cGAS Activity and Downstream Signaling. Cells, 2022, 11, 2812.	1.8	7
1768	Deep RNA sequencing of intensive care unit patients with COVID-19. Scientific Reports, 2022, 12, .	1.6	3
1769	Phase separation in immune regulation and immune-related diseases. Journal of Molecular Medicine, 2022, 100, 1427-1440.	1.7	3
1770	SARS-CoV-2 Variant Delta Potently Suppresses Innate Immune Response and Evades Interferon-Activated Antiviral Responses in Human Colon Epithelial Cells. Microbiology Spectrum, 2022, 10, .	1.2	9
1771	Type I interferon receptor signalling deficiency results in dysregulated innate immune responses to SARS oVâ€2 in mice. European Journal of Immunology, 2022, 52, 1768-1775.	1.6	8
1772	Prospects of animal models and their application in studies on adaptive immunity to SARS-CoV-2. Frontiers in Immunology, 0, 13, .	2.2	4
1773	Predictors of in-hospital mortality in HIV-infected patients with COVID-19. QJM - Monthly Journal of the Association of Physicians, 2023, 116, 57-62.	0.2	9
1774	Nitazoxanide and COVID-19: A review. Molecular Biology Reports, 2022, 49, 11169-11176.	1.0	16
1775	COVID-19: imbalanced cell-mediated immune response drives to immunopathology. Emerging Microbes and Infections, 2022, 11, 2393-2404.	3.0	9
1777	Single-cell analysis of the adaptive immune response to SARS-CoV-2 infection and vaccination. Frontiers in Immunology, 0, 13, .	2.2	4

#	Article	IF	CITATIONS
1778	Single-Cell Gene Expression Analysis Revealed Immune Cell Signatures of Delta COVID-19. Cells, 2022, 11, 2950.	1.8	1
1779	Sensing of SARS-CoV-2 by pDCs and their subsequent production of IFN-I contribute to macrophage-induced cytokine storm during COVID-19. Science Immunology, 2022, 7, .	5.6	32
1780	COVIDâ€19 immunopathology: From acute diseases to chronic sequelae. Journal of Medical Virology, 2023, 95, .	2.5	24
1781	New Insights into the Alveolar Epithelium as a Driver of Acute Respiratory Distress Syndrome. Biomolecules, 2022, 12, 1273.	1.8	9
1782	Early stimulated immune responses predict clinical disease severity in hospitalized COVID-19 patients. Communications Medicine, 2022, 2, .	1.9	5
1783	Myeloid CD169/Siglec1: An immunoregulatory biomarker in viral disease. Frontiers in Medicine, 0, 9, .	1.2	8
1784	Bioinformatics and systems-biology analysis to determine the effects of Coronavirus disease 2019 on patients with allergic asthma. Frontiers in Immunology, 0, 13, .	2.2	3
1785	Hesitancy for SARS-CoV-2 vaccines and post-vaccination flares in patients with systemic lupus erythematosus. Vaccine, 2022, 40, 5959-5964.	1.7	15
1786	Human genetic basis of severe or critical illness in COVID-19. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	6
1787	Proteomic insights into SARS-CoV-2 infection mechanisms, diagnosis, therapies and prognostic monitoring methods. Frontiers in Immunology, 0, 13, .	2.2	6
1788	Effects of the BTN162b2 mRNA COVIDâ€19 vaccine in humoral and cellular immunity in patients with chronic lymphocytic leukemia. Hematological Oncology, 0, , .	0.8	5
1789	Association of human myxovirus resistance protein A with severity of COVID-19. BMC Infectious Diseases, 2022, 22, .	1.3	2
1790	Correlations between Cytokine Levels, Liver Function Markers, and Neuropilin-1 Expression in Patients with COVID-19. Vaccines, 2022, 10, 1636.	2.1	4
1791	CXCL8, CCL2, and CMV Seropositivity as New Prognostic Factors for a Severe COVID-19 Course. International Journal of Molecular Sciences, 2022, 23, 11338.	1.8	12
1792	The dynamic changes and sex differences of 147 immune-related proteins during acute COVID-19 in 580 individuals. Clinical Proteomics, 2022, 19, .	1.1	3
1794	Proviral role of caspase-6 in coronavirus infections. Cell Research, 0, , .	5.7	1
1795	SARS-CoV-2 in immunocompromised individuals. Immunity, 2022, 55, 1779-1798.	6.6	50
1796	Druggable targets and therapeutic development for COVID-19. Frontiers in Chemistry, 0, 10, .	1.8	4

#	Article	IF	CITATIONS
1797	SARS-CoV-2 mimics a host protein to bypass defences. Nature, 2022, 610, 262-263.	13.7	5
1798	SARS-CoV-2 mediated dysregulation in cell signaling events drives the severity of COVID-19. Virus Research, 2022, , 198962.	1.1	0
1799	Duration of BA.5 neutralization in sera and nasal swabs from SARS-CoV-2 vaccinated individuals, with or without omicron breakthrough infection. Med, 2022, 3, 838-847.e3.	2.2	26
1800	SARS-CoV-2 disrupts host epigenetic regulation via histone mimicry. Nature, 2022, 610, 381-388.	13.7	68
1801	Insights into pandemic respiratory viruses: manipulation of the antiviral interferon response by SARS-CoV-2 and influenzaAA virus. Current Opinion in Immunology, 2022, 78, 102252.	2.4	5
1803	Revisiting potential value of antitumor drugs in the treatment of COVID-19. Cell and Bioscience, 2022, 12, .	2.1	1
1804	Analysis and identification of potential type II helper T cell (Th2)-Related key genes and therapeutic agents for COVID-19. Computers in Biology and Medicine, 2022, 150, 106134.	3.9	6
1805	Air pollution exposure induces a decrease in type II interferon response: A paired cohort study. EBioMedicine, 2022, 85, 104291.	2.7	4
1806	Molecular-Level Targets for the Development of Therapies Against Coronavirus Diseases. Methods in Pharmacology and Toxicology, 2021, , 69-84.	0.1	0
1807	Host miRNAs as biomarkers of SARS-CoV-2 infection: a critical review. Sensors & Diagnostics, 2023, 2, 12-35.	1.9	4
1808	Pin-Pointing the Key Hubs in the IFN-Î ³ Pathway Responding to SARS-CoV-2 Infection. Viruses, 2022, 14, 2180.	1.5	3
1809	Coronavirus Lung Infection Impairs Host Immunity against Secondary Bacterial Infection by Promoting Lysosomal Dysfunction. Journal of Immunology, 2022, 209, 1314-1322.	0.4	7
1810	Fatal COVID-19 is Associated with Reduced HLA-DR, CD123 or CD11c Expression on Circulating Dendritic Cells. Journal of Inflammation Research, 0, Volume 15, 5665-5675.	1.6	1
1812	Ocular effects caused by viral infections and corresponding vaccines: An overview of varicella zoster virus, measles virus, influenza viruses, hepatitis B virus, and SARS-CoV-2. Frontiers in Medicine, 0, 9, .	1.2	3
1813	Comprehensive bioinformatics analysis reveals common potential mechanisms, progression markers, and immune cells of coronary virus disease 2019 and atrial fibrillation. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	4
1814	Increased prevalence of clonal hematopoiesis of indeterminate potential in hospitalized patients with COVID-19. Frontiers in Immunology, 0, 13, .	2.2	3
1815	Multidistrict Host–Pathogen Interaction during COVID-19 and the Development Post-Infection Chronic Inflammation. Pathogens, 2022, 11, 1198.	1.2	3
1816	Comparative efficacy and safety of pharmacological interventions for severe COVID-19 patients: An updated network meta-analysis of 48 randomized controlled trials. Medicine (United States), 2022, 101, e30998.	0.4	3

		CITATION REPORT		
#	Article		IF	CITATIONS
1817	Cell Entry and Unusual Replication of SARS-CoV-2. Current Drug Targets, 2022, 23, 15	39-1554.	1.0	1
1818	Chilblains outbreak during <scp>COVID</scp> â€19 pandemic: A <scp>Typeâ€I</scp> Pediatric Allergy and Immunology, 2022, 33, .	interferonopathy?.	1.1	0
1819	Consecutive BNT162b2 mRNA vaccination induces short-term epigenetic memory in in JCI Insight, 2022, 7, .	nate immune cells.	2.3	15
1820	Scientific Integrity Requires Publishing Rebuttals and Retracting Problematic Papers. St Reviews and Reports, 2023, 19, 568-572.	rem Cell	1.7	4
1821	Comparison of the pathogenesis of SARS-CoV-2 infection in K18-hACE2 mouse and Synhamster models. DMM Disease Models and Mechanisms, 2022, 15, .	ian golden	1.2	14
1822	Neuro–Immune Interactions in Severe COVID-19 Infection. Pathogens, 2022, 11, 12	56.	1.2	1
1823	Biological and Exploitable Crossroads for the Immune Response in Cancer and COVID-2022, 10, 2628.	9. Biomedicines,	1.4	1
1824	Infection, pathology and interferon treatment of the SARS-CoV-2 Omicron BA.1 variant adult and aged Syrian hamsters. , 2022, 19, 1392-1399.	: in juvenile,		5
1825	The Effect of Nitazoxanide on the Clinical Outcomes in Patients with COVID-19: A Syst and Meta-Analysis of Randomized Controlled Trials. Clinical Drug Investigation, 2022, 4	ematic Review 12, 1031-1047.	1.1	4
1826	Comparative Upper Respiratory Tract Transcriptomic Profiling Reveals a Potential Role Activation of Interferon Pathway in Severe COVID-19. Viruses, 2022, 14, 2182.	of Early	1.5	2
1829	Cellular Landscaping of COVID-19 and Gynaecological Cancers: An Infrequent Correlati Oncology, 2022, 2022, 1-15.	on. Journal of	0.6	0
1830	COVID-19 signalome: Pathways for SARS-CoV-2 infection and impact on COVID-19 ass comorbidity. Cellular Signalling, 2023, 101, 110495.	ociated	1.7	11
1832	COVID-19 disease and immune dysregulation. Best Practice and Research in Clinical Ha 35, 101401.	iematology, 2022,	0.7	26
1833	Host Genetic Risk Factors Associated with COVID-19 Susceptibility and Severity in Viet 2022, 13, 1884.	namese. Genes,	1.0	9
1834	Exploring NFkB pathway as a potent strategy to mitigate COVID-19 severe morbidity a Journal of Public Health in Africa, 2022, 13, .	nd mortality.	0.2	4
1835	Low perforin expression in CD8+ T lymphocytes during the acute phase of severe SARS predicts long COVID. Frontiers in Immunology, 0, 13, .	-CoV-2 infection	2.2	8
1836	Serum Proteomic Analysis for New Types of Long-Term Persistent COVID-19 Patients ir Microbiology Spectrum, 2022, 10, .	ı Wuhan.	1.2	3
1837	Delineating the SARS-CoV-2 Induced Interplay between the Host Immune System and t Response Network. Vaccines, 2022, 10, 1764.	he DNA Damage	2.1	4

#	Article	IF	CITATIONS
1838	Restoration of dendritic cell homeostasis and Type I/Type III interferon levels in convalescent COVID-19 individuals. BMC Immunology, 2022, 23, .	0.9	6
1839	A proteome-scale map of the SARS-CoV-2–human contactome. Nature Biotechnology, 2023, 41, 140-149.	9.4	29
1840	Immune response induced by novel coronavirus infection. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	8
1842	Proinflammatory Innate Cytokines and Distinct Metabolomic Signatures Shape the T Cell Response in Active COVID-19. Vaccines, 2022, 10, 1762.	2.1	7
1843	Pre-infection antiviral innate immunity contributes to sex differences in SARS-CoV-2 infection. Cell Systems, 2022, 13, 924-931.e4.	2.9	6
1844	COVID-19 and systemic lupus erythematosus genetics: A balance between autoimmune disease risk and protection against infection. PLoS Genetics, 2022, 18, e1010253.	1.5	12
1845	A 9-mRNA signature measured from whole blood by a prototype PCR panel predicts 28-day mortality upon admission of critically ill COVID-19 patients. Frontiers in Immunology, 0, 13, .	2.2	4
1846	Targeted proteomics identifies circulating biomarkers associated with active COVID-19 and post-COVID-19. Frontiers in Immunology, 0, 13, .	2.2	10
1847	Single-nucleus transcriptomic profiling of multiple organs in a rhesus macaque model of SARS-CoV-2 infection. Zoological Research, 2022, 43, 1041-1062.	0.9	8
1848	SARS-CoV-2 infection of sustentacular cells disrupts olfactory signaling pathways. JCI Insight, 2022, 7, .	2.3	16
1849	A persistent neutrophil-associated immune signature characterizes post–COVID-19 pulmonary sequelae. Science Translational Medicine, 2022, 14, .	5.8	43
1851	High–temporal resolution profiling reveals distinct immune trajectories following the first and second doses of COVID-19 mRNA vaccines. Science Advances, 2022, 8, .	4.7	7
1852	Systems biology approach reveals a common molecular basis for COVID-19 and non-alcoholic fatty liver disease (NAFLD). European Journal of Medical Research, 2022, 27, .	0.9	3
1853	The Expression Levels of SARS-CoV-2 Infection-Mediating Molecules Promoted by Interferon-Î ³ and Tumor Necrosis Factor-α Are Downregulated by Hydrogen Sulfide. International Journal of Molecular Sciences, 2022, 23, 13624.	1.8	1
1854	Immune-profiling of SARS-CoV-2 viremic patients reveals dysregulated innate immune responses. Frontiers in Immunology, 0, 13, .	2.2	1
1855	Aging, inflammaging and immunosenescence as risk factors of severe COVID-19. Immunity and Ageing, 2022, 19, .	1.8	28
1856	Influence of SARS-COV-2 Infection on Cytokine Production by Mitogen-Stimulated Peripheral Blood Mononuclear Cells and Neutrophils in COVID-19 Intensive Care Unit Patients. Microorganisms, 2022, 10, 2194.	1.6	1
1857	Role of SARS-CoV-2-induced cytokine storm in multi-organ failure: Molecular pathways and potential therapeutic options. International Immunopharmacology, 2022, 113, 109428.	1.7	22

#	Article	IF	CITATIONS
1858	Inhibitory Siglec-sialic acid interactions in balancing immunological activation and tolerance during viral infections. EBioMedicine, 2022, 86, 104354.	2.7	4
1859	Profiles of host immune impairment in Plasmodium and SARS-CoV-2 infections. Heliyon, 2022, , e11744.	1.4	1
1860	A virological view of tenascin-C in infection. American Journal of Physiology - Cell Physiology, 2023, 324, C1-C9.	2.1	2
1861	Tracking the clonal dynamics of SARS-CoV-2-specific T cells in children and adults with mild/asymptomatic COVID-19. Clinical Immunology, 2023, 246, 109209.	1.4	14
1862	Can the triumph of mRNA vaccines against COVID-19 be extended to other viral infections of humans and domesticated animals?. Microbes and Infection, 2023, 25, 105078.	1.0	0
1863	Frequency of IRF5+ dendritic cells is associated with the TLR7-induced inflammatory cytokine response in SARS-CoV-2 infection. Cytokine, 2023, 162, 156109.	1.4	1
1864	Immunosenescence and inflamm-ageing in COVID-19. Ageing Research Reviews, 2023, 84, 101818.	5.0	18
1865	Immune-Targeted Therapies for COVID-19. , 2022, , 451-468.		0
1866	SARS oVâ€2 modulation of RIGâ€lâ€MAVS signaling: Potential mechanisms of impairment on host antiviral immunity and therapeutic approaches. , 2022, 1, .		3
1867	IL-33 and the Cytokine Storm in COVID-19: From a Potential Immunological Relationship towards Precision Medicine. International Journal of Molecular Sciences, 2022, 23, 14532.	1.8	10
1868	Antiviral Activity of Interferon alfa-2b and Taurine Combination Against SARS-CoV-2 <i>in vitro</i> . Antibiotiki I Khimioterapiya, 0, , .	0.1	0
1869	Next-generation proteomics of serum extracellular vesicles combined with single-cell RNA sequencing identifies MACROH2A1 associated with refractory COVID-19. Inflammation and Regeneration, 2022, 42, .	1.5	1
1870	A Simple Non-Invasive Score Based on Baseline Parameters Can Predict Outcome in Patients with COVID-19. Vaccines, 2022, 10, 2043.	2.1	0
1871	Coronavirus Disease-2019 in the Immunocompromised Host. Clinics in Chest Medicine, 2023, 44, 395-406.	0.8	5
1872	The role of angiotensin I converting enzyme insertion/deletion polymorphism in the severity and outcomes of COVID-19 patients. Frontiers in Genetics, 0, 13, .	1.1	1
1873	Immune phenotypes that are associated with subsequent COVID-19 severity inferred from post-recovery samples. Nature Communications, 2022, 13, .	5.8	12
1874	Emerging Roles of Type-I Interferons in Neuroinflammation, Neurological Diseases, and Long-Haul COVID. International Journal of Molecular Sciences, 2022, 23, 14394.	1.8	9
1875	Innate and adaptive immune response in SARS-CoV-2 infection-Current perspectives. Frontiers in Immunology, 0, 13, .	2.2	14

#	Article	IF	CITATIONS
1877	Sars-CoV-2 Infection Prompts IL-11 ² -Mediated Inflammation and Reduces IFN-λ Expression in Human Lung Tissue. Pathogens, 2022, 11, 1390.	1.2	2
1878	Innate immunity, cytokine storm, and inflammatory cell death in COVID-19. Journal of Translational Medicine, 2022, 20, .	1.8	29
1879	Epigenetic and transcriptomic reprogramming in monocytes of severe COVID-19 patients reflects alterations in myeloid differentiation and the influence of inflammatory cytokines. Genome Medicine, 2022, 14, .	3.6	10
1880	Cellular immune states in SARS-CoV-2-induced disease. Frontiers in Immunology, 0, 13, .	2.2	1
1881	Age-dependent effect of the IFIH1/MDA5 gene variants on the risk of critical COVID-19. Immunogenetics, 0, , .	1.2	2
1882	GeoWaVe: geometric median clustering with weighted voting for ensemble clustering of cytometry data. Bioinformatics, 2023, 39, .	1.8	2
1884	Systemic lupus erythematosus with acrocyanosis after <scp>AstraZeneca COVID</scp> â€19 vaccination. Kaohsiung Journal of Medical Sciences, 2022, 38, 1230-1231.	0.8	2
1885	Defective activation and regulation of type I interferon immunityÂis associated with increasing COVID-19 severity. Nature Communications, 2022, 13, .	5.8	26
1886	Newâ€onset type 1 diabetes and severe acute respiratory syndrome coronavirus 2 infection. Immunology and Cell Biology, 2023, 101, 191-203.	1.0	7
1887	Involvement of the STING signaling in COVID-19. Frontiers in Immunology, 0, 13, .	2.2	3
1888	The Association of Low CD4 Expression on Monocytes and Low CD8+ T-Cell Count at Hospital Admission Predicts the Need for Mechanical Ventilation in Patients With COVID-19 Pneumonia: A Prospective Monocentric Cohort Study. , 2022, 4, e0810.		2
1889	Correlation between COVID-19 and hepatitis B: A systematic review. World Journal of Gastroenterology, 0, 28, 6599-6618.	1.4	8
1890	Potential role of <scp>AIM2</scp> inflammasome in <scp>SARS oV</scp> â€2 infection. Scandinavian Journal of Immunology, 2023, 97, .	1.3	2
1892	Transcriptional reprogramming from innate immune functions to a pro-thrombotic signature by monocytes in COVID-19. Nature Communications, 2022, 13, .	5.8	17
1893	Quantitative Serum NMR Spectroscopy Stratifies COVID-19 Patients and Sheds Light on Interfaces of Host Metabolism and the Immune Response with Cytokines and Clinical Parameters. Metabolites, 2022, 12, 1277.	1.3	10
1894	A randomized, double-blind, placebo-controlled phase I trial of inhalation treatment of recombinant TFF2-IFN protein: A multifunctional candidate for the treatment of COVID-19. Frontiers in Pharmacology, 0, 13, .	1.6	0
1897	Autoimmunity and Immunodeficiency in Severe SARS-CoV-2 Infection and Prolonged COVID-19. Current Issues in Molecular Biology, 2023, 45, 33-50.	1.0	14
1898	Nebulised interferon-β1a (SNG001) in hospitalised COVID-19: SPRINTER phase III study. ERJ Open Research, 2023, 9, 00605-2022.	1.1	5

#	Article	IF	CITATIONS
1900	The impact of Hyssop (Hyssopus officinalis) extract on activation of endosomal toll like receptors and their downstream signaling pathways. BMC Research Notes, 2022, 15, .	0.6	2
1901	Differential Gene Expression Induced by Different TLR Agonists in A549 Lung Epithelial Cells Is Modulated by CRISPR Activation of TLR10. Biomolecules, 2023, 13, 19.	1.8	1
1902	Potential effects of hydroxysafflor yellow A on reducing pulmonary inflammation and fibrosis due to SARS-COV2. Journal of Biological Research (Italy), 0, , .	0.0	0
1903	Early plasma interferonâ€Î² levels as a predictive marker of COVIDâ€19 severe clinical events in adult patients. Journal of Medical Virology, 2023, 95, .	2.5	6
1904	Antigen-Specific T Cells and SARS-CoV-2 Infection: Current Approaches and Future Possibilities. International Journal of Molecular Sciences, 2022, 23, 15122.	1.8	1
1905	New Insights into the Crosstalk among the Interferon and Inflammatory Signaling Pathways in Response to Viral Infections: Defense or Homeostasis. Viruses, 2022, 14, 2798.	1.5	2
1906	Dissecting CD8+ T cell pathology of severe SARS-CoV-2 infection by single-cell immunoprofiling. Frontiers in Immunology, 0, 13, .	2.2	6
1907	Mechanisms of autoimmune pathology in post-COVID syndrome. Acta Biomedica Scientifica, 2022, 7, 62-76.	0.1	1
1909	COVID-19 plasma exosomes promote proinflammatory immune responses in peripheral blood mononuclear cells. Scientific Reports, 2022, 12, .	1.6	4
1910	Recent developments in the immunopathology of <scp>COVID</scp> â€19. Allergy: European Journal of Allergy and Clinical Immunology, 2023, 78, 369-388.	2.7	33
1911	Anti-inflammatory effects of medications used for viral infection-induced respiratory diseases. Respiratory Investigation, 2022, , .	0.9	4
1912	Molecular modeling of C1â€inhibitor as SARSâ€CoVâ€2 target identified from the immune signatures of multiple tissues:ÂAn integrated bioinformatics study. Cell Biochemistry and Function, 2023, 41, 112-127.	1.4	0
1913	Baseline moderate-range albuminuria is associated with protection against severe COVID-19 pneumonia. World Journal of Diabetes, 0, 13, 1154-1167.	1.3	0
1914	Ubiquitin variants potently inhibit SARS-CoV-2 PLpro and viral replication via a novel site distal to the protease active site. PLoS Pathogens, 2022, 18, e1011065.	2.1	10
1915	Lymphopenia in sepsis—an acquired immunodeficiency?. Immunology and Cell Biology, 2023, 101, 535-544.	1.0	12
1916	Dysfunctional Sars-CoV-2-M protein-specific cytotoxic T lymphocytes in patients recovering from severe COVID-19. Nature Communications, 2022, 13, .	5.8	5
1917	Impact of SARS-CoV-2 infection and COVID-19 on patients with inborn errors of immunity. Journal of Allergy and Clinical Immunology, 2023, 151, 818-831.	1.5	13
1918	Development of a live biotherapeutic throat spray with lactobacilli targeting respiratory viral infections. Microbial Biotechnology, 2023, 16, 99-115.	2.0	12

#	Article	IF	CITATIONS
1919	Protein post-translational modification in SARS-CoV-2 and host interaction. Frontiers in Immunology, 0, 13, .	2.2	12
1920	Angiotensin-Converting Enzyme (ACE) Inhibitors May Moderate COVID-19 Hyperinflammatory Response: An Observational Study with Deep Immunophenotyping. Health Data Science, 2022, 2022, .	1.1	4
1921	Major alterations to monocyte and dendritic cell subsets lasting more than 6 months after hospitalization for COVID-19. Frontiers in Immunology, 0, 13, .	2.2	10
1922	Linear epitope mapping of the humoral response against SARS-CoV-2 in two independent African cohorts. Scientific Reports, 2023, 13, .	1.6	6
1923	Distinct systemic immune networks define severe vs. mild COVID-19 in hematologic and solid cancer patients. Frontiers in Immunology, 0, 13, .	2.2	0
1924	Prevalent and immunodominant CD8 TÂcell epitopes are conserved in SARS-CoV-2 variants. Cell Reports, 2023, 42, 111995.	2.9	12
1925	Potential long-term effects of SARS-CoV-2 infection on the pulmonary vasculature: Multilayered cross-talks in the setting of coinfections and comorbidities. PLoS Pathogens, 2023, 19, e1011063.	2.1	7
1926	COVID-19's immuno-pathology and cardiovascular diseases. Journal of Investigative Medicine, 2023, 71, 71-80.	0.7	6
1927	Uncovering common pathobiological processes between COVIDâ \in 19 and pulmonary arterial hypertension by integrating Omics data. Pulmonary Circulation, 2023, 13, .	0.8	3
1928	Glucocorticoid Therapy in COVID-19. Seminars in Respiratory and Critical Care Medicine, 2023, 44, 100-117.	0.8	6
1929	Low Interferon-Î ³ Levels in Cord and Peripheral Blood of Pregnant Women Infected with SARS-CoV-2. Microorganisms, 2023, 11, 223.	1.6	2
1930	Three-Day Icatibant on Top of Standard Care in Patients With Coronavirus Disease 2019 Pneumonia: A Randomized, Open-Label, Phase 2, Proof-of-Concept Trial. Clinical Infectious Diseases, 2023, 76, 1784-1792.	2.9	6
1931	Modelling of the Innate and Adaptive Immune Response to SARS Viral Infection, Cytokine Storm and Vaccination. Vaccines, 2023, 11, 127.	2.1	7
1932	Human Coronavirus Cell Receptors Provide Challenging Therapeutic Targets. Vaccines, 2023, 11, 174.	2.1	2
1933	The risk of adverse cardiovascular complications following covid-19 vaccination. Pharmacy & Pharmacology International Journal, 2023, 11, 10-13.	0.1	0
1934	Comparison of Efficacy and Safety of Low-Dose Versus High-Dose Dexamethasone in Hospitalized COVID-19 Patients: A Meta-Analysis. Cureus, 2023, , .	0.2	1
1935	Severe respiratory viral infections: T-cell functions diverging from immunity to inflammation. Trends in Microbiology, 2023, 31, 644-656.	3.5	7
1936	The landscape of differential splicing and transcript alternations in severe <scp>COVID</scp> â€19 infection. FEBS Journal, 2023, 290, 3128-3144.	2.2	3

#	Article	IF	CITATIONS
1937	Step-dose IL-7 treatment promotes systemic expansion of TÂcells and alters immune cell landscape in blood and lymph nodes. IScience, 2023, 26, 105929.	1.9	3
1938	From Immunogen to COVID-19 vaccines: Prospects for the post-pandemic era. Biomedicine and Pharmacotherapy, 2023, 158, 114208.	2.5	9
1939	Cutting Edge: Hyperinflammatory Monocytes Expressing CD56 Abound in Severe COVID-19 Patients. Journal of Immunology, 2022, 209, 655-659.	0.4	4
1941	Manufacture and Characterization of Good Manufacturing Practice-Compliant SARS-COV-2 Cytotoxic T Lymphocytes. Journal of Infectious Diseases, 0, , .	1.9	0
1942	Auto-antibodies against type I IFNs in > 10% of critically ill COVID-19 patients: a prospective multicentre study. Annals of Intensive Care, 2022, 12, .	2.2	18
1943	Omega-3 Polyunsaturated Fatty Acids (n-3 PUFAs) for Immunomodulation in COVID-19 Related Acute Respiratory Distress Syndrome (ARDS). Journal of Clinical Medicine, 2023, 12, 304.	1.0	3
1944	Blood transcriptome responses in patients correlate with severity of COVID-19 disease. Frontiers in Immunology, 0, 13, .	2.2	4
1945	Exploring the Role of Immune System and Inflammatory Cytokines in SARS-CoV-2 Induced Lung Disease: A Narrative Review. Biology, 2023, 12, 177.	1.3	11
1946	Pulmonary fibrosis: A short- or long-term sequelae of severe COVID-19?. , 2023, 1, 77-83.		3
1947	Dynamic activity in cis-regulatory elements of leukocytes identifies transcription factor activation and stratifies COVID-19 severity in ICU patients. Cell Reports Medicine, 2023, 4, 100935.	3.3	2
1948	Update on the treatment of multisystem inflammatory syndrome in children associated with COVID-19. Future Virology, 2023, 18, 63-74.	0.9	3
1949	Innate immune responses in COVID-19. , 2023, , 63-128.		0
1950	Pathway and Network Analyses Identify Growth Factor Signaling and MMP9 as Potential Mediators of Mitochondrial Dysfunction in Severe COVID-19. International Journal of Molecular Sciences, 2023, 24, 2524.	1.8	2
1951	Immune responses in mildly versus critically ill COVID-19 patients. Frontiers in Immunology, 0, 14, .	2.2	18
1952	Upper respiratory tract mucosal immunity for SARS-CoV-2 vaccines. Trends in Molecular Medicine, 2023, 29, 255-267.	3.5	17
1953	Autoantibodies neutralizing antiinflammatory mediators in the context of SARS-CoV-2 infection and COVID-19. , 2023, , 351-368.		0
1956	COVID-19 and autoimmune diseases: is there a connection?. Current Opinion in Allergy and Clinical Immunology, 2023, 23, 185-192.	1.1	11
1957	What is common to MDA5 and COVID-19?. , 2023, , 369-374.		0

		CITATION RE	EPORT	
#	ARTICLE Epigenetic features, methods, and implementations associated with COVID-19. , 2023	161-175	IF	Citations
1700	Langenetic realtares, methods, and implementations associated with COVID 19., 2025	,, 101 175.		0
1959	Combating the challenges of COVID-19 pandemic: Insights into molecular mechanisms responses and therapeutics against SARS-CoV-2. Oxford Open Immunology, 2023, 4, .	s, immune	1.2	3
1960	Cell-type specific distribution and activation of type I IFN pathway molecules at the pla maternal-fetal interface in response to COVID-19 infection. Frontiers in Endocrinology,	icental , 0, 13, .	1.5	0
1961	Cutaneous manifestations in elderly patients with confirmed coronavirus disease 2019 outcomes: A systematic review. Journal of Dermatology, 2023, 50, 679-691.	and the disease	0.6	0
1962	Innate immune recognition against SARS-CoV-2. Inflammation and Regeneration, 2023	3, 43, .	1.5	8
1963	An Innate Checkpoint Determines Immune Dysregulation and Immunopathology durin Murine Coronavirus Infection. Journal of Immunology, 2023, 210, 774-785.	g Pulmonary	0.4	2
1964	Endogenous IFITMs boost SARS-coronavirus 1 and 2 replication whereas overexpressic infection by relocalizing ACE2. IScience, 2023, 26, 106395.	on inhibits	1.9	4
1965	The Immunological Profile of SARS-CoV-2 Infection in Children Is Linked to Clinical Seve International Journal of Molecular Sciences, 2023, 24, 6779.	erity and Age.	1.8	1
1966	SARS-CoV-2 ORF3a positively regulates NF-κB activity by enhancing IKKβ-NEMO intera 2023, 328, 199086.	iction. Virus Research,	1.1	5
1967	Type I and III interferons are good markers to monitor COVID-19 pathophysiology. Cyte 156172.	okine, 2023, 165,	1.4	3
1968	The multiple roles of nsp6 in the molecular pathogenesis of SARS-CoV-2. Antiviral Rese 105590.	arch, 2023, 213,	1.9	4
1970	Effect of Cytomegalovirus Reactivation on Inflammatory Status and Mortality of Older Patients. International Journal of Molecular Sciences, 2023, 24, 6832.	COVID-19	1.8	3
1972	The Need for Speed and Efficiency: A Brief Review of Small Molecule Antivirals for COV in Drug Discovery, 0, 2, .	'ID-19. Frontiers	1.1	7
1973	The development of COVID-19 treatment. Frontiers in Immunology, 0, 14, .		2.2	59
1974	Defending against SARS-CoV-2: The T cell perspective. Frontiers in Immunology, 0, 14,		2.2	20
1975	The role of platelets in immune-mediated inflammatory diseases. Nature Reviews Immu 495-510.	unology, 2023, 23,	10.6	23
1976	Thromboembolic events in hospitalised patients with COVID-19: ecological assessmen review. BMJ Open, 2023, 13, e066218.	t with a scoping	0.8	3
1977	Differential haplotype expression in class I MHC genes during SARS-CoV-2 infection of lines. Frontiers in Immunology, 0, 13, .	human lung cell	2.2	3

#	Article	IF	Citations
1978	Mouse-Adapted SARS-CoV-2 MA10 Strain Displays Differential Pulmonary Tropism and Accelerated Viral Replication, Neurodissemination, and Pulmonary Host Responses in K18-hACE2 Mice. MSphere, 2023, 8, .	1.3	3
1979	SARS-CoV-2-Specific T Cell Responses in Immunocompromised Individuals with Cancer, HIV or Solid Organ Transplants. Pathogens, 2023, 12, 244.	1.2	8
1980	Increased prevalence of blister aneurysm formation during the COVID-19 pandemic. Clinical Neurology and Neurosurgery, 2023, 226, 107613.	0.6	1
1981	Severe COVID-19 patients have impaired plasmacytoid dendritic cell-mediated control of SARS-CoV-2. Nature Communications, 2023, 14, .	5.8	16
1982	Immunological evaluation of young unvaccinated patients with Turner syndrome after COVID-19. International Journal of Infectious Diseases, 2023, 129, 207-215.	1.5	0
1983	The main protease of SARS-CoV-2 cleaves histone deacetylases and DCP1A, attenuating the immune defense of the interferon-stimulated genes. Journal of Biological Chemistry, 2023, 299, 102990.	1.6	12
1984	SARS oVâ€2 NSP7 inhibits type I and III IFN production by targeting the RIGâ€I/MDA5, TRIF, and STING signaling pathways. Journal of Medical Virology, 2023, 95, .	2.5	14
1985	Evaluating the Virology and Evolution of Seasonal Human Coronaviruses Associated with the Cowing Common Cold in the COVID-19 Era. Microorganisms, 2023, 11, 445.	1.6	6
1986	Unfavorable Outcome and Long-Term Sequelae in Cases with Severe COVID-19. Viruses, 2023, 15, 485.	1.5	2
1987	Immune cell population and cytokine profiling suggest age dependent differences in the response to SARS-CoV-2 infection. Frontiers in Aging, 0, 4, .	1.2	5
1988	ST7 Becomes One of the Most Common Staphylococcus aureus Clones After the COVID-19 Epidemic in the City of Wuhan, China. Infection and Drug Resistance, 0, Volume 16, 843-852.	1.1	5
1989	Immunometabolic Signature during Respiratory Viral Infection: A Potential Target for Host-Directed Therapies. Viruses, 2023, 15, 525.	1.5	2
1990	Early peripheral blood MCEMP1 and HLA-DRA expression predicts COVID-19 prognosis. EBioMedicine, 2023, 89, 104472.	2.7	10
1991	The Role of Interferons in Long Covid Infection. Journal of Interferon and Cytokine Research, 2023, 43, 65-76.	0.5	2
1992	Association between serum ferritin level and decreased diffusion capacity 3 months after the onset of COVID-19 pneumonia. PLoS ONE, 2023, 18, e0281249.	1.1	2
1993	Insights into COVID-19-associated critical illness: a narrative review. Annals of Translational Medicine, 2023, 11, 220-220.	0.7	2
1994	The role of peroxisome proliferator-activated receptors in the modulation of hyperinflammation induced by SARS-CoV-2 infection: A perspective for COVID-19 therapy. Frontiers in Immunology, 0, 14, .	2.2	7
1995	Adaptive immune dysfunction in patients with COVID-19 and impaired kidney function during the omicron surge. Clinical Immunology, 2023, 248, 109271.	1.4	1

#	Article	IF	CITATIONS
1996	The detectable anti-interferon-γ autoantibodies in COVID-19 patients may be associated with disease severity. Virology Journal, 2023, 20, .	1.4	5
1997	Regulating the microenvironment with nanomaterials: Potential strategies to ameliorate COVID-19. Acta Pharmaceutica Sinica B, 2023, 13, 3638-3658.	5.7	2
1998	Immunity in SARS-CoV-2 Infection: Clarity or Mystery? A Broader Perspective in the Third Year of a Worldwide Pandemic. Archivum Immunologiae Et Therapiae Experimentalis, 2023, 71, .	1.0	4
1999	COVID-19 and Multiple Sclerosis: A Complex Relationship Possibly Aggravated by Low Vitamin D Levels. Cells, 2023, 12, 684.	1.8	3
2000	Ectopic expression of SARS-CoV-2 S and ORF-9B proteins alters metabolic profiles and impairs contractile function in cardiomyocytes. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	2
2001	Inherited and acquired errors of type I interferon immunity govern susceptibility to COVID-19 and multisystem inflammatory syndrome in children. Journal of Allergy and Clinical Immunology, 2023, 151, 832-840.	1.5	7
2002	Discovery of potential quality markers of Fritillariae thunbergii bulbus in pneumonia by combining UPLC-QTOF-MS, network pharmacology, and molecular docking. Molecular Diversity, 0, , .	2.1	1
2003	COVID-19 Biogenesis and Intracellular Transport. International Journal of Molecular Sciences, 2023, 24, 4523.	1.8	7
2004	Review of Immunologic Manifestations of COVID-19 Infection and Vaccination. Heart Failure Clinics, 2023, 19, 177-184.	1.0	0
2005	An Emerging Role for Type I Interferons as Critical Regulators of Blood Coagulation. Cells, 2023, 12, 778.	1.8	6
2006	SARS-CoV-2 Delta (B.1.617.2) variant replicates and induces syncytia formation in human induced pluripotent stem cell-derived macrophages. PeerJ, 0, 11, e14918.	0.9	0
2007	The Defenders of the Alveolus Succumb in COVID-19 Pneumonia to SARS-CoV-2 and Necroptosis, Pyroptosis, and PANoptosis. Journal of Infectious Diseases, 2023, 227, 1245-1254.	1.9	6
2008	Utility of laboratory and immune biomarkers in predicting disease progression and mortality among patients with moderate to severe COVID-19 disease at a Philippine tertiary hospital. Frontiers in Immunology, 0, 14, .	2.2	0
2009	COVID-19 spike polypeptide vaccine reduces the pathogenesis and viral infection in a mouse model of SARS-CoV-2. Frontiers in Immunology, 0, 14, .	2.2	0
2011	The role of immune activation and antigen persistence in acute and long COVID. Journal of Investigative Medicine, 2023, 71, 545-562.	0.7	17
2012	Humans with inherited MyD88 and IRAK-4 deficiencies are predisposed to hypoxemic COVID-19 pneumonia. Journal of Experimental Medicine, 2023, 220, .	4.2	10
2013	Severe COVID-19 <i>versus</i> multisystem inflammatory syndrome: comparing two critical outcomes of SARS-CoV-2 infection. European Respiratory Review, 2023, 32, 220197.	3.0	2
2014	Autoantibodies against type I interferons in COVID-19 infection: A systematic review and meta-analysis. International Journal of Infectious Diseases, 2023, 130, 147-152.	1.5	11

#	Article	IF	CITATIONS
2015	Characterization of T Helper 1 and 2 Cytokine Profiles in Newborns of Mothers with COVID-19. Biomedicines, 2023, 11, 910.	1.4	0
2016	Circulating SARS-CoV-2+ megakaryocytes are associated with severe viral infection in COVID-19. Blood Advances, 2023, 7, 4200-4214.	2.5	7
2017	SARS-CoV-2 antibody responses associate with sex, age and disease severity in previously uninfected people admitted to hospital with COVID-19: An ISARIC4C prospective study. Frontiers in Immunology, 0, 14, .	2.2	4
2018	Monocyte migration profiles define disease severity in acute COVID-19 and unique features of long COVID. European Respiratory Journal, 2023, 61, 2202226.	3.1	11
2019	At the crossroads of epidemiology and biology: Bridging the gap between SARS-CoV-2 viral strain properties and epidemic wave characteristics. Biochimie, 2023, 213, 54-65.	1.3	0
2020	SARS oVâ€2 NSP8 suppresses type I and III IFN responses by modulating the RIGâ€I/MDA5, TRIF, and STING signaling pathways. Journal of Medical Virology, 2023, 95, .	2.5	9
2021	A stimulusâ€contingent positive feedback loop enables IFNâ€Î² doseâ€dependent activation of proâ€inflammatory genes. Molecular Systems Biology, 0, , .	3.2	1
2022	Atypical Immunologic Manifestations of COVID-19: a Case Report and Narrative Review. SN Comprehensive Clinical Medicine, 2023, 5, .	0.3	1
2023	A mathematical model and numerical simulation for SARS-CoV-2 dynamics. Scientific Reports, 2023, 13, .	1.6	0
2024	Bioinformatics-based investigation on the genetic influence between SARS-CoV-2 infections and idiopathic pulmonary fibrosis (IPF) diseases, and drug repurposing. Scientific Reports, 2023, 13, .	1.6	4
2025	The role of dendritic cells in COVID-19 infection. Emerging Microbes and Infections, 2023, 12, .	3.0	11
2026	Regulation of Epithelial Sodium Transport by SARS-CoV-2 Is Closely Related with Fibrinolytic System-Associated Proteins. Biomolecules, 2023, 13, 578.	1.8	0
2027	Add fuel to the fire: Inflammation and immune response in lung cancer combined with COVID-19. Frontiers in Immunology, 0, 14, .	2.2	1
2028	Immune and ionic mechanisms mediating the effect of dexamethasone in severe COVID-19. Frontiers in Immunology, 0, 14, .	2.2	4
2029	Towards systems immunology of critical illness at scale: from single cell â€~omics to digital twins. Trends in Immunology, 2023, 44, 345-355.	2.9	7
2031	Deficient Radiation Transcription Response in COVID-19 Patients. Advances in Radiation Oncology, 2023, 8, 101215.	0.6	3
2033	Immunologic Profile of Severe COVID-19 Patients in Alborz Province, Iran. Jundishapur Journal of Microbiology, 2023, 16, .	0.2	0
2034	Type 2 inflammation reduces SARS-CoV-2 replication in the airway epithelium in allergic asthma through functional alteration of ciliated epithelial cells. Journal of Allergy and Clinical Immunology, 2023, 152, 56-67.	1.5	9

#	Article	IF	CITATIONS
2035	Post-acute sequelae of COVID-19 is characterized by diminished peripheral CD8+β7 integrin+ T cells and anti-SARS-CoV-2 IgA response. Nature Communications, 2023, 14, .	5.8	12
2036	A review of cytokine-based pathophysiology of Long COVID symptoms. Frontiers in Medicine, 0, 10, .	1.2	28
2038	Potential Therapeutic Value of the STING Inhibitors. Molecules, 2023, 28, 3127.	1.7	5
2039	STUDY OF IMMUNOLOGICAL PARAMETERS IN CHILDREN WITH BRONCHIAL ASTHMA AFTER COVID-19 INFECTION. , 0, , .		0
2040	SARS-CoV-2: Structure, Pathogenesis, and Diagnosis. , 2024, , 24-51.		0
2041	SARS-CoV-2 awakens ancient retroviral genes and the expression of proinflammatory HERV-W envelope protein in COVID-19 patients. IScience, 2023, 26, 106604.	1.9	10
2042	Therapeutic Effectiveness of Interferon-α2b against COVID-19 with Community-Acquired Pneumonia: The Ukrainian Experience. International Journal of Molecular Sciences, 2023, 24, 6887.	1.8	4
2043	Immunological Facet and Inception after Post-COVID-19 Vaccination. Infectious Disorders - Drug Targets, 2023, 23, .	0.4	0
2045	Host Expression Profiling from Diagnostic COVID-19 Swabs Associate Upper Respiratory Tract Immune Responses with Radiologic Lung Pathology and Clinical Severity. Open Forum Infectious Diseases, 0, , .	0.4	0
2046	Circulating proteins to predict COVID-19 severity. Scientific Reports, 2023, 13, .	1.6	1
2047	Changes in the State of Vital Systems with Long COVID-19. Biology Bulletin Reviews, 2023, 13, 112-123.	0.3	0
2048	Targeting IL-6 trans-signalling: past, present and future prospects. Nature Reviews Immunology, 2023, 23, 666-681.	10.6	46
2049	Immune correlates of protection for SARS-CoV-2, Ebola and Nipah virus infection. Frontiers in Immunology, 0, 14, .	2.2	7
2050	The Role of Inflammatory Cytokines (Interleukin-1 and Interleukin-6) as a Potential Biomarker in the Different Stages of <i>COVID-19</i> (Mild, Severe, and Critical). Journal of Interferon and Cytokine Research, 2023, 43, 147-163.	0.5	7
2051	Editorial: Host-microbe interaction in SARS-CoV-2 infection: mechanism and intervention. Frontiers in Immunology, 0, 14, .	2.2	0
2052	Evaluation of the interaction between tumor growth factor- \hat{l}^2 and interferon type I pathways in patients with COVID-19: focusing on ages 1 to 90Åyears. BMC Infectious Diseases, 2023, 23, .	1.3	3
2053	Features of the Immune Response in COVID-19. Sklifosovsky Journal Emergency Medical Care, 2023, 12, 122-129.	0.3	0
2054	Inborn Error of STAT2-Dependent IFN-I Immunity in a Patient Presented with Hemophagocytic Lymphohistiocytosis and Multisystem Inflammatory Syndrome in Children. Journal of Clinical Immunology, 2023, 43, 1278-1288.	2.0	5

#	Article	IF	Citations
2055	Low Dose of Ti ₃ C ₂ MXene Quantum Dots Mitigate SARS oVâ€2 Infection. Small Methods, 2023, 7, .	4.6	1
2056	Diabetes mellitus y COVID-19: ¿Un ciclo vicioso?. , 0, , 29-40.		0
2057	Alterations in immunophenotype and metabolic profile of mononuclear cells during follow up in children with multisystem inflammatory syndrome (MIS-C). Frontiers in Immunology, 0, 14, .	2.2	0
2060	Diagnostic performance of eNose technology in COVID-19 patients after hospitalization. BMC Pulmonary Medicine, 2023, 23, .	0.8	1
2104	Oral administration of D-glucosamine confers broad-spectrum protection against human coronaviruses including SARS-CoV-2. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	2
2133	Genetic Associations with Coronavirus Susceptibility and Disease Severity. Advances in Experimental Medicine and Biology, 2023, , 119-140.	0.8	1
2138	Interferons as negative regulators of ILC2s in allergic lung inflammation and respiratory viral infections. Journal of Molecular Medicine, 0, , .	1.7	0
2140	Case Report: Resolution of Lichen Planus Pemphigoides as an unexpected outcome of SARS-CoV-2 infection. Frontiers in Immunology, 0, 14, .	2.2	0
2169	SARS-CoV-2 reservoir in post-acute sequelae of COVID-19 (PASC). Nature Immunology, 2023, 24, 1616-1627.	7.0	32
2170	The role of cell death in SARS-CoV-2 infection. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	4
2175	Post COVID-19 complications and follow up biomarkers. Nanoscale Advances, 2023, 5, 5705-5716.	2.2	0
2204	Clinical and immunological characteristics of prolonged SARS-CoV-2 Omicron infection in hematologic disease. Blood Cancer Journal, 2023, 13, .	2.8	1
2210	Effects of Biological Sex and Pregnancy on SARS-CoV-2 Pathogenesis and Vaccine Outcomes. Current Topics in Microbiology and Immunology, 2023, , 75-110.	0.7	0
2221	T cell responses to SARS-COV-2. Progress in Molecular Biology and Translational Science, 2023, , .	0.9	0
2234	A comprehensive SARS-CoV-2 and COVID-19 review, Part 2: host extracellular to systemic effects of SARS-CoV-2 infection. European Journal of Human Genetics, 2024, 32, 10-20.	1.4	2
2238	SARS-CoV-2 and innate immunity: the good, the bad, and the "goldilocks― , 2024, 21, 171-183.		4
2249	Non-coding RNAs expression in SARS-CoV-2 infection: pathogenesis, clinical significance, and therapeutic targets. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	0
2274	Microglial Inflammatory Responses to SARSâ€CoVâ€2 Infection: A Comprehensive Review. Cellular and Molecular Neurobiology, 2024, 44, .	1.7	0

		CITATION F	CITATION REPORT		
#	Article		IF	Citations	
2279	B cell responses to SARS-CoV-2. Progress in Molecular Biology and Translational Science	ce, 2023, , .	0.9	0	
2300	ICU-acquired infections in immunocompromised patients. Intensive Care Medicine, 202	24, 50, 332-349.	3.9	2	
2302	Silent battles: immune responses in asymptomatic SARS-CoV-2 infection. , 2024, 21, 1	59-170.		3	
2330	Severe pediatric COVID-19: a review from the clinical and immunopathophysiological p World Journal of Pediatrics, 0, , .	erspectives.	0.8	0	
2346	Effect of Curcumin on the Process of Neuroinflammation Caused by COVID-19. , 2023,	, , 293-310.		0	
2347	COVID-19-Induced Vascular Coagulopathy. , 2023, , .			0	