Can we harness the microbiota to enhance the efficacy

Nature Reviews Immunology 20, 522-528

DOI: 10.1038/s41577-020-0374-6

Citation Report

#	Article	IF	CITATIONS
1	New Frontiers about the Role of Human Microbiota in Immunotherapy: The Immune Checkpoint Inhibitors and CAR T-Cell Therapy Era. International Journal of Molecular Sciences, 2020, 21, 8902.	4.1	16
2	How does the gut microbiome influence immune checkpoint blockade therapy?. Immunology and Cell Biology, 2021, 99, 361-372.	2.3	11
3	Bile Acids and Microbiota: Multifaceted and Versatile Regulators of the Liver–Gut Axis. International Journal of Molecular Sciences, 2021, 22, 1397.	4.1	59
4	Targeting cancer-promoting inflammation — have anti-inflammatory therapies come of age?. Nature Reviews Clinical Oncology, 2021, 18, 261-279.	27.6	171
5	Fecal microbiota transplant overcomes resistance to anti–PD-1 therapy in melanoma patients. Science, 2021, 371, 595-602.	12.6	746
6	Reactive myelopoiesis and the onset of myeloid-mediated immune suppression: Implications for adoptive cell therapy. Cellular Immunology, 2021, 361, 104277.	3.0	4
7	Paradigms on Immunotherapy Combinations with Chemotherapy. Cancer Discovery, 2021, 11, 1353-1367.	9.4	197
9	The role of the microbiome in ovarian cancer: mechanistic insights into oncobiosis and to bacterial metabolite signaling. Molecular Medicine, 2021, 27, 33.	4.4	60
10	Overcoming Resistance to Tumor-Targeted and Immune-Targeted Therapies. Cancer Discovery, 2021, 11 , 874-899.	9.4	107
11	Tumour neoantigen mimicry by microbial species in cancer immunotherapy. British Journal of Cancer, 2021, 125, 313-323.	6.4	29
12	Therapeutic Targeting of the Tumor Microenvironment. Cancer Discovery, 2021, 11, 933-959.	9.4	646
13	The Role of Gut Microbiota in Modulating Tumor Growth and Anticancer Agent Efficacy. Molecules and Cells, 2021, 44, 356-362.	2.6	10
14	Gut Microbiota Dynamics during Chemotherapy in Epithelial Ovarian Cancer Patients Are Related to Therapeutic Outcome. Cancers, 2021, 13, 3999.	3.7	23
15	Gut-Liver Immune Traffic: Deciphering Immune-Pathogenesis to Underpin Translational Therapy. Frontiers in Immunology, 2021, 12, 711217.	4.8	13
16	Incongruence between dominant commensal donor microbes in recipient feces post fecal transplant and response to anti-PD-1 immunotherapy. BMC Microbiology, 2021, 21, 251.	3.3	7
17	The role of the tumor microbe microenvironment in the tumor immune microenvironment: bystander, activator, or inhibitor?. Journal of Experimental and Clinical Cancer Research, 2021, 40, 327.	8.6	47
18	Dietary intervention as a therapeutic for cancer. Cancer Science, 2021, 112, 498-504.	3.9	10
19	miRNA as a Modulator of Immunotherapy and Immune Response in Melanoma. Biomolecules, 2021, 11 , 1648 .	4.0	15

#	Article	IF	CITATIONS
20	Redrawing therapeutic boundaries: microbiota and cancer. Trends in Cancer, 2022, 8, 87-97.	7.4	11
21	Local tumor microbial signatures and response to checkpoint blockade in non-small cell lung cancer. Oncolmmunology, 2021, 10, 1988403.	4.6	28
22	Cancer bio-immunotherapy XVIII annual NIBIT-(Italian network for tumor biotherapy) meeting, October 15 \hat{a} \in "16, 2020. Cancer Immunology, Immunotherapy, 2022, , 1.	4.2	0
23	Immune system and intestinal microbiota determine efficacy of androgen deprivation therapy against prostate cancer., 2022, 10, e004191.		23
24	Cross-reactivity between microbial and tumor antigens. Current Opinion in Immunology, 2022, 75, 102171.	5.5	16
25	Towards a precision immune checkpoint blockade immunotherapy in patients with colorectal cancer: Strategies and perspectives. Biomedicine and Pharmacotherapy, 2022, 149, 112923.	5.6	7
26	The Food Recognition Benchmark: Using Deep Learning to Recognize Food in Images. Frontiers in Nutrition, 2022, 9 , .	3.7	15
27	Pharmacomicrobiomics: Influence of gut microbiota on drug and xenobiotic metabolism. FASEB Journal, 2022, 36, e22350.	0.5	23
28	The Efficacy of Cancer Immunotherapies Is Compromised by Helicobacter pylori Infection. Frontiers in Immunology, $0,13,1$	4.8	14
29	Dysbiosis of the Gut Microbiome Is Associated With Histopathology of Lung Cancer. Frontiers in Microbiology, 0, 13 , .	3.5	7
30	Fecal Microbiota Transplantation as New Therapeutic Avenue for Human Diseases. Journal of Clinical Medicine, 2022, 11, 4119.	2.4	28
31	The Effect of the Gut Microbiota on Systemic and Anti-Tumor Immunity and Response to Systemic Therapy against Cancer. Cancers, 2022, 14, 3563.	3.7	22
32	A pan-cancer mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors. Cell, 2022, 185, 3807-3822.e12.	28.9	114
33	Compartmentalization of the host microbiome: how tumor microbiota shapes checkpoint immunotherapy outcome and offers therapeutic prospects., 2022, 10, e005401.		10
34	The past, present, and future of chemotherapy with a focus on individualization of drug dosing. Journal of Controlled Release, 2022, 352, 840-860.	9.9	9
35	Microbiota and their metabolites potentiate cancer immunotherapy: Therapeutic target or resource for small molecule drug discovery?. Frontiers in Pharmacology, 0, 13, .	3.5	0
36	Perspektiven der medikamentĶsen Tumortherapie. , 2022, , 335-357.		0
37	Tumor microenvironment-mediated immune evasion in hepatocellular carcinoma. Frontiers in Immunology, 0, 14 , .	4.8	19

#	Article	IF	CITATIONS
38	Screening costs associated with donor selection for fecal microbiota transplantation for treatment of PD-1 refractory melanoma patients. Melanoma Research, 2023, 33, 136-148.	1.2	1
39	Single-Donor and Pooling Strategies for Fecal Microbiota Transfer Product Preparation in Ulcerative Colitis: A Systematic Review and Meta-analysis. Clinical and Translational Gastroenterology, 2023, 14, e00568.	2.5	3
40	The Impact of Gut Microbiota-Derived Metabolites on the Tumor Immune Microenvironment. Cancers, 2023, 15, 1588.	3.7	7
41	Immune checkpoint blockade breaches the mucosal firewall to induce gut microbiota translocation. Nature Reviews Immunology, 0, , .	22.7	0
42	<i>Collinsella aerofaciens</i> Produces a pH-Responsive Lipid Immunogen. Journal of the American Chemical Society, 2023, 145, 7071-7074.	13.7	6
43	The intratumoral microbiota: friend or foe?. Trends in Cancer, 2023, 9, 472-479.	7.4	5
44	The Microbiome in Advanced Melanoma: Where Are We Now?. Current Oncology Reports, 2023, 25, 997-1016.	4.0	2
45	Gut microbiota interactions with antitumor immunity in colorectal cancer: From understanding to application. Biomedicine and Pharmacotherapy, 2023, 165, 115040.	5.6	3
46	Towards modulating the gut microbiota to enhance the efficacy of immune-checkpoint inhibitors. Nature Reviews Clinical Oncology, 2023, 20, 697-715.	27.6	10
47	The Value of Microbes in Cancer Neoantigen Immunotherapy. Pharmaceutics, 2023, 15, 2138.	4.5	0
48	VTwins: inferring causative microbial features from metagenomic data of limited samples. Science Bulletin, 2023, 68, 2806-2816.	9.0	0
49	Influence of tumor mycobiome on cancer pathogenesis (Review). Oncology Letters, 2023, 26, .	1.8	0
50	Getting off tract: contributions of intraorgan microbiota to cancer in extraintestinal organs. Gut, 2024, 73, 175-185.	12.1	0
51	Microbiota: A key factor affecting and regulating the efficacy of immunotherapy. Clinical and Translational Medicine, 2023, 13 , .	4.0	1
52	A screening system to determine the effect of bacterial metabolites on MAdCAM-1 expression by transformed endothelial sinusoidal cells. Methods in Cell Biology, 2024, , .	1,1	0
54	Gut microbiota in the combined treatment of colorectal cancer using autoprobiotics. Eksperimental'naya I Klinicheskaya Gastroenterologiya, 2024, , 63-76.	0.4	0