Degradation Rates of Plastics in the Environment

ACS Sustainable Chemistry and Engineering 8, 3494-3511

DOI: 10.1021/acssuschemeng.9b06635

Citation Report

#	Article	IF	CITATIONS
1	Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science, 2020, 370, 437-441.	6.0	378
2	Spatial patterns of mesoplastics and coarse microplastics in floodplain soils as resulting from land use and fluvial processes. Environmental Pollution, 2020, 267, 115390.	3.7	92
3	Characterization of microplastics in the surface waters of an urban lagoon (Bizerte lagoon,) Tj ETQq0 0 0 rgBT /C factors. Marine Pollution Bulletin, 2020, 160, 111625.	Overlock 10 2.3	O Tf 50 667 To 44
4	Degradation Rates of Plastics in the Environment. ACS Sustainable Chemistry and Engineering, 2020, 8, 3494-3511.	3.2	1,463
5	Polyethylene terephthalate degradation under natural and accelerated weathering conditions. European Polymer Journal, 2020, 136, 109873.	2.6	120
6	Environmental Impact of Food Packaging Materials: A Review of Contemporary Development from Conventional Plastics to Polylactic Acid Based Materials. Materials, 2020, 13, 4994.	1.3	252
7	Research progress for plastic waste management and manufacture of value-added products. Advanced Composites and Hybrid Materials, 2020, 3, 443-461.	9.9	104
8	Understanding fluorometric interactions in ion-responsive sustainable polymer nanocomposite scaffolds. Soft Matter, 2020, 16, 8667-8676.	1.2	2
9	Recent advancements of plant-based natural fiber–reinforced composites and their applications. Composites Part B: Engineering, 2020, 200, 108254.	5.9	323
10	Combined effect of plastic litter and increased atmospheric nitrogen deposition on vegetative propagules of dune plants: A further threat to coastal ecosystems. Environmental Pollution, 2020, 266, 115281.	3.7	18
11	Environmental Sustainability of Plastic in Agriculture. Agriculture (Switzerland), 2020, 10, 310.	1.4	22
12	In pursuit of environmentally friendly straws: a comparative life cycle assessment of five straw material options in South Africa. International Journal of Life Cycle Assessment, 2020, 25, 1818-1832.	2.2	34
13	Enhanced Photodegradation Stability in Poly(butylene adipate-co-terephthalate) Composites Using Organically Modified Layered Zinc Phenylphosphonate. Polymers, 2020, 12, 1968.	2.0	7
14	Life cycle impact assessment of microplastics as one component of marine plastic debris. International Journal of Life Cycle Assessment, 2020, 25, 2008-2026.	2.2	37
15	Systematic Analysis of the Relative Abundance of Polymers Occurring as Microplastics in Freshwaters and Estuaries. International Journal of Environmental Research and Public Health, 2020, 17, 9304.	1.2	34
16	A Deep Neural Network for Accurate and Robust Prediction of the Glass Transition Temperature of Polyhydroxyalkanoate Homo- and Copolymers. Materials, 2020, 13, 5701.	1.3	12
17	Citizen Science and Environmental Protection Agencies: Engaging Citizens to Address Key Environmental Challenges. Frontiers in Climate, 2020, 2, .	1.3	10
18	UV-induced aggregation of polystyrene nanoplastics: effects of radicals, surface functional groups and electrolyte. Environmental Science: Nano, 2020, 7, 3914-3926.	2.2	57

#	ARTICLE	IF	CITATIONS
19	Particle and volatile organic compound emissions from a 3D printer filament extruder. Science of the Total Environment, 2020, 736, 139604.	3.9	30
20	Identification and characterization of single use oxo/biodegradable plastics from Mexico City, Mexico: Is the advertised labeling useful?. Science of the Total Environment, 2020, 739, 140358.	3.9	6
21	The highly-stable immobilization of enzymes on a waste mycelium carrier. Journal of Environmental Management, 2020, 271, 111032.	3.8	11
22	Microplastic and heavy metal distributions in an Indian coral reef ecosystem. Science of the Total Environment, 2020, 744, 140706.	3.9	90
23	Microbial remediation of micro-nano plastics: Current knowledge and future trends. Environmental Pollution, 2020, 265, 115044.	3.7	109
24	Densification of Biomass and Waste Plastic Blends as a Solid Fuel: Hazards, Advantages, and Perspectives. Frontiers in Energy Research, 2020, 8, .	1.2	23
25	Investigating microplastic dynamics in soils: Orientation for sampling strategies and sample preâ€procession. Land Degradation and Development, 2021, 32, 270-284.	1.8	26
26	Comprehensive insight into surfactant modified-PBAT physico-chemical and biodegradability properties. Chemosphere, 2021, 269, 128708.	4.2	26
27	Degradable or not? Cellulose acetate as a model for complicated interplay between structure, environment and degradation. Chemosphere, 2021, 265, 128731.	4.2	87
28	Plastic biodegradation: Frontline microbes and their enzymes. Science of the Total Environment, 2021, 759, 143536.	3.9	277
29	Biodegradable Plastics: Standards, Policies, and Impacts. ChemSusChem, 2021, 14, 56-72.	3.6	186
30	A review of microplastics aggregation in aquatic environment: Influence factors, analytical methods, and environmental implications. Journal of Hazardous Materials, 2021, 402, 123496.	6.5	184
31	Plastic in agricultural soils – A global risk for groundwater systems and drinking water supplies? – A review. Chemosphere, 2021, 264, 128453.	4.2	89
32	Critical evaluation of biodegradation studies on synthetic plastics through a systematic literature review. Science of the Total Environment, 2021, 752, 141959.	3.9	97
33	Microplastics physicochemical properties, specific adsorption modeling and their interaction with pharmaceuticals and other emerging contaminants. Science of the Total Environment, 2021, 753, 141981.	3.9	83
34	Combination of in vitro thermally-accelerated ageing and Fourier-Transform Infrared spectroscopy to predict scaffold lifetime. Polymer Degradation and Stability, 2021, 183, 109454.	2.7	4
35	Challenges and possible solutions to mitigate the problems of single-use plastics used for packaging food items: a review. Journal of Food Science and Technology, 2021, 58, 3251-3269.	1.4	62
36	Strategic biorefinery platform for green valorization of agro-industrial residues: A sustainable approach towards biodegradable plastics. Journal of Cleaner Production, 2021, 290, 125184.	4.6	29

3

#	Article	IF	Citations
37	Insight into the characteristics and sorption behaviors of aged polystyrene microplastics through three type of accelerated oxidation processes. Journal of Hazardous Materials, 2021, 407, 124836.	6.5	104
38	Microplastics in marine environment: a review on sources, classification, and potential remediation by membrane technology. Environmental Science: Water Research and Technology, 2021, 7, 243-258.	1.2	65
39	Plastics and sedimentation foster the spread of a non-native macroalga in seagrass meadows. Science of the Total Environment, 2021, 757, 143812.	3.9	22
40	A probabilistic risk assessment of microplastics in soil ecosystems. Science of the Total Environment, 2021, 757, 143987.	3.9	69
41	Glycolysis of Poly(Ethylene Terephthalate) Using Biomass-Waste Derived Recyclable Heterogeneous Catalyst. Polymers, 2021, 13, 37.	2.0	39
42	Producing a high heating value and weather resistant solid fuel via briquetting of blended wood residues and thermoplastics. Fuel, 2021, 283, 119263.	3.4	21
43	The effect of plastic additives on Shewanella oneidensis growth and function. Environmental Sciences: Processes and Impacts, 2021, 23, 956-966.	1.7	2
44	Bioprospecting of gut microflora for plastic biodegradation. Bioengineered, 2021, 12, 1040-1053.	1.4	16
45	The exposome paradigm to predict environmental health in terms of systemic homeostasis and resource balance based on NMR data science. RSC Advances, 2021, 11, 30426-30447.	1.7	10
46	Water barrier and mechanical properties of sugar palm crystalline nanocellulose reinforced thermoplastic sugar palm starch (TPS)/poly(lactic acid) (PLA) blend bionanocomposites. Nanotechnology Reviews, 2021, 10, 431-442.	2.6	40
47	Lead calix[$\langle i \rangle n \langle i \rangle$] arenes ($\langle i \rangle n \langle i \rangle$ = 4, 6, 8): structures and ring opening homo-/co-polymerization capability for cyclic esters. Dalton Transactions, 2021, 50, 15140-15152.	1.6	4
48	Reductive depolymerization as an efficient methodology for the conversion of plastic waste into value-added compounds. Green Chemistry, 2021, 23, 7330-7360.	4. 6	45
49	Bio-Based Poly(butylene furandicarboxylate- <i>co</i> glycolate) Copolyesters: Synthesis, Properties, and Hydrolysis in Different Aquatic Environments for Water Degradation Application. ACS Sustainable Chemistry and Engineering, 2021, 9, 1254-1263.	3.2	27
50	Ocean plastics: environmental implications and potential routes for mitigation – a perspective. RSC Advances, 2021, 11, 21447-21462.	1.7	48
51	Exploring microbial consortia from various environments for plastic degradation. Methods in Enzymology, 2021, 648, 47-69.	0.4	6
52	The fate of plastic in the ocean environment – a minireview. Environmental Sciences: Processes and Impacts, 2021, 23, 198-212.	1.7	120
53	A reliable procedure to obtain environmentally relevant nanoplastic proxies. Environmental Science: Nano, 2021, 8, 3211-3219.	2.2	15
54	Self-assembly in biobased nanocomposites for multifunctionality and improved performance. Nanoscale Advances, 2021, 3, 4321-4348.	2.2	11

#	ARTICLE	IF	Citations
55	Micro- and nanoplastic transfer in freezing saltwater: implications for their fate in polar waters. Environmental Sciences: Processes and Impacts, 2021, 23, 1759-1770.	1.7	14
56	Switching to Bioplastics for Sustaining our Environment. Environmental Chemistry for A Sustainable World, 2021, , 1-45.	0.3	O
57	Lensless digital holographic microscopy as an efficient method to monitor enzymatic plastic degradation. Marine Pollution Bulletin, 2021, 163, 111950.	2.3	9
58	An Overview of Plastic Waste Generation and Management in Food Packaging Industries. Recycling, 2021, 6, 12.	2.3	203
59	Respirometry and Cell Viability Studies for Sustainable Polyesters and Their Hydrolysis Products. ACS Sustainable Chemistry and Engineering, 2021, 9, 2736-2744.	3.2	12
60	Development of Tensile Properties and Crystalline Conformation of Recycled Polypropylene by Re-Extrusion Using a Twin-Screw Extruder with an Additional Molten Resin Reservoir Unit. Applied Sciences (Switzerland), 2021, 11, 1707.	1.3	3
61	Potential Effects of Microplastic on Arbuscular Mycorrhizal Fungi. Frontiers in Plant Science, 2021, 12, 626709.	1.7	41
62	Climate Change Implications of Bio-Based and Marine-Biodegradable Plastic: Evidence from Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyhexanoate). Environmental Science & Environ	4.6	22
63	The Global Plastic Toxicity Debt. Environmental Science & Environmental Scienc	4.6	72
64	Stabilization of Fragmental Polystyrene Nanoplastic by Natural Organic Matter: Insight into Mechanisms. ACS ES&T Water, 2021, 1, 1198-1208.	2.3	43
65	Enzyme discovery and engineering for sustainable plastic recycling. Trends in Biotechnology, 2022, 40, 22-37.	4.9	136
66	The Effect of Poly (Ethylene glycol) Emulation on the Degradation of PLA/Starch Composites. Polymers, 2021, 13, 1019.	2.0	22
67	Reductive Depolymerization of Plastic Waste Catalyzed by Zn(OAc) ₂ â< 2H ₂ ChemSusChem, 2021, 14, 4228-4233.	O _{3.6}	38
68	Predictions of polymer thermal degradation: relevance of selecting the proper kinetic model. Journal of Thermal Analysis and Calorimetry, 2022, 147, 2335-2341.	2.0	11
69	The Role of the Reactive Species Involved in the Photocatalytic Degradation of HDPE Microplastics Using C,N-TiO2 Powders. Polymers, 2021, 13, 999.	2.0	50
70	Self-Sterilizing 3D-Printed Polylactic Acid Surfaces Coated with a BODIPY Photosensitizer. ACS Applied Materials & Dividing 11, 11597-11608.	4.0	12
71	Microbial degradation ofÂmicroplastics by enzymatic processes: a review. Environmental Chemistry Letters, 2021, 19, 3057-3073.	8.3	150
72	Marine debris in the Fernando de Noronha Archipelago, a remote oceanic marine protected area in tropical SW Atlantic. Marine Pollution Bulletin, 2021, 164, 112021.	2.3	15

#	ARTICLE	IF	Citations
73	Wettability, absorption and degradation behavior of microwave-assisted compression molded kenaf/HDPE composite tank under various environments. Polymer Degradation and Stability, 2021, 185, 109500.	2.7	18
74	Confronting plastic pollution to protect environmental and public health. PLoS Biology, 2021, 19, e3001131.	2.6	10
75	Open-Cell Aliphatic Polyurethane Foams with High Content of Polysaccharides: Structure, Degradation, and Ecotoxicity. ACS Sustainable Chemistry and Engineering, 2021, 9, 6023-6032.	3.2	9
76	Highâ€Performance BioNylons from Itaconic and Amino Acids with Pepsin Degradability. Advanced Sustainable Systems, 2022, 6, 2100052.	2.7	8
77	Ridding our rivers of plastic: A framework for plastic pollution capture device selection. Marine Pollution Bulletin, 2021, 165, 112095.	2.3	49
78	The Effect of Wastewater Treatment Methods on the Retainment of Plastic Microparticles. , 0 , , .		1
79	Roadmap to Biodegradable Plasticsâ€"Current State and Research Needs. ACS Sustainable Chemistry and Engineering, 2021, 9, 6170-6187.	3.2	112
80	Proteins from Agri-Food Industrial Biowastes or Co-Products and Their Applications as Green Materials. Foods, 2021, 10, 981.	1.9	38
81	Breaking Polymer Chains with Selfâ€Propelled Lightâ€Controlled Navigable Hematite Microrobots. Advanced Functional Materials, 2021, 31, 2101510.	7.8	58
82	Leveling the cost and carbon footprint of circular polymers that are chemically recycled to monomer. Science Advances, 2021, 7, .	4.7	54
83	Synthetic Biodegradable Polymers with Chain End Modification: Polylactide, Poly(butylene succinate), and Poly(hydroxyalkanoate). Chemistry Letters, 2021, 50, 767-777.	0.7	8
84	Distribution of microplastics in soil and freshwater environments: Global analysis and framework for transport modeling. Environmental Pollution, 2021, 274, 116552.	3.7	189
85	Importance of Lowâ€Temperature Meltâ€Mixing on the Construction of Stereocomplex Crystallites with Superior Nucleation Efficiency in Asymmetric Poly(<scp> < scp> a€ actide /Poly(<scp> d< scp> a€ actide) Blends. Macromolecular Materials and Engineering, 2021, 306, 2100091.</scp></scp>	1.7	9
86	Critical review of global plastics stock and flow data. Journal of Industrial Ecology, 2021, 25, 1300-1317.	2.8	53
87	Carbon Dot-Triggered Photocatalytic Degradation of Cellulose Acetate. Biomacromolecules, 2021, 22, 2211-2223.	2.6	21
88	Microplastics in composting of rural domestic waste: abundance, characteristics, and release from the surface of macroplastics. Environmental Pollution, 2021, 274, 116553.	3.7	98
89	Degradable Plastics Are Vulnerable to Cracks. Engineering, 2021, 7, 624-629.	3.2	11
90	A review of plastic waste management in India – challenges and opportunities. International Journal of Environmental Analytical Chemistry, 2023, 103, 3971-3987.	1.8	37

#	Article	IF	CITATIONS
91	Envelopes with microplastics generated from recycled plastic bags for crude oil sorption. Polymer Engineering and Science, 2021, 61, 2055-2065.	1.5	4
93	Degradation of Polyethylene Plastic by Non-Embedded Visible-Light Iron-Doped Zinc Oxide Nanophotocatalyst. Applied Science and Convergence Technology, 2021, 30, 87-91.	0.3	6
94	PLA–Potato Thermoplastic Starch Filament as a Sustainable Alternative to the Conventional PLA Filament: Processing, Characterization, and FFF 3D Printing. ACS Sustainable Chemistry and Engineering, 2021, 9, 6923-6938.	3.2	35
95	Ultraviolet light accelerates the degradation of polyethylene plastics. Microscopy Research and Technique, 2021, 84, 2774-2783.	1.2	33
96	Weathering of microplastics and interaction with other coexisting constituents in terrestrial and aquatic environments. Water Research, 2021, 196, 117011.	5.3	253
97	High molecular weight of polylactic acid (PLA): A Review on the effect of initiator. International Research Journal of Shariah Muamalat and Islam, 2021, 4, .	0.1	1
98	Poly(lactic Acid): A Versatile Biobased Polymer for the Future with Multifunctional Properties—From Monomer Synthesis, Polymerization Techniques and Molecular Weight Increase to PLA Applications. Polymers, 2021, 13, 1822.	2.0	233
99	Weathering Plastics as a Planetary Boundary Threat: Exposure, Fate, and Hazards. Environmental Science & Environmental Science	4.6	152
100	Degradation of synthetic and wood-based cellulose fabrics in the marine environment: Comparative assessment of field, aquarium, and bioreactor experiments. Science of the Total Environment, 2021, 791, 148060.	3.9	17
101	Biofilms Enhance the Adsorption of Toxic Contaminants on Plastic Microfibers under Environmentally Relevant Conditions. Environmental Science & Environmentally Relevant Conditions.	4.6	108
102	Microplastics in fisheries and aquaculture: implications to food sustainability and safety. Current Opinion in Green and Sustainable Chemistry, 2021, 29, 100464.	3.2	27
103	Ni-Zn supported defective carbon with multi-functional catalytic sites for Baeyer–Villiger reaction using air as oxidant. Journal of Materials Science, 2021, 56, 14684-14699.	1.7	3
104	Synthesis of Long-Subchain Hyperbranched Polypropylene Using Thermally Degraded Products as Precursor. Macromolecules, 2021, 54, 5567-5576.	2.2	10
105	Microplastic particles in the aquatic environment: A systematic review. Science of the Total Environment, 2021, 775, 145793.	3.9	101
106	Recycling and rheology of poly(lactic acid) (PLA) to make foams using supercritical fluid. Physics of Fluids, 2021, 33, 067119.	1.6	9
107	A critical view on the technology readiness level (TRL) of microbial plastics biodegradation. World Journal of Microbiology and Biotechnology, 2021, 37, 116.	1.7	16
108	Natural antimicrobials and antioxidants added to polylactic acid packaging films. Part I: Polymer processing techniques. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 3388-3403.	5.9	44
109	Microplastics generated from a biodegradable plastic in freshwater and seawater. Water Research, 2021, 198, 117123.	5.3	140

#	Article	IF	CITATIONS
110	Degradation of conventional plastic wastes in the environment: A review on current status of knowledge and future perspectives of disposal. Science of the Total Environment, 2021, 771, 144719.	3.9	258
111	One-Pot Reaction of Waste PET to Flame Retardant Polyurethane Foam, via Deep Eutectic Solvents-Based Conversion Technology. Journal of Polymers and the Environment, 2022, 30, 333-343.	2.4	10
112	Aqueousâ€Phase Photocatalytic Degradation of Emerging Forever Chemical Contaminants. ChemistrySelect, 2021, 6, 5225-5240.	0.7	2
113	Fabrication of Novel Functional Cellâ€Plastic Using Polyvinyl Alcohol: Effects of Crossâ€Linking Structure and Mixing Ratio of Components on the Mechanical and Thermal Properties. Global Challenges, 2021, 5, 2100026.	1.8	4
114	Effects of Microplastics Exposure on the Acropora sp. Antioxidant, Immunization and Energy Metabolism Enzyme Activities. Frontiers in Microbiology, 2021, 12, 666100.	1.5	17
115	The Life Cycle Assessment for Polylactic Acid (PLA) to Make It a Low-Carbon Material. Polymers, 2021, 13, 1854.	2.0	88
116	The effect of thermal aging on the composition of pyrolysis oil fuel derived from typical waste plastics. Fuel Processing Technology, 2021, 218, 106862.	3.7	18
117	Environmentalism or greenwashing? Responses of South African value chain actors to plastic straw marine pollution. South African Journal of Science, 2021, 117, .	0.3	2
118	Bioavailability and toxicity of microplastics to zooplankton. Gondwana Research, 2022, 108, 120-126.	3.0	28
119	Domestic laundry and microfiber pollution: Exploring fiber shedding from consumer apparel textiles. PLoS ONE, 2021, 16, e0250346.	1.1	66
120	Toward waste valorization by converting bioethanol production residues into nanoparticles and nanocomposite films. Sustainable Materials and Technologies, 2021, 28, e00269.	1.7	15
121	Temperate UV-Accelerated Weathering Cycle Combined with HT-GPC Analysis and Drop Point Testing for Determining the Environmental Instability of Polyethylene Films. Polymers, 2021, 13, 2373.	2.0	2
122	The Critical Importance of Adopting Whole-of-Life Strategies for Polymers and Plastics. Sustainability, 2021, 13, 8218.	1.6	10
123	Challenges in biodegradation of non-degradable thermoplastic waste: From environmental impact to operational readiness. Biotechnology Advances, 2021, 49, 107731.	6.0	54
124	Chemical and biological catalysis for plastics recycling and upcycling. Nature Catalysis, 2021, 4, 539-556.	16.1	420
125	The global threat from plastic pollution. Science, 2021, 373, 61-65.	6.0	862
126	A Review on Aquatic Impacts of Microplastics and Its Bioremediation Aspects. Current Pollution Reports, 2021, 7, 286-299.	3.1	41
127	Are Biobased Plastics Green Alternatives?â€"A Critical Review. International Journal of Environmental Research and Public Health, 2021, 18, 7729.	1.2	48

#	Article	IF	CITATIONS
128	P450-driven plastic-degrading synthetic bacteria. Trends in Biotechnology, 2022, 40, 166-179.	4.9	36
130	Strategies for mitigating plastic wastes management problem: A lifecycle assessment study in Hong Kong. Waste Management, 2021, 131, 412-422.	3.7	29
131	Biopolymers produced by Azotobacter: synthesis and production, physico-mechanical properties, and potential industrial applications. Scientia Agropecuaria, 2021, 12, 369-377.	0.5	0
132	Circular economy in biocomposite development: State-of-the-art, challenges and emerging trends. Composites Part C: Open Access, 2021, 5, 100138.	1.5	79
133	New Composites from Waste Polypropylene/Eggshell Characterized by High Flame Retardant and Mechanical Properties. Fibers and Polymers, $0, 1$.	1.1	5
134	Pearlescent Mica-Doped Alginate as a Stable, Vibrant Medium for Two-Dimensional and Three-Dimensional Art. ACS Omega, 2021, 6, 18694-18701.	1.6	6
135	Effects of Urban Hydrology on Plastic Transport in a Subtropical River. ACS ES&T Water, 2021, 1, 1714-1727.	2.3	22
136	Not Only Diamonds Are Forever: Degradation of Plastic Films in a Simulated Marine Environment. Frontiers in Environmental Science, 2021, 9, .	1.5	5
137	Plastics in biosolids from 1950 to 2016: A function of global plastic production and consumption. Water Research, 2021, 201, 117367.	5.3	77
138	Estuaries as Filters for Riverine Microplastics: Simulations in a Large, Coastal-Plain Estuary. Frontiers in Marine Science, 2021, 8, .	1.2	15
139	Interactions between polyethylene and polypropylene microplastics and Spirulina sp. microalgae in aquatic systems. Heliyon, 2021, 7, e07676.	1.4	40
140	Development and Characterization of Pectin Films with Salicornia ramosissima: Biodegradation in Soil and Seawater. Polymers, 2021, 13, 2632.	2.0	18
141	Face masks: protecting the wearer but neglecting the aquatic environment? - A perspective from Bangladesh. Environmental Challenges, 2021, 4, 100126.	2.0	28
142	Chemically Triggered Click and Declick Reactions: Application in Synthesis and Degradation of Thermosetting Plastics. ACS Macro Letters, 2021, 10, 1125-1131.	2.3	14
143	Plastic waste: Status, degradation and microbial management options for Africa. Journal of Environmental Management, 2021, 292, 112758.	3.8	40
144	The role of crystallinity and particle morphology on the sorption of dibutyl phthalate on polyethylene microplastics: Implications for the behavior of phthalate plastic additives. Environmental Pollution, 2021, 283, 117393.	3.7	32
145	Disintegration half-life of biodegradable plastic films on different marine beach sediments. PeerJ, 2021, 9, e11981.	0.9	12
146	Biodegradable polymers: A real opportunity to solve marine plastic pollution?. Journal of Hazardous Materials, 2021, 416, 125763.	6.5	74

#	Article	IF	CITATIONS
147	Examining the dependence of macroplastic fragmentation on coastal processes (Chesapeake Bay,) Tj ETQq0 0 0	rgBT/Ove	erlogk 10 Tf 50
148	Performance and emission analysis of co-pyrolytic oil obtained from sugarcane bagasse and polystyrene in a CI engine. Fuel, 2021, 298, 120813.	3.4	17
149	Use of used cigarette filters in removal of malachite green dye from wastewater. International Journal of Environmental Studies, 0 , $1-15$.	0.7	0
150	COVID-19 and waste management in Indian scenario: challenges and possible solutions. Environmental Science and Pollution Research, 2021, 28, 52702-52723.	2.7	25
151	Implications for the PET decomposition mechanism through similarity and dissimilarity between PETases from Rhizobacter gummiphilus and Ideonella sakaiensis. Journal of Hazardous Materials, 2021, 416, 126075.	6.5	44
152	Micro (nano) plastic pollution: The ecological influence on soil-plant system and human health. Science of the Total Environment, 2021, 788, 147815.	3.9	99
153	The input–output balance of microplastics derived from coated fertilizer in paddy fields and the timing of their discharge during the irrigation season. Chemosphere, 2021, 279, 130574.	4.2	24
154	A Cooperative OSDA Blueprint for Highly Siliceous Faujasite Zeolite Catalysts with Enhanced Acidity Accessibility. Angewandte Chemie - International Edition, 2021, 60, 24189-24197.	7.2	14
155	Characterization of microplastics in indoor and ambient air in northern New Jersey. Environmental Research, 2022, 207, 112142.	3.7	78
156	Critical evaluation of functional aspects of evaporation barriers through environmental and economics lens for evaporation suppression - A review on milestones from improved technologies. Science of the Total Environment, 2021, 788, 147800.	3.9	13
157	Microplastics' origin, distribution, and rising hazard to aquatic organisms and human health: Socio-economic insinuations and management solutions. Regional Studies in Marine Science, 2021, 48, 102018.	0.4	16
158	Microplastic degradation as a sustainable concurrent approach for producing biofuel and obliterating hazardous environmental effects: A state-of-the-art review. Journal of Hazardous Materials, 2021, 418, 126381.	6.5	63
159	Microplastic degradation methods and corresponding degradation mechanism: Research status and future perspectives. Journal of Hazardous Materials, 2021, 418, 126377.	6.5	111
160	Enhanced Polyester Degradation through Transesterification with Salicylates. Journal of the American Chemical Society, 2021, 143, 15784-15790.	6.6	42
162	COVID-19 discarded disposable gloves as a source and a vector of pollutants in the environment. Journal of Hazardous Materials, 2021, 417, 125938.	6.5	53
163	Macroplastic in soil and peat. A case study from the remote islands of Mausund and Froan landscape conservation area, Norway; implications for coastal cleanups and biodiversity. Science of the Total Environment, 2021, 787, 147547.	3.9	18
164	Mechanisms and the Engineering Approaches for the Degradation of Microplastics. ACS ES&T Engineering, 2021, 1, 1481-1501.	3.7	65
165	Catalytic Amination of Polylactic Acid to Alanine. Journal of the American Chemical Society, 2021, 143, 16358-16363.	6.6	82

#	Article	IF	CITATIONS
166	Chemical upcycling ofpolymers. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200341.	1.6	13
167	Separation and enrichment of nanoplastics in environmental water samples via ultracentrifugation. Water Research, 2021, 203, 117509.	5.3	30
168	Floating marine litter detection algorithms and techniques using optical remote sensing data: A review. Marine Pollution Bulletin, 2021, 170, 112675.	2.3	46
169	Back to the Future: Decomposability of a Biobased and Biodegradable Plastic in Field Soil Environments and Its Microbiome under Ambient and Future Climates. Environmental Science & Emp; Technology, 2021, 55, 12337-12351.	4.6	32
170	Comprehensive exploration of natural degradation of poly(lactic acid) blends in various degradation media: A review. International Journal of Biological Macromolecules, 2021, 187, 732-741.	3.6	74
171	Spatial distribution of microplastics in the fluvial sediments of a transboundary river – A case study of the Tisza River in Central Europe. Science of the Total Environment, 2021, 785, 147306.	3.9	47
172	A Cooperative OSDA Blueprint for Highly Siliceous Faujasite Zeolite Catalysts with Enhanced Acidity Accessibility. Angewandte Chemie, 2021, 133, 24391.	1.6	5
173	How Relevant Are Direct Emissions of Microplastics into Freshwater from an LCA Perspective?. Sustainability, 2021, 13, 9922.	1.6	10
174	Polyhydroxybutyrate production from dark-fermentative effluent and composite grafting with bagasse derived α-cellulose in a biorefinery approach. Chemosphere, 2021, 279, 130563.	4.2	11
175	Uncovering the release of micro/nanoplastics from disposable face masks at times of COVID-19. Journal of Hazardous Materials, 2021, 419, 126507.	6.5	115
176	Planstic: Biodegradable Plastic with High-Entropy Fibers Made from Waste Plastic and Plant Leaves. ACS Applied Polymer Materials, 2021, 3, 5355-5360.	2.0	4
177	The role of waste management in reducing bioplastics' leakage into the environment: A review. Bioresource Technology, 2021, 337, 125459.	4.8	66
178	The life of a plastic butter tub in riverine environments. Environmental Pollution, 2021, 287, 117656.	3.7	18
179	A review of methods for extraction, removal, and stimulated degradation of microplastics. Journal of Water Process Engineering, 2021, 43, 102209.	2.6	22
180	The impacts of plastic products on air pollution - A simulation study for advanced life cycle inventories of plastics covering secondary microplastic production. Sustainable Production and Consumption, 2021, 28, 848-865.	5.7	28
181	A framework for the assessment of marine litter impacts in life cycle impact assessment. Ecological Indicators, 2021, 129, 107918.	2.6	87
182	Degradation of bioplastics in organic waste by mesophilic anaerobic digestion, composting and soil incubation. Waste Management, 2021, 134, 67-77.	3.7	79
183	Conversion of industrial carpet waste into adsorbent materials for organic dye removal from water. Cleaner Engineering and Technology, 2021, 4, 100150.	2.1	14

#	Article	IF	Citations
184	Achieving net-zero greenhouse gas emission plastics by a circular carbon economy. Science, 2021, 374, 71-76.	6.0	222
185	Occurrence and spatial distribution of microplastics in the surface waters of the Baltic Sea and the Gulf of Riga. Marine Pollution Bulletin, 2021, 172, 112860.	2.3	21
186	Estimation of soil microplastic input derived from plastic gauze using a simplified model. Science of the Total Environment, 2021, 793, 148577.	3.9	13
187	Generation of nanoplastics during the photoageing of low-density polyethylene. Environmental Pollution, 2021, 289, 117919.	3.7	36
188	Occurrence, distribution and characteristics of microplastics in gastrointestinal tract and gills of commercial marine fish from Malaysia. Science of the Total Environment, 2021, 799, 149457.	3.9	62
189	The role of hydrodynamic fluctuations and wind intensity on the distribution of plastic debris on the sandy beaches of ParanÃ; River, Argentina. Environmental Pollution, 2021, 291, 118168.	3.7	9
190	Pyrolysis of polypropylene plastic waste into carbonaceous char: Priority of plastic waste management amidst COVID-19 pandemic. Science of the Total Environment, 2022, 803, 149911.	3.9	104
191	Photodegradation of microplastics mediated by different types of soil: The effect of soil components. Science of the Total Environment, 2022, 802, 149840.	3.9	23
192	The fundamental links between climate change and marine plastic pollution. Science of the Total Environment, 2022, 806, 150392.	3.9	122
193	Weathering pathways and protocols for environmentally relevant microplastics and nanoplastics: What are we missing?. Journal of Hazardous Materials, 2022, 423, 126955.	6.5	98
194	Functional use of CO2 to mitigate the formation of bisphenol A in catalytic pyrolysis of polycarbonate. Journal of Hazardous Materials, 2022, 423, 126992.	6.5	20
195	In-field degradation of soil-biodegradable plastic mulch films in a Mediterranean climate. Science of the Total Environment, 2022, 806, 150238.	3.9	43
196	Exposure to nano-polystyrene induces metabolic alteration in lipid homeostasis in Caco-2. Environmental Science: Nano, 2021, 8, 1408-1424.	2.2	5
197	Polyvinyl alcohol modification with sustainable ketones. Polymer Chemistry, 2021, 12, 4961-4973.	1.9	9
198	Biological and Environmental Degradations of Polyamides, Polylactic Acid, and Chitin for Future Prospects., 2021,, 113-134.		0
200	Marine Environmental Plastic Pollution: Mitigation by Microorganism Degradation and Recycling Valorization. Frontiers in Marine Science, 2020, 7, .	1.2	86
201	Predicting the Global Environmental Distribution of Plastic Polymers. SSRN Electronic Journal, 0, , .	0.4	0
202	Reducing environmental plastic pollution by designing polymer materials for managed end-of-life. Nature Reviews Materials, 2022, 7, 104-116.	23.3	163

#	Article	IF	CITATIONS
203	Agricultural application of microplastic-rich sewage sludge leads to further uncontrolled contamination. Science of the Total Environment, 2022, 806, 150611.	3.9	30
204	Plastic-Degrading Potential across the Global Microbiome Correlates with Recent Pollution Trends. MBio, 2021, 12, e0215521.	1.8	51
205	From waste to wealth: upcycling of plastic and lignocellulosic wastes to <scp>PHAs</scp> . Journal of Chemical Technology and Biotechnology, 2022, 97, 3217-3240.	1.6	11
206	Perspectives on the Role of Enzymatic Biocatalysis for the Degradation of Plastic PET. International Journal of Molecular Sciences, 2021, 22, 11257.	1.8	46
208	Searching Nanoplastics: From Sampling to Sample Processing. Polymers, 2021, 13, 3658.	2.0	21
209	Surgery, anesthesia, and pathology: A practical primer on greening the delivery of surgical care. The Journal of Climate Change and Health, 2021, 4, 100076.	1.4	3
210	Biodegradation of Polystyrene by Tenebrio molitor, Galleria mellonella, and Zophobas atratus Larvae and Comparison of Their Degradation Effects. Polymers, 2021, 13, 3539.	2.0	30
211	Dynamics of airborne microplastics, appraisal and distributional behaviour in atmosphere; a review. Science of the Total Environment, 2022, 806, 150745.	3.9	24
212	Production, Use, and Fate of Phthalic Acid Esters for Polyvinyl Chloride Products in China. Environmental Science & Environmen	4.6	29
213	Anthropogenic litter in freshwater bodies and their estuaries: an empirical analysis in Lesvos, Greece. Environmental Science and Pollution Research, 2022, 29, 16563-16575.	2.7	5
214	Mechanical properties and fracture characterization of additive manufacturing polyamide 12 after accelerated weathering. Polymer Testing, 2021, 104, 107376.	2.3	20
215	Accelerated degradation of low-density polyethylene in air and in sea water. Science of the Total Environment, 2022, 811, 151368.	3.9	25
216	Increased Cu(II) Adsorption Onto UV-Aged Polyethylene, Polypropylene, and Polyethylene Terephthalate Microplastic Particles in Seawater. Frontiers in Marine Science, 2021, 8, .	1.2	5
217	Polyolefins and Polystyrene as Chemical Resources for a Sustainable Future: Challenges, Advances, and Prospects., 2021, 3, 1660-1676.		89
218	On the degradation of (micro)plastics: Degradation methods, influencing factors, environmental impacts. Science of the Total Environment, 2022, 806, 151312.	3.9	116
219	Biodegradation of bioplastics under aerobic and anaerobic aqueous conditions: Kinetics, carbon fate and particle size effect. Bioresource Technology, 2022, 344, 126265.	4.8	49
220	Uptake and Accumulation of Nano/Microplastics in Plants: A Critical Review. Nanomaterials, 2021, 11, 2935.	1.9	128
221	Use of additives to improve bonding strength of the adhesive prepared from used polymer: Sustainable management approach. Materials Today: Proceedings, 2021, , .	0.9	0

#	Article	IF	CITATIONS
222	Chitosan/pullulan based films incorporated with clove essential oil loaded chitosan-ZnO hybrid nanoparticles for active food packaging. Carbohydrate Polymers, 2022, 277, 118866.	5.1	85
223	Plastics as a stratigraphic marker in fluvial deposits. Anthropocene, 2021, 36, 100314.	1.6	11
224	Thermodynamic feasibility of shipboard conversion of marine plastics to blue diesel for self-powered ocean cleanup. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2107250118.	3.3	7
225	Microplastics from food packaging: An overview of human consumption, health threats, and alternative solutions. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100608.	1.7	40
226	A flexible risk assessment framework for marine plastic pollution that synthesizes waste management and ecological impact data. Marine Policy, 2021, 137, 104833.	1.5	3
227	Method for rapid biofilm cultivation on microplastics and investigation of its effect on the agglomeration and removal of microplastics using organosilanes. Science of the Total Environment, 2022, 806, 151388.	3.9	20
228	Research and economic perspectives on an integrated biorefinery approach for the simultaneous production of polyhydroxyalkanoates and biohydrogen. International Journal of Biological Macromolecules, 2021, 193, 1937-1937.	3.6	3
229	Polyolefins and Polyethylene Terephthalate Package Wastes: Recycling and Use in Composites. Energies, 2021, 14, 7306.	1.6	10
230	Degradation of Microplastics in the Environment. , 2021, , 1-12.		10
231	The effectivity of pre-treatment process of recycled HDPE based on the mechanical recycling method. AIP Conference Proceedings, 2021, , .	0.3	0
232	Role of Structural Morphology of Commodity Polymers in Microplastics and Nanoplastics Formation: Fragmentation, Effects and Associated Toxicity in the Aquatic Environment. Reviews of Environmental Contamination and Toxicology, 2021, 259, 123-169.	0.7	1
233	New approaches for the characterization of plastic-associated microbial communities and the discovery of plastic-degrading microorganisms and enzymes. Computational and Structural Biotechnology Journal, 2021, 19, 6191-6200.	1.9	28
234	Field application of pure polyethylene microplastic has no significant short-term effect on soil biological quality and function. Soil Biology and Biochemistry, 2022, 165, 108496.	4.2	45
235	Interaction of micro(nano)plastics with extracellular and intracellular biomolecules in the freshwater environment. Critical Reviews in Environmental Science and Technology, 2022, 52, 4241-4265.	6.6	21
237	Applying temporal self-regulation theory to identify correlates of soft plastic recycling in Australia. Australian Journal of Psychology, 2021, 73, 512-522.	1.4	4
238	Catalytic co-pyrolysis of biomass and plastic wastes over metal-modified HZSM-5: A mini critical review. Materials Today: Proceedings, 2022, 57, 1256-1261.	0.9	3
239	Property changes of conventional plastic waste mixed with municipal solid waste after 10-year degradation experiments simulating landfill conditions. Journal of Hazardous Materials Letters, 2021, 2, 100047.	2.0	5
240	Impact of Enzymatic Degradation on the Material Properties of Poly(Ethylene Terephthalate). Polymers, 2021, 13, 3885.	2.0	7

#	Article	IF	CITATIONS
241	Designing Value Chains of Plastic and Paper Carrier Bags for a Sustainable and Circular Economy. ACS Sustainable Chemistry and Engineering, 2021, 9, 16687-16698.	3.2	8
242	Generation patterns and consumer behavior of single-use plastic towards plastic-free university campuses. Chemosphere, 2022, 291, 133059.	4.2	7
243	Nanoplastics interaction with feldspar and weathering originated secondary minerals (kaolinite and) Tj ETQq0 0 C	rgBT /Ov	erlock 10 Tf 5
244	From model to nature $\hat{a} \in \mathcal{C}$ A review on the transferability of marine (micro-) plastic fragmentation studies. Science of the Total Environment, 2022, 811, 151389.	3.9	24
245	Biodegradation of polymers in managing plastic waste â€" A review. Science of the Total Environment, 2022, 813, 151880.	3.9	64
246	Accelerated Aging Effect on Mechanical Properties of Common 3D-Printing Polymers. Polymers, 2021, 13, 4132.	2.0	14
247	Release kinetics of microplastics from disposable face masks into the aqueous environment. Science of the Total Environment, 2022, 816, 151650.	3.9	59
248	Progress in valorisation of agriculture, aquaculture and shellfish biomass into biochemicals and biomaterials towards sustainable bioeconomy. Chemosphere, 2022, 291, 133036.	4.2	18
249	Deposition and in-situ translocation of microplastics in floodplain soils. Science of the Total Environment, 2022, 819, 152039.	3.9	21
250	Acute and subacute repeated oral toxicity study of fragmented microplastics in Sprague-Dawley rats. Ecotoxicology and Environmental Safety, 2021, 228, 112964.	2.9	17
251	Are micro- and nanoplastics from soil-biodegradable plastic mulches an environmental concern?. Journal of Hazardous Materials Advances, 2021, 4, 100024.	1.2	14
252	A human-centered review of life cycle assessments of bioplastics. International Journal of Life Cycle Assessment, 2022, 27, 157-172.	2.2	8
254	Plastic ingestion by the Wels catfish (Silurus glanis L.): detailed chemical analysis and degradation state evaluation. Toxicology Reports, 2021, 8, 1869-1876.	1.6	4
255	Micro and Nano-Plastics in the Environment: Research Priorities for the Near Future. Reviews of Environmental Contamination and Toxicology, 2021, 257, 163-218.	0.7	8
256	Quantitatively evaluating activity and number of catalytic sites on metal oxide for ammonium perchlorate decomposition. AICHE Journal, 2022, 68, .	1.8	3
257	Birds of a Feather Eat Plastic Together: High Levels of Plastic Ingestion in Great Shearwater Adults and Juveniles Across Their Annual Migratory Cycle. Frontiers in Marine Science, 2022, 8, .	1.2	7
258	Value-added products from waste plastics using dissolution technique. Materials Today: Proceedings, 2022, 57, 1730-1737.	0.9	4
259	Metabolic Cascade for Remediation of Plastic Waste: a Case Study on Microplastic Degradation. Current Pollution Reports, 2022, 8, 30-50.	3.1	18

#	Article	IF	CITATIONS
260	Interactions of microplastics and organic compounds in aquatic environments: A case study of augmented joint toxicity. Chemosphere, 2022, 289, 133212.	4.2	31
261	Investigating impact of physicochemical properties of microplastics on human health: A short bibliometric analysis and review. Chemosphere, 2022, 289, 133146.	4.2	50
262	The 7 Rs sustainable packaging framework: Systematic review of sustainable packaging solutions in the apparel and footwear industry. Sustainable Production and Consumption, 2022, 30, 331-340.	5.7	15
263	Heterogeneous weathering of polypropylene in the marine environment. Science of the Total Environment, 2022, 812, 152308.	3.9	8
264	Micro (nano) plastics in wastewater: A critical review on toxicity risk assessment, behaviour, environmental impact and challenges. Chemosphere, 2022, 290, 133169.	4.2	43
265	Biocarbon from spent coffee ground and their sustainable biocomposites with recycled water bottle and bale wrap: A new life for waste plastics and waste food residues for industrial uses. Composites Part A: Applied Science and Manufacturing, 2022, 154, 106759.	3.8	16
266	Biodegradation of novel bioplastics made of starch, polyhydroxyurethanes and cellulose nanocrystals in soil environment. Science of the Total Environment, 2022, 815, 152684.	3.9	21
267	Preliminary Study on the Biodegradability of Chitosan Films Emulsified with Palm Oils (Aracaceae) from the Brazilian Cerrado. Journal of Research Updates in Polymer Science, 0, 9, 58-69.	0.3	0
268	Plastic Waste Management: Global Facts, Challenges and Solutions. , 2020, , .		3
269	Design and Modeling of Shredding Machine for Recycling Plastic Waste. , 2021, , .		2
270	Residue-Specific Incorporation of the Non-Canonical Amino Acid Norleucine Improves Lipase Activity on Synthetic Polyesters. Frontiers in Bioengineering and Biotechnology, 2022, 10, 769830.	2.0	3
271	Sugar-Based Polymers with Stereochemistry-Dependent Degradability and Mechanical Properties. Journal of the American Chemical Society, 2022, 144, 1243-1250.	6.6	24
272	Recycled plastic and textile waste biocomposites. , 2022, , 97-118.		0
273	Plastic glut down a microbial gut. Polymer International, 0, , .	1.6	2
274	A Critical Review of the Performance and Soil Biodegradability Profiles of Biobased Natural and Chemically Synthesized Polymers in Industrial Applications. Environmental Science & Environmental Scie	4.6	33
275	Modelling of Environmental Ageing of Polymers and Polymer Composites—Modular and Multiscale Methods. Polymers, 2022, 14, 216.	2.0	34
276	From trash to treasure: Chemical recycling and upcycling of commodity plastic waste to fuels, high-valued chemicals and advanced materials. Journal of Energy Chemistry, 2022, 69, 369-388.	7.1	91
277	Microplastic effects on soil system parameters: a meta-analysis study. Environmental Science and Pollution Research, 2022, 29, 11027-11038.	2.7	26

#	Article	IF	CITATIONS
278	How to Build a Microplasticsâ€Free Environment: Strategies for Microplastics Degradation and Plastics Recycling. Advanced Science, 2022, 9, e2103764.	5.6	87
279	Co-pyrolysis of polyethylene terephthalate and poplar wood: influence of zeolite catalyst on coke formation. Biomass Conversion and Biorefinery, 0 , , 1 .	2.9	2
280	Micro and nano effects of recycled plastic waste to reinforce and enhance in biocomposites. , 2022, , 195-211.		0
281	Characterizing photochemical ageing processes of microplastic materials using multivariate analysis of infrared spectra. Environmental Sciences: Processes and Impacts, 2022, 24, 52-61.	1.7	14
282	Role of Nanoparticles in Biodegradation and Their Importance in Environmental and Biomedical Applications. Journal of Nanomaterials, 2022, 2022, 1-15.	1.5	15
283	Organochlorine Compounds in Beached Plastics and Marine Organisms. Frontiers in Environmental Science, 2022, 9, .	1.5	2
284	Worming the Circular Economy for Biowaste and Plastics: Hermetia illucens, Tenebrio molitor, and Zophobas morio. Sustainability, 2022, 14, 1594.	1.6	8
285	Cellulose reinforcement in bioplastic composites. , 2022, , 143-158.		0
286	Risk assessment of microplastic particles. Nature Reviews Materials, 2022, 7, 138-152.	23.3	306
287	Pyrolysis-Aided Microbial Biodegradation of High-Density Polyethylene Plastic by Environmental Inocula Enrichment Cultures. ACS Sustainable Chemistry and Engineering, 2022, 10, 2022-2033.	3.2	17
288	Silicon-Doped Graphene Oxide Quantum Dots as Efficient Nanoconjugates for Multifunctional Nanocomposites. ACS Applied Materials & Samp; Interfaces, 2022, 14, 7161-7174.	4.0	10
289	Microplastic pollution of commercial fishes from coastal and offshore waters in southwestern Japan. Marine Pollution Bulletin, 2022, 174, 113304.	2.3	25
290	Freshwater-durable and marine-degradable cellulose nanofiber reinforced starch film. Cellulose, 2022, 29, 1667-1678.	2.4	12
291	Microplastic stress induce bioresource production and response in microalgae: a concise review. Environmental Pollutants and Bioavailability, 2022, 34, 51-60.	1.3	7
292	Growth rates, chlorophyll content and interaction comparison of microplastics effect on asterarcys sp. and cyanobacterium sp. in water body of euphrates branch (Shatt Al-Furat in Al-Dywaniah), Iraq. AIP Conference Proceedings, 2022, , .	0.3	1
294	Dynamic and reconfigurable materials from reversible network interactions. Nature Reviews Materials, 2022, 7, 541-556.	23.3	105
295	Polyhydroxyalkanoates production from domestic waste feedstock: A sustainable approach towards bio-economy. Journal of Cleaner Production, 2022, 340, 130661.	4.6	24
296	The treatment of the organic fraction of municipal solid waste (OFMSW) as a possible source of micro- and nano-plastics and bioplastics in agroecosystems: a review. Chemical and Biological Technologies in Agriculture, 2022, 9, .	1.9	6

#	Article	IF	CITATIONS
297	Enhanced degradation and gas barrier of PBAT through composition design of aliphatic units. Polymer Degradation and Stability, 2022, 195, 109795.	2.7	20
298	Bio-Based Upcycling of Poly(ethylene terephthalate) Waste for the Preparation of High-Performance Thermoplastic Copolyesters. Macromolecules, 2022, 55, 1042-1049.	2.2	20
299	Assessment of Microplastics in Irish River Sediment. SSRN Electronic Journal, 0, , .	0.4	0
300	Nano-biodegradation of plastic materials. , 2022, , 175-195.		0
301	Nanoplastic Generation from Secondary PE Microplastics: Microorganism-Induced Fragmentation. Microplastics, 2022, 1, 85-101.	1.6	13
302	Biotechnological Aspects and Mathematical Modeling of the Biodegradation of Plastics under Controlled Conditions. Polymers, 2022, 14, 375.	2.0	20
303	Physical, chemical, and microbial contaminants in food waste management for soil application: A review. Environmental Pollution, 2022, 300, 118860.	3.7	34
304	Design and fabrication of polyamine nanofiltration membrane by constituting multifunctional aliphatic linear amine and trifunctional cyanuric chloride for selective organic solvent nanofiltration. Journal of the Taiwan Institute of Chemical Engineers, 2022, 131, 104204.	2.7	7
305	Forecasting municipal solid waste in Lithuania by incorporating socioeconomic and geographical factors. Waste Management, 2022, 140, 31-39.	3.7	15
306	Detecting the release of plastic particles in packaged drinking water under simulated light irradiation using surface-enhanced Raman spectroscopy. Analytica Chimica Acta, 2022, 1198, 339516.	2.6	20
307	Evolution of prokaryotic colonisation of greenhouse plastics discarded into the environment. Ecotoxicology and Environmental Safety, 2022, 232, 113213.	2.9	7
308	Life cycle assessment of environmental impact of disposable drinking straws: A trade-off analysis with marine litter in the United States. Science of the Total Environment, 2022, 817, 153016.	3.9	11
309	A microwave-based technique as a feasible method to detect plastic pollutants in experimental samples. Journal of Hazardous Materials, 2022, 428, 128224.	6.5	6
310	Environmental risks of polymer materials from disposable face masks linked to the COVID-19 pandemic. Science of the Total Environment, 2022, 815, 152980.	3.9	58
311	Microplastic in the coral reef environments of the Gulf of Mannar, India - Characteristics, distributions, sources and ecological risks. Environmental Pollution, 2022, 298, 118848.	3.7	31
312	Short-term exposure to soils and sludge induce changes to plastic morphology and 13C stable isotopic composition. Science of the Total Environment, 2022, 821, 153375.	3.9	6
313	Polymer prioritization framework: A novel multi-criteria framework for source mapping and characterizing the environmental risk of plastic polymers. Journal of Hazardous Materials, 2022, 429, 128330.	6.5	6
314	Microplastics in ecosystems: their implications and mitigation pathways. Environmental Science Advances, 2022, 1, 9-29.	1.0	27

#	Article	IF	CITATIONS
315	Potential of Plastic Waste in Enhancing the level of Pathogenicity of diverse Pathogens in the Marine Biota., 2022,, 301-312.		0
318	Mitigation of the Micro- and Nanoplastic Using Phycoremediation Technology. , 2022, , 183-208.		1
319	Closing the Sustainable Life Cycle Loop of Membrane Technology <i>via</i> a Cellulose Biomass Platform. ACS Sustainable Chemistry and Engineering, 2022, 10, 2532-2544.	3.2	25
320	Corn starch biofilm reinforced with orange peel powder: Characterization of physicochemical and mechanical properties. Materials Today: Proceedings, 2022, 59, 884-892.	0.9	18
321	Opportunities and challenges for integrating the development of sustainable polymer materials within an international circular (bio)economy concept. MRS Energy & Sustainability, 2022, 9, 28-34.	1.3	20
322	Occurrence of microplastics in gastrointestinal tracts of planktivorous fish from the Thoothukudi region. Environmental Science and Pollution Research, 2022, 29, 44723-44731.	2.7	19
323	Predicting the global environmental distribution of plastic polymers. Environmental Pollution, 2022, 300, 118966.	3.7	11
324	Environmental contamination by microplastics originating from textiles: Emission, transport, fate and toxicity. Journal of Hazardous Materials, 2022, 430, 128453.	6.5	23
325	Biodegradable plastics in aquatic ecosystems: latest findings, research gaps, and recommendations. Environmental Research Letters, 2022, 17, 033003.	2.2	23
326	Modification of polylactide by reactive blending with polyhydroxybutyrate oligomers formed by thermal recycling through E1cB-elimination pathway. European Polymer Journal, 2022, 166, 111043.	2.6	5
327	The Fragmentation of Nano- and Microplastic Particles from Thermoplastics Accelerated by Simulated-Sunlight-Mediated Photooxidation. SSRN Electronic Journal, 0, , .	0.4	0
328	Poly(lactic acid) for Sustainable Packaging Applications. , 2022, , .		0
329	Improving the Circularity of Biodegradable Bioplastics by Producing Biogas: A Full-Scale Assessment. SSRN Electronic Journal, 0, , .	0.4	0
330	From PEF to rPEF: disclosing the potential of deep eutectic solvents in continuous de-/re-polymerization recycling of biobased polyesters. Green Chemistry, 2022, 24, 3115-3119.	4.6	12
331	Polymer-metal oxide composites from renewable resources for agricultural and environmental applications., 2022,, 341-370.		4
332	Structures, Properties and Applications of Rigid Plastics for Orthotic Therapy, Design Requirements and Future Development., 2022,,.		0
333	Degradation of Microplastics in the Environment. , 2022, , 531-542.		17
334	Wooden Toys Produced from Wood Waste from Urban Afforestation: Acceptance and Implementation Strategies. Environmental Footprints and Eco-design of Products and Processes, 2022, , 79-93.	0.7	O

#	Article	IF	CITATIONS
335	Removal of Nanoplastics Using Gravity-Driven Membrane Filtration: Mechanisms and Effects of Water Matrices. SSRN Electronic Journal, 0, , .	0.4	0
336	The plastics integrated assessment model (PLAIA): Assessing emission mitigation pathways and circular economy strategies for the plastics sector. MethodsX, 2022, 9, 101666.	0.7	8
337	A review of microplastic fibres: generation, transport, and vectors for metal(loid)s in terrestrial environments. Environmental Sciences: Processes and Impacts, 2022, 24, 504-524.	1.7	7
338	The Role of Microplastics in Bioaccumulation of Pollutants. , 2022, , 667-696.		1
339	Micromachines for Microplastics Treatment. ACS Nanoscience Au, 2022, 2, 225-232.	2.0	18
340	Nano/Microplastics Capture and Degradation by Autonomous Nano/Microrobots: A Perspective. Advanced Functional Materials, 2022, 32, .	7.8	35
341	In Vitro and In Silico Study of the Efficacy of Fungi in Low-Density Polyethylene Degradation in a Disposal Paper Cup. Water, Air, and Soil Pollution, 2022, 233, 1.	1.1	3
343	Polyhydroxyalkanoates: Biosynthesis from Alternative Carbon Sources and Analytic Methods: A Short Review. Journal of Polymers and the Environment, 2022, 30, 2669-2684.	2.4	7
344	Towards the Sustainability of the Plastic Industry through Biopolymers: Properties and Potential Applications to the Textiles World. Polymers, 2022, 14, 692.	2.0	41
345	Toward Microbial Recycling and Upcycling of Plastics: Prospects and Challenges. Frontiers in Microbiology, 2022, 13, 821629.	1.5	20
346	Enhancement of Gas Barrier Properties and Durability of Poly(butylene succinate-co-butylene) Tj ETQq0 0 0 rgBT	/Oyerlock	19 Tf 50 342
347	Methodology to address potential impacts of plastic emissions in life cycle assessment. International Journal of Life Cycle Assessment, 2022, 27, 469-491.	2.2	22
348	ANN Hybrid Model for Forecasting Landfill Waste Potential in Lithuania. Sustainability, 2022, 14, 4122.	1.6	1
349	High Barrier, Biodegradable Nanocomposite Films Based on Clay oated and Chemically Modified Gum Kondagogu. Macromolecular Materials and Engineering, 0, , 2200008.	1.7	0
350	Reduction of Primary Microplastic in Nitrifying Medium Under Closed System. Pertanika Journal of Science and Technology, 2022, 30, 1601-1622.	0.3	3
351	Lignin and Keratin-Based Materials in Transient Devices and Disposables: Recent Advances Toward Materials and Environmental Sustainability. ACS Omega, 2022, 7, 10854-10863.	1.6	8
353	Valorization of polyethylene waste by vacuum cracking. Petroleum Science and Technology, 0, , 1-13.	0.7	0
354	Microbial abilities to degrade global environmental plastic polymer waste are overstated. Environmental Research Letters, 2022, 17, 043002.	2.2	19

#	Article	IF	CITATIONS
356	Development of simplified characterization factors for the assessment of expanded polystyrene and tire wear microplastic emissions applied in a food container life cycle assessment. Journal of Industrial Ecology, 2022, 26, 1882-1894.	2.8	19
357	Evaluating Canada's single-use plastic mitigation policies via brand audit and beach cleanup data to reduce plastic pollution. Marine Pollution Bulletin, 2022, 176, 113460.	2.3	13
358	Degradation of plastics associated with the COVID-19 pandemic. Marine Pollution Bulletin, 2022, 176, 113474.	2.3	69
359	Yellowing, Weathering and Degradation of Marine Pellets and Their Influence on the Adsorption of Chemical Pollutants. Polymers, 2022, 14, 1305.	2.0	13
361	Recognizing the long-term impacts of plastic particles for preventing distortion in decision-making. Nature Sustainability, 2022, 5, 472-478.	11.5	22
362	Accelerated Degradation of Poly(lactide acid)/Poly(hydroxybutyrate) (PLA/PHB) Yarns/Fabrics by UV and O2 Exposure in South China Seawater. Polymers, 2022, 14, 1216.	2.0	11
363	Chemical Recycling of Polystyrene to Valuable Chemicals via Selective Acid-Catalyzed Aerobic Oxidation under Visible Light. Journal of the American Chemical Society, 2022, 144, 6532-6542.	6.6	111
364	Ecofriendly Multifunctional Monodisperse Spherical Polymer Colloids from Hyperbranched Poly(<i>p</i> pphenyl ester) Phenol. ACS Applied Polymer Materials, 2022, 4, 2828-2840.	2.0	0
365	The Critical Role of Process Analysis in Chemical Recycling and Upcycling of Waste Plastics. Annual Review of Chemical and Biomolecular Engineering, 2022, 13, 301-324.	3.3	46
366	Modelling the Photodegradation of Marine Microplastics by Means of Infrared Spectrometry and Chemometric Techniques. Microplastics, 2022, 1, 198-210.	1.6	15
367	To Waste or Not to Waste: Questioning Potential Health Risks of Micro- and Nanoplastics with a Focus on Their Ingestion and Potential Carcinogenicity. Exposure and Health, 2023, 15, 33-51.	2.8	37
368	Flooding frequency and floodplain topography determine abundance of microplastics in an alluvial Rhine soil. Science of the Total Environment, 2022, 836, 155141.	3.9	19
369	Leaching and bioavailability of dissolved organic matter from petrol-based and biodegradable plastics. Marine Environmental Research, 2022, 176, 105607.	1.1	16
370	Automated segregation and microbial degradation of plastic wastes: A greener solution to waste management problems. Global Transitions Proceedings, 2022, 3, 100-103.	4.2	7
371	Understanding health effects pathways and thresholds: filling a critical need to support microplastics management. Microplastics and Nanoplastics, 2022, 2, .	4.1	5
372	Leaching of microplastic-associated additives in aquatic environments: A critical review. Environmental Pollution, 2022, 305, 119258.	3.7	57
373	The role of (bio)degradability on the management of petrochemical and bio-based plastic waste. Journal of Environmental Management, 2022, 310, 114769.	3.8	36
374	Reactive extrusion of highly filled, compatibilized, and sustainable PHBV/PBAT – Hemp residue biocomposite. Composites Part A: Applied Science and Manufacturing, 2022, 156, 106885.	3.8	13

#	Article	IF	Citations
375	The influence of bio-plastics for food packaging on combined anaerobic digestion and composting treatment of organic municipal waste. Waste Management, 2022, 144, 87-97.	3.7	32
376	Biodegradation factors and kinetic studies of point-of-use water treatment membrane in soil. Chemical Engineering Research and Design, 2022, 161, 392-408.	2.7	0
377	Soil plastisphere: Exploration methods, influencing factors, and ecological insights. Journal of Hazardous Materials, 2022, 430, 128503.	6.5	45
378	Two types of microplastics (polystyrene-HBCD and car tire abrasion) affect oxidative stress-related biomarkers in earthworm Eisenia andrei in a time-dependent manner. Environment International, 2022, 163, 107190.	4.8	38
379	Assessment of microplastics contamination on agricultural farmlands in central Bangladesh. Case Studies in Chemical and Environmental Engineering, 2022, 5, 100195.	2.9	16
380	Quality assessment of research studies on microplastics in soils: A methodological perspective. Chemosphere, 2022, 296, 134026.	4.2	6
381	A comprehensive review on integrative approach for sustainable management of plastic waste and its associated externalities. Science of the Total Environment, 2022, 825, 153973.	3.9	72
382	Biodegradable mulch films produced from soy-filled polymer resins. Materials Today Communications, 2022, 31, 103331.	0.9	6
383	Ageing and fragmentation of marine microplastics. Science of the Total Environment, 2022, 827, 154438.	3.9	46
384	Enrichment and dissemination of bacterial pathogens by microplastics in the aquatic environment. Science of the Total Environment, 2022, 830, 154720.	3.9	43
385	Coping with the un-natural: Tracking transcriptional activation and macromolecular profiles in Arabidopsis under microplastic exposure. Environmental and Experimental Botany, 2022, 199, 104870.	2.0	12
386	A structured catalyst of ZSM-5/SiC foam for chemical recycling of waste plastics via catalytic pyrolysis. Chemical Engineering Journal, 2022, 440, 135836.	6.6	29
387	Holey Ti3C2 nanosheets based membranes for efficient separation and removal of microplastics from water. Journal of Colloid and Interface Science, 2022, 617, 673-682.	5.0	16
388	Is a compostable plastic biodegradable in the sea? A rapid standard protocol to test mineralization in marine conditions. Science of the Total Environment, 2022, 831, 154860.	3.9	15
389	Metabolic engineering of Yarrowia lipolytica for poly(ethylene terephthalate) degradation. Science of the Total Environment, 2022, 831, 154841.	3.9	17
390	Do poly(lactic acid) microplastics instigate a threat? A perception for their dynamic towards environmental pollution and toxicity. Science of the Total Environment, 2022, 832, 155014.	3.9	74
391	Quantification and morphological characterization of microfibers emitted from textile washing. Science of the Total Environment, 2022, 832, 154973.	3.9	14
392	Ingestion and toxic impacts of weathered polyethylene (wPE) microplastics and stress defensive responses in whiteleg shrimp (Penaeus vannamei). Chemosphere, 2022, 300, 134487.	4.2	14

#	ARTICLE	IF	CITATIONS
393	Review on migration, transformation and ecological impacts of microplastics in soil. Applied Soil Ecology, 2022, 176, 104486.	2.1	87
394	Estimating global marine surface microplastic abundance: systematic literature review. Science of the Total Environment, 2022, 832, 155064.	3.9	29
395	Recent Progress on Starch Maleate/Polylactic Acid Blends for Compostable Food Packaging Applications. ACS Sustainable Chemistry and Engineering, 2022, 10, 3-15.	3.2	8
396	COVID-19 Face Masks as a Long-Term Source of Microplastics in Recycled Urban Green Waste. Sustainability, 2022, 14, 207.	1.6	14
397	Occurrence of microplastics in the sediments of Baseco Port area at Manila Bay, Philippines. IOP Conference Series: Earth and Environmental Science, 2021, 958, 012009.	0.2	3
398	Study of the Rheological Properties of PVC Composites Plasticized with Butoxyethyl Adipates. ChemEngineering, 2021, 5, 85.	1.0	2
399	Quantifying the Dynamics of Polystyrene Microplastics UV-Aging Process. Environmental Science and Technology Letters, 2022, 9, 50-56.	3.9	56
400	Rapid Degradation of Cellulose Diacetate by Marine Microbes. Environmental Science and Technology Letters, 2022, 9, 37-41.	3.9	14
401	Artificial Ageing, Chemical Resistance, and Biodegradation of Biocomposites from Poly(Butylene) Tj ETQq0 0 0 0	rgBT_/Overl	ock 10 Tf 50
402	Production of Feather-Based Biopolymers as a Direct Alternative to Synthetic Plastics. ACS Sustainable Chemistry and Engineering, 2022, 10, 486-494.	3.2	1
403	Transfer of Poly(methyl methacrylate) Nanoparticles from Parents to Offspring and the Protection Mechanism in Two Marine Invertebrates. ACS Sustainable Chemistry and Engineering, 2022, 10, 37-49.	3.2	3
404	Environmental Impacts of Microplastics and Nanoplastics: A Current Overview. Frontiers in Microbiology, 2021, 12, 768297.	1.5	69
405	Modifications of Polymers through the Addition of Ultraviolet Absorbers to Reduce the Aging Effect of Accelerated and Natural Irradiation. Polymers, 2022, 14, 20.	2.0	29
406	"Indanonalkene―Photoluminescence Platform: Application in Real-Time Tracking the Synthesis, Remodeling, and Degradation of Soft Materials. Journal of the American Chemical Society, 2021, 143, 21622-21629.	6.6	13
407	High- <i>T</i> _g and Degradable Isosorbide-Based Polybenzoxazine Vitrimer. ACS Sustainable Chemistry and Engineering, 2022, 10, 594-602.	3.2	50
408	Chemical recycling of polyhydroxybutyrate and polylactic acid over supported Ru catalysts. Green Chemistry, 2022, 24, 3957-3963.	4.6	17
409	Industrial chemicals as micropollutants in the environment. , 2022, , 13-44.		0
410	Surface properties and rising velocities of pristine and weathered plastic pellets. Environmental Sciences: Processes and Impacts, 2022, 24, 794-804.	1.7	2

#	Article	IF	CITATIONS
411	Hydrothermal Synthesis and Photocatalytic Activity of NiO Nanoparticles under Visible Light Illumination. Bulletin of Chemical Reaction Engineering and Catalysis, 2022, 17, 340-349.	0.5	7
412	The 3D-Printing-Accelerated Design for a Biodegradable Respirator from Tree Leaves (TRespirator). Polymers, 2022, 14, 1681.	2.0	1
413	Rethinking our chemical legacy and reclaiming our planet. One Earth, 2022, 5, 316-319.	3.6	2
414	Biodegradation of petroleum based and bio-based plastics: approaches to increase the rate of biodegradation. Archives of Microbiology, 2022, 204, 258.	1.0	15
415	Investigating the dispersal of macro- and microplastics on agricultural fields 30Âyears after sewage sludge application. Scientific Reports, 2022, 12, 6401.	1.6	32
416	Upcycling Plastic Wastes into Valueâ€Added Products by Heterogeneous Catalysis. ChemSusChem, 2022, 15, .	3.6	29
417	Poly(lactic acid) (PLA)-based mulch films: evaluation of mechanical, thermal, barrier properties and aerobic biodegradation characteristics in real-time environment. Polymer Bulletin, 2023, 80, 3649-3674.	1.7	7
418	Microplastics released from food containers can suppress lysosomal activity in mouse macrophages. Journal of Hazardous Materials, 2022, 435, 128980.	6.5	40
419	Progress in Degradation Behavior of Most Common Types of Functionalized Polymers: A Review. Macromolecular Rapid Communications, 2022, 43, e2200254.	2.0	13
420	Plastics and climate changeâ€"Breaking carbon lock-ins through three mitigation pathways. One Earth, 2022, 5, 361-376.	3.6	52
421	Bio-Degradable Polyesters with Rigid Cyclic Diester from Camphor and Tartaric Acid. Journal of Polymers and the Environment, 2022, 30, 3463-3473.	2.4	4
422	Laboratory-scale study of a biodegradable microplastic polylactic acid stabilizing aerobic granular sludge system. Environmental Pollution, 2022, 306, 119329.	3.7	9
423	Simulated degradation of low-density polyethylene and polypropylene due to ultraviolet radiation and water velocity in the aquatic environment. Journal of Environmental Chemical Engineering, 2022, 10, 107553.	3.3	13
427	Bioanalytical approaches for the detection, characterization, and risk assessment of micro/nanoplastics in agriculture and food systems. Analytical and Bioanalytical Chemistry, 2022, 414, 4591-4612.	1.9	6
428	Raman technology application for plastic waste management aligned with FAIR principle to support the forthcoming plastic and environment initiatives. Waste Management, 2022, 144, 479-489.	3.7	4
430	Development of natural rubber with enhanced oxidative degradability. Polymer Bulletin, 2023, 80, 3927-3948.	1.7	2
431	Chemically triggered life control of "smart―hydrogels through click and declick reactions. Frontiers of Chemical Science and Engineering, 0, , .	2.3	2
432	3D micromolding of seed-like probes for self-burying soft robots. , 2022, , .		3

#	Article	IF	CITATIONS
433	Bio-Based Materials Riding the Wave of Sustainability: Common Misconceptions, Opportunities, Challenges and the Way Forward. Sustainability, 2022, 14, 5032.	1.6	6
434	Fate of face masks after being discarded into seawater: Aging and microbial colonization. Journal of Hazardous Materials, 2022, 436, 129084.	6.5	24
435	Recycling of plastic wastes generated from COVID-19: A comprehensive illustration of type and properties of plastics with remedial options. Science of the Total Environment, 2022, 838, 155895.	3.9	13
436	Analysis of volatile organic compounds produced during incineration of non-degradable and biodegradable plastics. Chemosphere, 2022, 303, 134946.	4.2	17
437	Degradable, Recyclable, Water-Resistant, and Eco-Friendly Poly(vinyl alcohol)-Based Supramolecular Plastics., 2022, 4, 1132-1138.		26
438	Production and Characterization of Maximum Liquid Oil Products through Individual and Copyrolysis of Pressed Neem Oil Cake and Waste Thermocol Mixture. Advances in Polymer Technology, 2022, 2022, 1-11.	0.8	7
439	Effects and Impacts of Different Oxidative Digestion Treatments on Virgin and Aged Microplastic Particles. Polymers, 2022, 14, 1958.	2.0	15
440	Effects of plastic residues and microplastics on soil ecosystems: A global meta-analysis. Journal of Hazardous Materials, 2022, 435, 129065.	6.5	82
441	A quantitative method for evaluating ecological risks associated with long-term degradation of deep-sea plastic-containing infrastructure., 2022, 62, 141-158.		3
442	Modeling and Optimization of Properties of the Environmentally Clean Molds Based on Oligofurfuryloxysiloxanes for the Production the Metal Castings. Polymers, 2022, 14, 1883.	2.0	2
443	Palm fatty acid distillate esterification using synthesized heterogeneous sulfonated carbon catalyst from plastic waste: Characterization, catalytic efficacy and stability, and fuel properties. Chemical Engineering Research and Design, 2022, 162, 1139-1151.	2.7	14
444	Assessing the anaerobic degradability and the potential recovery of biomethane from different biodegradable bioplastics in a full-scale approach. Bioresource Technology, 2022, 354, 127224.	4.8	24
445	Can we quantify the aquatic environmental plastic load from aquaculture?. Water Research, 2022, 219, 118551.	5.3	52
446	Design and implementation of a fuzzy control of temperature for a plastic aging chamber. ECORFAN Journal-Democratic Republic of Congo, 0, , 27-34.	0.0	0
447	Identification and toxicity towards aquatic primary producers of the smallest fractions released from hydrolytic degradation of polycaprolactone microplastics. Chemosphere, 2022, 303, 134966.	4.2	14
448	Applications of Starch Biopolymers for a Sustainable Modern Agriculture. Sustainability, 2022, 14, 6085.	1.6	32
449	Microplastic properties and their interaction with hydrophobic organic contaminants: a review. Environmental Science and Pollution Research, 2022, 29, 49490-49512.	2.7	34
451	Biopolymers: Global Carbon Footprint and Climate Change. Springer Series on Polymer and Composite Materials, 2022, , 35-54.	0.5	2

#	Article	IF	Citations
452	Multifunctional Bacterial Cellulose–Chitosan Tape: An Innovative Substitute for PVC. , 2022, 8, .		0
453	Pearl millet starch-based nanocomposite films reinforced with Kudzu cellulose nanocrystals and essential oil: Effect on functionality and biodegradability. Food Research International, 2022, 157, 111384.	2.9	21
454	Physicochemical characterization and biodegradation test of oxo-degradable linear low-density polyethylene films subjected to gamma irradiation and accelerated weathering. Materials Chemistry and Physics, 2022, 287, 126282.	2.0	2
455	High-strength, lightweight and sustainable lignin contained cellulose nanofiber bulk materials for plastic replacement. Industrial Crops and Products, 2022, 185, 115106.	2.5	9
457	Preparation and characterization of green composites based on expanded polystyrene waste and biomass: Sustainable management approach. Materials Today: Proceedings, 2022, 66, 1762-1768.	0.9	2
458	Microplastics in industrial and urban areas in South-West Iran. International Journal of Environmental Science and Technology, 2022, 19, 10199-10210.	1.8	6
459	Recent Progress, Challenges, and Trends in Polymer-Based Sensors: A Review. Polymers, 2022, 14, 2164.	2.0	12
460	Biodeterioration of Microplastics: A Promising Step towards Plastics Waste Management. Polymers, 2022, 14, 2275.	2.0	23
461	Oxidative degradation of pre-oxidated polystyrene plastics by dye decolorizing peroxidases from Thermomonospora curvata and Nostocaceae. Journal of Hazardous Materials, 2022, 436, 129265.	6.5	6
462	Bio-based poly(butylene diglycolate-co-furandicarboxylate) copolyesters with balanced mechanical, barrier and biodegradable properties: A prospective substitute for PBAT. Polymer Degradation and Stability, 2022, 202, 110010.	2.7	15
463	First insight into the macroplastic storage in a mountain river: The role of in-river vegetation cover, wood jams and channel morphology. Science of the Total Environment, 2022, 838, 156354.	3.9	14
464	Biodegradation of polyethylene and polystyrene: From microbial deterioration to enzyme discovery. Biotechnology Advances, 2022, 60, 107991.	6.0	73
465	Field Application of Biodegradable Microplastics Has No Significant Effect on Plant and Soil Health in the Short Term. SSRN Electronic Journal, 0, , .	0.4	1
466	Microplastic in Oysters: A Review of Global Trends and Comparison to Southern Australia. SSRN Electronic Journal, 0, , .	0.4	0
467	Casein proteins as building-blocks for making ion-conductive bioplastics. Journal of Materials Chemistry A, 0, , .	5.2	3
468	Biodegradable packaging material by using mushroom mycelium. AIP Conference Proceedings, 2022, , .	0.3	0
469	Plastics in soil environments: All things considered. Advances in Agronomy, 2022, , 1-132.	2.4	3
470	Emerging issues and challenges for plastic bioremediation. , 2022, , 589-600.		1

#	Article	IF	CITATIONS
471	Fungal Enzymes Involved in Plastics Biodegradation. Microorganisms, 2022, 10, 1180.	1.6	65
472	UV-assisted TiO2 photocatalytic degradation of virgin LDPE films: Effect of UV-A, UV-C, and TiO2. Journal of Environmental Chemical Engineering, 2022, 10, 108131.	3.3	11
473	3D Printable Sustainable Composites with Thermally Tunable Properties Entirely from Corn-Based Products. ACS Sustainable Chemistry and Engineering, 2022, 10, 7818-7824.	3.2	8
474	In Vitro High-Throughput Toxicological Assessment of Nanoplastics. Nanomaterials, 2022, 12, 1947.	1.9	9
475	Sustainable Poly(butylene adipate- <i>co</i> -furanoate) Composites with Sulfated Chitin Nanowhiskers: Synergy Leading to Superior Robustness and Improved Biodegradation. ACS Sustainable Chemistry and Engineering, 2022, 10, 8411-8422.	3.2	12
476	Assessment of chalcone-vanillin as a selective chemosensor of As(III) in aqueous solution. Journal of Molecular Structure, 2022, 1266, 133558.	1.8	2
477	On the Use of Oxidation Induction Time as a Kinetic Parameter for Condition Monitoring and Lifetime Evaluation under Ionizing Radiation Environments. Polymers, 2022, 14, 2357.	2.0	6
478	Evaluation of Bis (2-ethylhexyl) Phthalate (DEHP) in the PET Bottled Mineral Water of Different Brands and Impact of Heat by GC–MS/MS. Chemistry Africa, 2022, 5, 929-942.	1.2	7
479	Harmful effects of the microplastic pollution on animal health: a literature review. PeerJ, 0, 10, e13503.	0.9	43
480	Implication of microplastic toxicity on functioning of microalgae in aquatic system. Environmental Pollution, 2022, 308, 119626.	3.7	24
481	Cyto–Genotoxic Effect Causing Potential of Polystyrene Micro-Plastics in Terrestrial Plants. Nanomaterials, 2022, 12, 2024.	1.9	10
482	Enzymatic Degradation of Polyethylene Terephthalate Plastics by Bacterial Curli Display PETase. Environmental Science and Technology Letters, 2022, 9, 650-657.	3.9	16
483	Nanoplastics in Aquatic Environments: Impacts on Aquatic Species and Interactions with Environmental Factors and Pollutants. Toxics, 2022, 10, 326.	1.6	30
484	Analysis of Microplastics. Health Information Systems and the Advancement of Medical Practice in Developing Countries, 2022, , 284-305.	0.1	0
485	Biodegradation of Polymers with Microbial Agents. Current Green Chemistry, 2022, 9, 3-13.	0.7	1
486	Promise of nonthermal plasmas in addressing emerging environmental and health problems: Present and future. Physics of Plasmas, 2022, 29, .	0.7	7
487	Microplastics aging in wastewater treatment plants: Focusing on physicochemical characteristics changes and corresponding environmental risks. Water Research, 2022, 221, 118780.	5.3	29
488	A comprehensive review on recent advancements in biodegradation and sustainable management of biopolymers. Environmental Pollution, 2022, 307, 119600.	3.7	45

#	ARTICLE	IF	Citations
489	Plastic is in the air: Impact of micro-nanoplastics from airborne pollution on Tillandsia usneoides (L.) L. (Bromeliaceae) as a possible green sensor. Journal of Hazardous Materials, 2022, 437, 129314.	6.5	17
490	The effects of weathering-induced degradation of polymers in the microplastic study involving reduction of organic matter. Environmental Pollution, 2022, 308, 119669.	3.7	10
491	Novel biopolymer-based sustainable composites for food packaging applications: A narrative review. Food Packaging and Shelf Life, 2022, 33, 100892.	3.3	118
492	Microplastics contamination in bivalves from the Daya Bay: Species variability and spatio-temporal distribution and human health risks. Science of the Total Environment, 2022, 841, 156749.	3.9	31
493	Microplastic Pollution in Aquatic Environments May Facilitate Misfeeding by Fish. SSRN Electronic Journal, 0, , .	0.4	0
494	Weathering of Microplastics and Their Effects on the Transport and Retention of Cadmium in Coastal Soil Saturated with Seawater. SSRN Electronic Journal, 0, , .	0.4	0
495	Impacts of Bond Type and Grafting Density on the Thermal, Structural, and Transport Behaviors of Nanoparticle Organic Hybrid Materialsâ€Based Electrolytes. Advanced Functional Materials, 0, , 2203947.	7.8	4
496	Plastic Waste in India: overview, impact, and measures to mitigate: Review. Journal of Experimental Biology and Agricultural Sciences, 2022, 10, 456-473.	0.1	1
497	Interlocking degradation of vinyl polymers via mainâ€chain CC bonds scission by introducing pendantâ€responsive comonomers. Journal of Polymer Science, 2022, 60, 3435-3446.	2.0	16
498	Merging Plastics, Microbes, and Enzymes: Highlights from an International Workshop. Applied and Environmental Microbiology, 2022, 88, .	1.4	17
499	Degradation of Hydrogels Based on Potassium and Sodium Polyacrylate by Ionic Interaction and Its Influence on Water. Polymers, 2022, 14, 2656.	2.0	1
500	Sustainable production inventory model with greening degree and dual determinants of defective items. Journal of Cleaner Production, 2022, 367, 132879.	4.6	14
501	Degradation of Cellulose Derivatives in Laboratory, Man-Made, and Natural Environments. Biomacromolecules, 2022, 23, 2713-2729.	2.6	42
502	Flame Retardant Coatings: Additives, Binders, and Fillers. Polymers, 2022, 14, 2911.	2.0	20
503	Assessment of microplastics in Irish river sediment. Heliyon, 2022, 8, e09853.	1.4	7
504	In situ laboratory for plastic degradation in the Red Sea. Scientific Reports, 2022, 12, .	1.6	5
505	CH4 and CO2 Emissions from the Decomposition of Microplastics in the Bottom Sedimentâ€"Preliminary Studies. Environments - MDPI, 2022, 9, 91.	1.5	11
507	Comparison of polylactic acid biodegradation ability of Brevibacillus brevis and Bacillus amyloliquefaciens and promotion of PLA biodegradation by soytone. Biodegradation, 2022, 33, 477-487.	1.5	5

#	Article	IF	CITATIONS
508	Ask the shark: blackmouth catshark (Galeus melastomus) as a sentinel of plastic waste on the seabed. Marine Biology, 2022, 169, .	0.7	13
509	Effective Ligand Design: Zinc Complexes with Guanidine Hydroquinoline Ligands for Fast Lactide Polymerization and Chemical Recycling. ChemSusChem, 2022, 15, .	3.6	10
510	Magnetically recyclable flake-like BiOI-Fe3O4 microswimmers for fast and efficient degradation of microplastics. Journal of Environmental Chemical Engineering, 2022, 10, 108275.	3.3	14
511	Biodegradable packaging films with Îμ-polylysine/ZIF-L composites. LWT - Food Science and Technology, 2022, 166, 113776.	2.5	5
512	A pH-responsive/sustained release nitrogen fertilizer hydrogel based on aminated cellulose nanofiber/cationic copolymer for application in irrigated neutral soils. Journal of Cleaner Production, 2022, 368, 133098.	4.6	19
513	The use of Personal Protective Equipment (PPE) and associated environmental challenges: A study on Dhaka, Bangladesh. Heliyon, 2022, 8, e09847.	1.4	4
514	Plastics in soil description and surveys – practical considerations and field guide. Frontiers in Soil Science, 0, 2, .	0.8	2
515	Innovations Toward the Valorization of Plastics Waste. Annual Review of Materials Research, 2022, 52, 249-280.	4.3	21
516	Weathering-independent differentiation of microplastic polymers by reflectance IR spectrometry and pattern recognition. Marine Pollution Bulletin, 2022, 181, 113897.	2.3	2
517	Microplastics can aggravate the impact of ocean acidification on the health of mussels: Insights from physiological performance, immunity and byssus properties. Environmental Pollution, 2022, 308, 119701.	3.7	27
518	Biodegradable active, intelligent, and smart packaging materials for food applications. Food Packaging and Shelf Life, 2022, 33, 100903.	3.3	37
519	Preliminary investigation of microorganisms potentially involved in microplastics degradation using an integrated metagenomic and biochemical approach. Science of the Total Environment, 2022, 843, 157017.	3.9	13
520	Microplastics generation and concentration during mechanical-biological treatment of mixed municipal solid waste. Environmental Research, 2022, 214, 113815.	3.7	10
521	Catalytic glycolysis of polyethylene terephthalate (PET) by solvent-free mechanochemically synthesized MFe2O4 (MÂ=ÂCo, Ni, Cu and Zn) spinel. Chemical Engineering Journal, 2022, 450, 137926.	6.6	23
522	Microbial biodegradation of plastics: Challenges, opportunities, and a critical perspective. Frontiers of Environmental Science and Engineering, 2022, 16, .	3.3	25
523	Plastic bonded plywood using waste polypropylene container. Materials Today: Proceedings, 2022, 67, 471-477.	0.9	6
524	Distribution characteristics of microplastics in the soil of mangrove restoration wetland and the effects of microplastics on soil characteristics. Ecotoxicology, 2022, 31, 1120-1136.	1.1	11
525	Recent advances in the breakdown of microplastics: strategies and future prospectives. Environmental Science and Pollution Research, 2022, 29, 65887-65903.	2.7	24

#	Article	IF	CITATIONS
526	A conceptual framework for understanding the environmental impacts of ultra-processed foods and implications for sustainable food systems. Journal of Cleaner Production, 2022, 368, 133155.	4.6	40
527	Degradation of biodegradable bioplastics under thermophilic anaerobic digestion: A full-scale approach. Journal of Cleaner Production, 2022, 368, 133232.	4.6	19
528	Sustainable approach for valorization of solid wastes as a secondary resource through urban mining. Journal of Environmental Management, 2022, 319, 115727.	3.8	30
529	Highly Sensitive, Ultrastretchable, and Degradable PCT-CNT Strain Sensor for Continuous Monitoring of Male Erectile Dysfunction. IEEE Sensors Journal, 2022, 22, 18961-18969.	2.4	2
530	Microplastic in the Surface Waters of Rural and Urban River Sections: Correlation with Land Use and the Role of Storm Sewers as Potential Pathways. SSRN Electronic Journal, 0, , .	0.4	0
532	Biodegradable and biobased mulch residues had limited impacts on soil properties but reduced yield of the following crop in a low fertility soil. Renewable Agriculture and Food Systems, 2022, 37, 490-503.	0.8	4
533	Effects of Discarded Masks on the Offshore Microorganisms during the COVID-19 Pandemic. Toxics, 2022, 10, 426.	1.6	5
534	A Review of the Fungi That Degrade Plastic. Journal of Fungi (Basel, Switzerland), 2022, 8, 772.	1.5	25
535	Sewage Transport Volumes and Physical Degradation Rates of Personal Care Wipes. Journal of the American Water Resources Association, 2022, 58, 1421-1432.	1.0	1
536	Current Advances in Biodegradation of Polyolefins. Microorganisms, 2022, 10, 1537.	1.6	17
537	Bio-Based Degradable Poly(ether-ester)s from Melt-Polymerization of Aromatic Ester and Ether Diols. International Journal of Molecular Sciences, 2022, 23, 8967.	1.8	6
538	Investigating the Physicochemical Property Changes of Plastic Packaging Exposed to UV Irradiation and Different Aqueous Environments. Microplastics, 2022, 1, 456-476.	1.6	8
539	Lifetime prediction of non-woven face masks in ocean and contributions to microplastics and dissolved organic carbon. Journal of Hazardous Materials, 2023, 441, 129816.	6.5	16
540	Estimation of shelf life of 3D-printed PLA scaffolds by accelerated weathering. Materials Today Communications, 2022, 32, 104140.	0.9	2
541	Physicochemical and biological ageing processes of (micro)plastics in the environment: a multi-tiered study on polyethylene. Environmental Science and Pollution Research, 2023, 30, 6298-6312.	2.7	14
542	Chemical recycling of mixed plastic waste via catalytic pyrolysis. Journal of Environmental Chemical Engineering, 2022, 10, 108494.	3.3	13
543	The Effect of Sodium Hydroxide (NaOH) Concentration on Oil Palm Empty Fruit Bunch (OPEFB) Cellulose Yield. Journal of Physics: Conference Series, 2022, 2314, 012017.	0.3	2
544	Societal acceptance of hydrogen for domestic and export applications in Australia. International Journal of Hydrogen Energy, 2022, 47, 28806-28818.	3.8	26

#	ARTICLE	IF	Citations
545	Life Cycle Assessment of Microplastics Reveals Their Greater Environmental Hazards than Mismanaged Polymer Waste Losses. Environmental Science & Environmental Science & 2022, 56, 11780-11797.	4.6	23
546	Biodegradation of microplastic in freshwaters: A long″asting process affected by the lake microbiome. Environmental Microbiology, 2023, 25, 2669-2680.	1.8	5
547	Ultrasonic evaluation of aging kinetics in amorphous polymer. Applied Physics Letters, 2022, 121, 072202.	1.5	0
548	Valorization of Berries' Agro-Industrial Waste in the Development of Biodegradable Pectin-Based Films for Fresh Salmon (Salmo salar) Shelf-Life Monitoring. International Journal of Molecular Sciences, 2022, 23, 8970.	1.8	7
549	Increasing the Sentinel-2 potential for marine plastic litter monitoring through image fusion techniques. Marine Pollution Bulletin, 2022, 182, 113974.	2.3	10
550	Environmental toxicity and decomposition of polyethylene. Ecotoxicology and Environmental Safety, 2022, 242, 113933.	2.9	43
551	The plate collector, a new option for Pinctada margaritifera spat collection in French Polynesia. Aquaculture Reports, 2022, 26, 101305.	0.7	0
552	Dietary exposure to polystyrene nanoplastics impairs fasting-induced lipolysis in adipose tissue from high-fat diet fed mice. Journal of Hazardous Materials, 2022, 440, 129698.	6.5	21
553	The fragmentation of nano- and microplastic particles from thermoplastics accelerated by simulated-sunlight-mediated photooxidation. Environmental Pollution, 2022, 311, 119847.	3.7	30
554	Microplastics and linear alkylbenzene levels in oysters Crassostrea gigas driven by sewage contamination at an important aquaculture area of Brazil. Chemosphere, 2022, 307, 136039.	4.2	17
555	Microplastic in oysters: A review of global trends and comparison to southern Australia. Chemosphere, 2022, 307, 136065.	4.2	16
556	Nanoplastics: Detection and impacts in aquatic environments – A review. Science of the Total Environment, 2022, 849, 157852.	3.9	24
557	Removal of polystyrene nanoplastic beads using gravity-driven membrane filtration: Mechanisms and effects of water matrices. Chemical Engineering Journal, 2022, 450, 138484.	6.6	19
558	What can we learn from studying plastic debris in the Sea Scheldt estuary?. Science of the Total Environment, 2022, 851, 158226.	3.9	6
559	Synthesis and Application of Levofloxacin–Tin Complexes as New Photostabilizers for Polyvinyl Chloride. Polymers, 2022, 14, 3720.	2.0	10
560	Microplastics as vectors of environmental contaminants: Interactions in the natural ecosystems. Human and Ecological Risk Assessment (HERA), 2022, 28, 1022-1042.	1.7	9
561	Marine Litter Impact on Sandy Beach Fauna: A Review to Obtain an Indication of Where Research Should Contribute More. Microplastics, 2022, 1, 554-571.	1.6	21
562	Enrichment of Methylosinus-dominant consortia from mangroves for polyhydroxybutyrate (PHB) production. Journal of Environmental Chemical Engineering, 2022, 10, 108490.	3.3	5

#	Article	IF	CITATIONS
563	Weathering of microplastics and their enhancement on the retention of cadmium in coastal soil saturated with seawater. Journal of Hazardous Materials, 2022, 440, 129850.	6.5	3
564	Real time degradation studies on polyurethane household sponges in Danish weather and marine environments. Marine Pollution Bulletin, 2022, 184, 114128.	2.3	2
565	A numerical framework for modeling fate and transport of microplastics in inland and coastal waters. Marine Pollution Bulletin, 2022, 184, 114119.	2.3	10
566	Fate, transport and degradation pathway of microplastics in aquatic environment — A critical review. Regional Studies in Marine Science, 2022, 56, 102647.	0.4	4
567	Microplastics in ASEAN region countries: A review on current status and perspectives. Marine Pollution Bulletin, 2022, 184, 114118.	2.3	12
568	Microplastic burden in Africa: A review of occurrence, impacts, and sustainability potential of bioplastics. Chemical Engineering Journal Advances, 2022, 12, 100402.	2.4	15
569	Degradation-fragmentation of marine plastic waste and their environmental implications: A critical review. Arabian Journal of Chemistry, 2022, 15, 104262.	2.3	34
570	Catalytic hydrogenolysis of plastic to liquid hydrocarbons over a nickel-based catalyst. Environmental Pollution, 2022, 313, 120154.	3.7	15
571	Opportunities for the development of cassava waste biorefineries for the production of polyhydroxyalkanoates in Sub-Saharan Africa. Biomass and Bioenergy, 2022, 166, 106600.	2.9	10
572	Biomass chemical upcycling of waste rPET for the fabrication of formamide-free TPEE microcellular foams via scCO2 foaming. Journal of CO2 Utilization, 2022, 65, 102199.	3.3	12
573	Hydrothermal deconstruction of single-use personal protective equipment during the COVID-19 pandemic. Waste Management, 2022, 153, 178-187.	3.7	2
574	Hypercrosslinked waste polymers as adsorbents for O2/N2 separation. Materials Chemistry and Physics, 2022, 292, 126779.	2.0	9
575	A systematic review on bioplastic-soil interaction: Exploring the effects of residual bioplastics on the soil geoenvironment. Science of the Total Environment, 2022, 851, 158311.	3.9	10
576	PVA/CNC/TiO2 nanocomposite for food-packaging: Improved mechanical, UV/water vapor barrier, and antimicrobial properties. Carbohydrate Polymers, 2022, 298, 120064.	5.1	36
577	Microbial communities in plastisphere and free-living microbes for microplastic degradation: A comprehensive review. , 2022, 3, 100030.		11
578	Biodegradable dual-layer Polyhydroxyalkanoate (pha)/Polycaprolactone (pcl) mulch film for agriculture: Preparation and characterization. Energy Nexus, 2022, 8, 100137.	3.3	9
579	The effect of weathering environments on microplastic chemical identification with Raman and IR spectroscopy: Part I. polyethylene and polypropylene. Polymer Testing, 2022, 116, 107752.	2.3	40
580	Comprehensive analysis of spatial distribution of microplastics in Rawal Lake, Pakistan using trawl net and sieve sampling methods. Chemosphere, 2022, 308, 136111.	4.2	9

#	Article	IF	CITATIONS
581	Sources, sinks and transformations of plastics in our oceans: Review, management strategies and modelling. Science of the Total Environment, 2023, 854, 158745.	3.9	17
582	Sources and occurrence of microplastics and nanoplastics in the environment., 2023, , 33-58.		1
583	Abiotic plastic leaching contributes to ocean acidification. Science of the Total Environment, 2023, 854, 158683.	3.9	13
584	Anaerobic Digestion of Organic Waste Allows Recovering Energy and Enhancing the Subsequent Bioplastic Degradation in Soil. SSRN Electronic Journal, 0, , .	0.4	0
585	Optimization of spray-coated nanochitin/nanocellulose films as renewable oxygen barrier layers <i>via</i> thermal treatment. Materials Advances, 2022, 3, 8351-8360.	2.6	2
586	Valorization of Solid Waste from Landfill Activities. Radionuclides and Heavy Metals in Environment, 2022, , 219-233.	0.5	0
587	Threats of Microplastic Pollution on Aquaculture Activities in Indonesia. TORANI Journal of Fisheries and Marine Science, 0, , 77-91.	0.1	1
588	Anaerobic digestion of organic waste allows recovering energy and enhancing the subsequent bioplastic degradation in soil. Resources, Conservation and Recycling, 2023, 188, 106694.	5.3	11
589	Utilization of Metal Oxides Nanoparticles in Modulating Polyvinyl Chloride Films to Resist Ultraviolet Light. Metals, 2022, 12, 1413.	1.0	5
591	Assessing Molecular Docking Tools to Guide the Design of Polymeric Materials Formulations: A Case Study of Canola and Soybean Protein. Polymers, 2022, 14, 3690.	2.0	2
592	Polylactic Acid/Halloysite Nanotube Bionanocomposite Films for Food Packaging. Advanced Structured Materials, 2023, , 141-168.	0.3	0
593	A framework for inland cities to prevent marine debris: A case study from Durham, North Carolina. Frontiers in Marine Science, 0, 9, .	1.2	1
594	Revalorization of Microalgae Biomass for Synergistic Interaction and Sustainable Applications: Bioplastic Generation. Marine Drugs, 2022, 20, 601.	2.2	3
595	Fate of petroleum-based and plant-based teabags exposed to environmental soil conditions for one year. Frontiers in Bioengineering and Biotechnology, $0,10,10$	2.0	2
596	The one-humped camel: The animal of future, potential alternative red meat, technological suitability and future perspectives. F1000Research, 0, 11, 1085.	0.8	0
597	Booming microplastics generation in landfill: An exponential evolution process under temporal pattern. Water Research, 2022, 223, 119035.	5.3	20
598	Microplastics: Global occurrence, impact, characteristics and sorting. Frontiers in Marine Science, 0, 9, .	1.2	7
599	Investigating the effects of biodegradable microplastics and copper ions on probiotic (Bacillus) Tj ETQq1 1 0.784	314.rgBT /	'Oyerlock 10

#	Article	IF	CITATIONS
600	Flexural behavior of sustainable reinforced concrete beams containing HDPE plastic waste as coarse aggregate. Cogent Engineering, 2022, 9 , .	1.1	2
601	Biobased Polymer Composites: A Review. Journal of Composites Science, 2022, 6, 255.	1.4	31
602	Seasonal variation and complex analysis of microplastic distribution in different WWTP treatment stages in Lithuania. Environmental Monitoring and Assessment, 2022, 194, .	1.3	15
603	Killing two birds with one stone: chemical and biological upcycling of polyethylene terephthalate plastics into food. Trends in Biotechnology, 2023, 41, 184-196.	4.9	17
604	Degradation of Polyethylene Terephthalate Microplastics by Mineral Acids: Experimental, Molecular Modelling and Optimization Studies. Journal of Polymers and the Environment, 2022, 30, 5211-5227.	2.4	9
605	Enabling resource circularity through thermo-catalytic and solvent-based conversion of waste plastics. Chem Catalysis, 2022, 2, 3320-3356.	2.9	15
607	Cationic Copolymers of Norbornylized Seed Oils for Fiber-Reinforced Composite Applications. ACS Omega, 2022, 7, 33949-33962.	1.6	10
608	Biodegradation of oxidized high-density polyethylene and oxo-degradable plastic using microalgae <i>Dunaliella salina</i> . Environmental Pollutants and Bioavailability, 2022, 34, 469-481.	1.3	9
609	Autophagic response of intestinal epithelial cells exposed to polystyrene nanoplastics. Environmental Toxicology, 2023, 38, 205-215.	2.1	12
610	Airborne Microplastic in the Atmospheric Deposition and How to Identify and Quantify the Threat: Semi-Quantitative Approach Based on Kraków Case Study. International Journal of Environmental Research and Public Health, 2022, 19, 12252.	1.2	6
611	Sustainable Thermosets and Composites Based on the Epoxides of Norbornylized Seed Oils and Biomass Fillers. ACS Sustainable Chemistry and Engineering, 2022, 10, 12342-12354.	3.2	17
612	Optimization of the Physical Properties of HDPE/PU Blends through Improved Compatibility and Electron Beam Crosslinking. Polymers, 2022, 14, 3607.	2.0	4
613	Microbial enzymes will offer limited solutions to the global plastic pollution crisis. Microbial Biotechnology, 2023, 16, 195-217.	2.0	31
614	Highly reinforced and degradable lignocellulose biocomposites by polymerization of new polyester oligomers. Nature Communications, 2022, 13 , .	5.8	14
616	Pyrolysis of typical plastics and coupled with steam reforming of their derived volatiles for simultaneous production of hydrogen-rich gases and heavy organics. Renewable Energy, 2022, 200, 476-491.	4.3	12
617	Melt Processing Pretreatment Effects on Enzymatic Depolymerization of Poly(ethylene terephthalate). ACS Sustainable Chemistry and Engineering, 2022, 10, 13619-13628.	3.2	8
618	Deconstruction and valorisation of a mixture of personal protective equipment using hydrothermal processing. Journal of Industrial and Engineering Chemistry, 2022, 115, 583-593.	2.9	1
619	Biodegradability under marine conditions of bio-based and petroleum-based polymers as substitutes of conventional microparticles. Polymer Degradation and Stability, 2022, 206, 110159.	2.7	17

#	Article	IF	CITATIONS
620	Synthetic (bio)degradable polymers – when does recycling fail?. Green Chemistry, 2023, 25, 13-31.	4.6	11
621	Aging of colloidal contaminants and pathogens in the soil environment: Implications for nanoplastic and COVIDâ \in 9 risk mitigation. Soil Use and Management, 2023, 39, 70-91.	2.6	14
623	Ultrasonication-aided photocatalytic degradation of polyethylene. Materials Today: Proceedings, 2023, 72, 500-506.	0.9	0
624	Potential human health risk assessment of microplastic exposure: current scenario and future perspectives. Environmental Monitoring and Assessment, 2022, 194, .	1.3	8
625	Myco-degradation of microplastics: an account of identified pathways and analytical methods for their determination. Biodegradation, 2022, 33, 529-556.	1.5	8
626	Tissue Engineering Scaffold Material with Enhanced Cell Adhesion and Angiogenesis from Soy Protein Isolate Loaded with Bio Modulated Micro-TiO ₂ Prepared via Prolonged Sonication for Wound Healing Applications. ACS Biomaterials Science and Engineering, 2022, 8, 4896-4908.	2.6	4
627	Environmental Impact of Polymer Fiber Manufacture. Macromolecular Materials and Engineering, 2022, 307, .	1.7	6
628	Field application of biodegradable microplastics has no significant effect on plant and soil health in the short term. Environmental Pollution, 2023, 316, 120556.	3.7	12
629	Thermal and photo oxidative degradation of natural rubber film in the presence of iron (III) stearate. Journal of Polymer Research, 2022, 29, .	1.2	2
630	Modification of Poly(lactic acid) with Orange Peel Powder as Biodegradable Composite. Polymers, 2022, 14, 4126.	2.0	6
631	Simultaneous Upcycling of Biodegradable Plastic and Sea Shell Wastes Through Thermocatalytic Monomer Recovery. ACS Sustainable Chemistry and Engineering, 2022, 10, 13972-13979.	3.2	10
632	Polylactic Acid Chemical Foaming Assisted by Solid-State Processing: Solid-State Shear Pulverization and Cryogenic Milling. Polymers, 2022, 14, 4480.	2.0	2
633	VEBA: a modular end-to-end suite for in silico recovery, clustering, and analysis of prokaryotic, microeukaryotic, and viral genomes from metagenomes. BMC Bioinformatics, 2022, 23, .	1.2	7
634	Novel Approach in Biodegradation of Synthetic Thermoplastic Polymers: An Overview. Polymers, 2022, 14, 4271.	2.0	6
635	A transdisciplinary approach to reducing global plastic pollution. Frontiers in Marine Science, 0, 9, .	1.2	3
636	Performance of Biodegradable Biochar-Added and Bio-Based Plastic Clips for Growing Tomatoes. Materials, 2022, 15, 7205.	1.3	1
637	Time-course biofilm formation and presence of antibiotic resistance genes on everyday plastic items deployed in river waters. Journal of Hazardous Materials, 2023, 443, 130271.	6.5	9
638	Emerging plastic litter variants: A perspective on the latest global developments. Science of the Total Environment, 2023, 858, 159859.	3.9	4

#	Article	IF	CITATIONS
639	ICTAC Kinetics Committee recommendations for analysis of thermal decomposition kinetics. Thermochimica Acta, 2023, 719, 179384.	1.2	93
640	Biodegradation of Biodegradable Polymers in Mesophilic Aerobic Environments. International Journal of Molecular Sciences, 2022, 23, 12165.	1.8	40
641	Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chemical Reviews, 2023, 123, 2609-2734.	23.0	53
642	Plants oxidative response to nanoplastic. Frontiers in Plant Science, 0, 13, .	1.7	12
643	On the Use of Polymer-Based Composites for the Creation of Optical Sensors: A Review. Polymers, 2022, 14, 4448.	2.0	16
644	Novel Active Food Packaging Films Based on Gelatin-Sodium Alginate Containing Beetroot Peel Extract. Antioxidants, 2022, 11, 2095.	2.2	18
645	An Overview into Polyethylene Terephthalate (PET) Hydrolases and Efforts in Tailoring Enzymes for Improved Plastic Degradation. International Journal of Molecular Sciences, 2022, 23, 12644.	1.8	14
646	Characterization of Self-Growing Biomaterials Made of Fungal Mycelium and Various Lignocellulose-Containing Ingredients. Materials, 2022, 15, 7608.	1.3	3
647	Synthesis of Methyldopa–Tin Complexes and Their Applicability as Photostabilizers for the Protection of Polyvinyl Chloride against Photolysis. Polymers, 2022, 14, 4590.	2.0	8
648	Hemp Shives Mycelium Composites - An Alternative Material for Traditionally Used Plastic Packaging. Materials Science Forum, 0, 1071, 126-138.	0.3	0
649	Microplastics in human food chains: Food becoming a threat to health safety. Science of the Total Environment, 2023, 858, 159834.	3.9	87
650	Mechanical fatigue of recycled and virgin highâ€flowâ€density polyethylene. Journal of Applied Polymer Science, 0, , .	1.3	3
651	Upcycling opportunities and potential markets for aluminium composite panels with polyethylene core (ACP-PE) cladding materials in Australia: A review. Construction and Building Materials, 2022, 357, 129194.	3.2	3
652	Advancing biological processing for valorization of plastic wastes. Renewable and Sustainable Energy Reviews, 2022, 170, 112966.	8.2	12
653	Microbial degradation of polystyrene microplastics by a novel isolated bacterium in aquatic ecosystem. Sustainable Chemistry and Pharmacy, 2022, 30, 100873.	1.6	10
654	Microplastic pollution in aquatic environments may facilitate misfeeding by fish. Environmental Pollution, 2022, 315, 120457.	3.7	6
655	Bioplastics: known effects and potential consequences to marine and estuarine ecosystem services. Chemosphere, 2022, 309, 136810.	4.2	9
656	Novel process design and techno-economic simulation of methanol synthesis from blast furnace gas in an integrated steelworks CCUS system. Journal of CO2 Utilization, 2022, 66, 102278.	3.3	12

#	Article	IF	Citations
657	Multinuclear metal catalysts in ring-opening polymerization of Îμ‑caprolactone and lactide: Cooperative and electronic effects between metal centers. Coordination Chemistry Reviews, 2023, 475, 214847.	9.5	36
658	Visual design of high-density polyethylene into wood plastic composite with multiple desirable features: A promising strategy for plastic waste valorization. Journal of Building Engineering, 2023, 63, 105445.	1.6	9
659	Beeswax multifunctional composites with thermal-healing capability and recyclability. Chemical Engineering Journal, 2023, 453, 139840.	6.6	3
660	Hydrolysis embrittles poly(lactic acid). MRS Bulletin, 2023, 48, 45-55.	1.7	4
661	Screening of polymer types and chemical weathering in macro- and meso-plastics found on lake and river beaches using a combined chemometric approach. Analytical Methods, 2022, 14, 4977-4989.	1.3	2
662	Carbon conversion: opportunities in chemical productions. , 2023, , 479-524.		0
663	Classification of (micro)plastics using cathodoluminescence and machine learning. Talanta, 2023, 253, 123985.	2.9	2
664	Revolutionary Plastic Mechanical Recycling Process: Regeneration of Mechanical Properties and Lamellar Structures. , 0, , .		O
665	Meso- and microplastic distribution and spatial connections to metal contaminations in highly cultivated and urbanised floodplain soilscapes $\hat{a} \in \hat{a}$ a case study from the Nidda River (Germany). Microplastics and Nanoplastics, 2022, 2, .	4.1	2
666	Synthesis and Degradation of Vinyl Polymers with Evenly Distributed Thioacetal Bonds in Main Chains: Cationic DT Copolymerization of Vinyl Ethers and Cyclic Thioacetals. Angewandte Chemie, 2023, 135, .	1.6	2
667	Effects of plastic particles on aquatic invertebrates and fish – A review. Environmental Toxicology and Pharmacology, 2022, 96, 104013.	2.0	42
668	Microbial community shifts induced by plastic and zinc as substitutes of tire abrasion. Scientific Reports, 2022, 12, .	1.6	2
669	Digestion of preserved and unpreserved fish intestines for microplastic analysis with emphasis on quality assurance. Journal of Cellular Biotechnology, 2022, , 1-17.	0.1	0
670	Synthesis and Degradation of Vinyl Polymers with Evenly Distributed Thioacetal Bonds in Main Chains: Cationic DT Copolymerization of Vinyl Ethers and Cyclic Thioacetals. Angewandte Chemie - International Edition, 2023, 62, .	7.2	9
671	Methods of Analyses for Biodegradable Polymers: A Review. Polymers, 2022, 14, 4928.	2.0	14
672	Generating environmental sampling and testing data for micro- and nanoplastics for use in life cycle impact assessment. Science of the Total Environment, 2023, 859, 160038.	3.9	6
673	High performance and waterâ€degradable poly(neopentyl terephthalateâ€coâ€neopentyl succinate) copolymers: Synthesis, properties, and hydrolysis in different aquatic bodies. Journal of Applied Polymer Science, 0, , .	1.3	1
674	Temporal and spatial evolution of enzymatic degradation of amorphous PET plastics. Npj Materials Degradation, 2022, 6, .	2.6	5

#	Article	IF	CITATIONS
675	Structural breakdown and phytotoxic assessments of PE degradation through acid hydrolysis, starch addition and Pseudomonas aeruginosa bioremediation. Environmental Research, 2023, 217, 114784.	3.7	7
676	Integrated Approach to Eco-Friendly Thermoplastic Composites Based on Chemically Recycled PET Co-Polymers Reinforced with Treated Banana Fibres. Polymers, 2022, 14, 4791.	2.0	4
677	Impact of \hat{I}^3 -irradiation and SBR content in the compatibility of aminated (PVC/LLDPE)/ZnO for improving their AC conductivity and oil removal. Scientific Reports, 2022, 12, .	1.6	5
678	Zein and Spent Coffee Grounds Extract as a Green Combination for Sustainable Food Active Packaging Production: An Investigation on the Effects of the Production Processes. Applied Sciences (Switzerland), 2022, 12, 11311.	1.3	2
679	Humic Acid Alleviates the Toxicity of Nanoplastics towards Solanum lycopersicum. Agronomy, 2022, 12, 2787.	1.3	1
680	ldentifying plastics with photoluminescence spectroscopy and machine learning. Scientific Reports, 2022, 12, .	1.6	5
681	Unraveling the potential human health risks from used disposable face mask-derived micro/nanoplastics during the COVID-19 pandemic scenario: A critical review. Environment International, 2022, 170, 107644.	4.8	19
682	Maritime pollution in the Indian Ocean after the MV X-Press Pearl accident. Marine Pollution Bulletin, 2022, 185, 114301.	2.3	13
683	Synergistic Effect and Structure–Property of Bio-based 1,6-Hexanediol on Thermal, Mechanical and Degradation Properties of Biopolymers. Journal of Polymers and the Environment, 2023, 31, 1144-1159.	2.4	2
684	Can wood-feeding termites solve the environmental bottleneck caused by plastics? A critical state-of-the-art review. Journal of Environmental Management, 2023, 326, 116606.	3.8	9
685	A review of disposable facemasks during the COVID-19 pandemic: A focus on microplastics release. Chemosphere, 2023, 312, 137178.	4.2	19
686	Sediment and interstitial water heavy metals in mangrove restoration wetland and preliminary exploration of microplastics in interstitial water. Catena, 2023, 221, 106764.	2.2	2
687	Critical Review on the Progress of Plastic Bioupcycling Technology as a Potential Solution for Sustainable Plastic Waste Management. Polymers, 2022, 14, 4996.	2.0	9
688	Biodegradable biopolymers for active packaging: demand, development and directions., 2023, 1, 50-72.		33
689	Plastic litter in coastal sand dunes: Degradation behavior and impact on native and non-native invasive plants. Environmental Pollution, 2023, 316, 120738.	3.7	10
690	New insights into urethane alcoholysis enable chemical full recycling of blended fabric waste. Green Chemistry, 2023, 25, 245-255.	4.6	8
691	Progress and perspective for conversion of plastic wastes into valuable chemicals. Chemical Society Reviews, 2023, 52, 8-29.	18.7	78
692	Microplastic contamination in coral reef fishes and its potential risks in the remote Xisha areas of the South China Sea. Marine Pollution Bulletin, 2023, 186, 114399.	2.3	18

#	Article	IF	CITATIONS
693	A stable isotope assay with 13C-labeled polyethylene to investigate plastic mineralization mediated by Rhodococcus ruber. Marine Pollution Bulletin, 2023, 186, 114369.	2.3	24
694	Assessing and managing environmental hazards of polymers: historical development, science advances and policy options. Environmental Sciences: Processes and Impacts, 2023, 25, 10-25.	1.7	5
695	Environmental (in)justice in the Anthropocene ocean. Marine Policy, 2023, 147, 105383.	1.5	26
696	Microplastics and plastics-associated contaminants in food and beverages; Global trends, concentrations, and human exposure. Environmental Pollution, 2023, 317, 120747.	3.7	46
697	UV and chemical aging alter the adsorption behavior of microplastics for tetracycline. Environmental Pollution, 2023, 318, 120859.	3.7	35
698	Unlocking the biotechnological and environmental perspectives of microplastic degradation in soil-ecosystems using metagenomics. Chemical Engineering Research and Design, 2023, 170, 372-379.	2.7	6
699	Microplastic contamination in commercial fish species in southern coastal region of India. Chemosphere, 2023, 313, 137486.	4.2	14
700	Multifunctional nanocomposite based on polyvinyl alcohol, cellulose nanocrystals, titanium dioxide, and apple peel extract for food packaging. International Journal of Biological Macromolecules, 2023, 227, 551-563.	3.6	7
701	Removal of polyester fibre microplastics from wastewater using a UV/H2O2 oxidation process. Journal of Environmental Chemical Engineering, 2023, 11 , 109057 .	3.3	11
702	Insights into the removal of microplastics and microfibres by Advanced Oxidation Processes. Science of the Total Environment, 2023, 861, 160665.	3.9	14
703	Bioremediation of microplastics in freshwater environments: A systematic review of biofilm culture, degradation mechanisms, and analytical methods. Science of the Total Environment, 2023, 863, 160953.	3.9	24
704	Multi-objective optimization of mechanical properties of chemically treated bio-based composites using response surface methodology. Composites Part C: Open Access, 2023, 10, 100337.	1.5	O
705	Co-combustion of multilayered plastic waste blend with biomass: Thermokinetics and synergistic effect. Fuel, 2023, 337, 127168.	3.4	5
706	Study of pyrolysis kinetics on domestic plastic waste. AIP Conference Proceedings, 2022, , .	0.3	1
707	Microplastic pollution and its implicated risks in the estuarine environment of Tamil Nadu, India. Science of the Total Environment, 2023, 861, 160572.	3.9	6
708	Oxidative Roles of Polystyrene-Based Nanoplastics in Inducing Manganese Oxide Formation under Light Illumination. ACS Nano, 2022, 16, 20238-20250.	7. 3	6
709	Degradation and optimization of microplastic in aqueous solutions with graphene oxide-based nanomaterials. International Journal of Environmental Science and Technology, 2023, 20, 9693-9706.	1.8	6
710	Sustainable Environmental Assessment of Waste-to-Energy Practices: Co-Pyrolysis of Food Waste and Discarded Meal Boxes. Foods, 2022, 11, 3840.	1.9	5

#	ARTICLE	IF	CITATIONS
711	Toward Sustainable Wearable Electronic Textiles. ACS Nano, 2022, 16, 19755-19788.	7.3	42
712	Screening of Polyethylene-Degrading Bacteria from Rhyzopertha Dominica and Evaluation of Its Key Enzymes Degrading Polyethylene. Polymers, 2022, 14, 5127.	2.0	10
713	Czy plastik może rozpoczÄć nowÄ erÄ™ w archiwizacji danych?. Archeion, 0, 123, .	0.1	0
714	Understanding the Structure–Activity Relationships in Catalytic Conversion of Polyolefin Plastics by Zeolite-Based Catalysts: A Critical Review. ACS Catalysis, 2022, 12, 14882-14901.	5. 5	39
716	Quality Assessment of Waste from Olive Oil Production and Design of Biodegradable Packaging. Foods, 2022, 11, 3776.	1.9	1
717	Customizable Machine-Learning Models for Rapid Microplastic Identification Using Raman Microscopy. Analytical Chemistry, 2022, 94, 17011-17019.	3.2	12
718	Modelling floating riverine litter in the south-eastern Bay of Biscay: a regional distribution from a seasonal perspective. Ocean Science, 2022, 18, 1703-1724.	1.3	4
719	Plastic futures and their CO2 emissions. Nature, 2022, 612, 272-276.	13.7	107
720	Synergistic and Antagonistic Effects of the Co-Pyrolysis of Plastics and Corn Stover to Produce Char and Activated Carbon. ACS Omega, 2023, 8, 380-390.	1.6	1
721	A mass budget and box model of global plastics cycling, degradation and dispersal in the land-ocean-atmosphere system. Microplastics and Nanoplastics, 2022, 2, .	4.1	10
722	Direct Polyethylene Photoreforming into Exclusive Liquid Fuel over Charge-Asymmetrical Dual Sites under Mild Conditions. Nano Letters, 2022, 22, 10066-10072.	4.5	13
723	Screening the Degradation of Polymer Microparticles on a Chip. ACS Omega, 2023, 8, 1710-1722.	1.6	2
724	Assessment of pollution and risks associated with microplastics in the riverine sediments of the Western Ghats: a heritage site in southern India. Environmental Science and Pollution Research, 2023, 30, 32301-32319.	2.7	13
725	Recovery from microplastic-induced marine deoxygenation may take centuries. Nature Geoscience, 2023, 16, 10-12.	5.4	18
726	Advancing life cycle sustainability of textiles through technological innovations. Nature Sustainability, 2023, 6, 243-253.	11.5	18
728	Soil heterogeneity in the horizontal distribution of microplastics influences productivity and species composition of plant communities. Frontiers in Plant Science, 0, 13, .	1.7	4
729	Plastics can be a carbon sink but only under stringent conditions. Nature, 2022, 612, 214-215.	13.7	3
730	Microplastic Textile Fibers Accumulate in Sand and Are Potential Sources of Micro(nano)plastic Pollution. Environmental Science & Eamp; Technology, 2022, 56, 17635-17642.	4.6	16

#	Article	IF	CITATIONS
731	Degradation of commercial biodegradable plastics and temporal dynamics of associated bacterial communities in soils: A microcosm study. Science of the Total Environment, 2023, 865, 161207.	3.9	7
732	Plastic-microbe interaction in the marine environment: Research methods and opportunities. Environment International, 2023, 171, 107716.	4.8	4
733	Understanding challenges associated with plastic and bacterial approach toward plastic degradation. Journal of Basic Microbiology, 2023, 63, 292-307.	1.8	15
734	Biopolymer-Based Blends. , 2023, , 1-29.		O
736	Preparation of polypropylene co-polymer (PPCP) based composites with improved properties in presence of MWCNT and MAgPP fillers. Materials Today: Proceedings, 2022, , .	0.9	0
737	A Raman spectral database of naturally aged plastics: A proofâ€ofâ€oncept study for waste plastic sorting. Journal of Raman Spectroscopy, 2023, 54, 305-313.	1.2	3
738	Solid-Phase Biodegradation of Polylactides (Review). Applied Biochemistry and Microbiology, 2022, 58, 665-676.	0.3	2
739	Finding of Novel Galactose Utilizing Halomonas sp. YK44 for Polyhydroxybutyrate (PHB) Production. Polymers, 2022, 14, 5407.	2.0	16
740	Catalytic Chemical Recycling of Post-Consumer Polyethylene. Journal of the American Chemical Society, 2022, 144, 23280-23285.	6.6	46
741	Dataâ€driven models employed to waste plastic in China: Generation, classification, and environmental assessment. Journal of Industrial Ecology, 0, , .	2.8	1
742	Evaluating strategies for sustainable recovery and recycling of plastic waste in the West Bank of Palestine: The perspectives of plastic companies. Environmental Monitoring and Assessment, 2023, 195, .	1.3	2
743	Microbial engineering strategies for synthetic microplastics clean up: A review on recent approaches. Environmental Toxicology and Pharmacology, 2023, 98, 104045.	2.0	11
744	Incorporation of cinnamon essential oil-loaded Pickering emulsion for improving antimicrobial properties and control release of chitosan/gelatin films. Food Hydrocolloids, 2023, 138, 108438.	5.6	37
745	Developing a methodology to quantify mismanaged plastic waste entering the ocean in coastal countries. Journal of Industrial Ecology, 2022, 26, 2108-2122.	2.8	7
746	Prevalence and implications of microplastics in potable water system: An update. Chemosphere, 2023, 317, 137848.	4.2	14
747	Characterization of fiber fragments released from polyester textiles during UV weathering. Environmental Pollution, 2023, 322, 121012.	3.7	11
748	Bioplastics: A Sustainable and Environment-Friendly Alternative to Plastics. World Journal of Environmental Biosciences, 2022, 11, 16-19.	0.1	0
749	Improving the activity and thermostability of PETase from Ideonella sakaiensis through modulating its post-translational glycan modification. Communications Biology, 2023, 6, .	2.0	11

#	Article	IF	CITATIONS
750	Recovery of (Z)-13-Docosenamide from Industrial Wastewater and Its Application in the Production of Virgin Polypropylene to Improve the Coefficient of Friction in Film Type Applications. Sustainability, 2023, 15, 1247.	1.6	3
751	Microplastics Derived from Food Packaging Wasteâ€"Their Origin and Health Risks. Materials, 2023, 16, 674.	1.3	22
752	Sustainable Strategy for Algae Biomass Waste Management via Development of Novel Bio-Based Thermoplastic Polyurethane Elastomers Composites. Molecules, 2023, 28, 436.	1.7	9
753	Recent advances and future perspectives in engineering biodegradable face masks. Journal of Materials Chemistry A, 2023, 11, 1575-1592.	5.2	7
754	Current status of the direct detection of microplastics in environments and implications for toxicological effects. Chemical Engineering Journal Advances, 2023, 14, 100449.	2.4	11
755	Enhanced degradability of novel PBATCL copolyester: Study on the performance in different environment and exploration of mechanism. European Polymer Journal, 2023, 186, 111834.	2.6	3
756	Characteristics and behaviors of microplastics undergoing photoaging and Advanced Oxidation Processes (AOPs) initiated aging. Water Research, 2023, 232, 119628.	5. 3	22
757	Enzyme catalyzes ester bond synthesis and hydrolysis: The key step for sustainable usage of plastics. Frontiers in Microbiology, 0, 13, .	1.5	14
758	Copper coatings on poly(lactic acid) via rapid magnetron sputtering: Morphology, chemistry, and antimicrobial performance against bacteria and SARS-CoV-2. Materials Today Communications, 2023, 34, 105440.	0.9	3
759	Macrocyclic Allylic Sulfone as a Universal Comonomer in Organocatalyzed Photocontrolled Radical Copolymerization with Vinyl Monomers. Macromolecules, 2023, 56, 2052-2061.	2.2	9
760	Large-scale transfer of Ag nanowires from PET to PC film using a roll-to-roll UV lamination process for a capacitive touch sensor. RSC Advances, 2023, 13, 1551-1557.	1.7	2
761	Poly(Butylene Succinate). Functional Nanocomposite Materials and Applications. Engineering Materials, 2023, , 251-277.	0.3	0
762	Insights into the degradation mechanism of PET and PP under marine conditions using FTIR. Journal of Hazardous Materials, 2023, 447, 130796.	6.5	9
763	Kinetic and mechanistic analysis of membrane fouling in microplastics removal from water by dead-end microfiltration. Journal of Environmental Chemical Engineering, 2023, 11, 109338.	3.3	5
765	Microplastics in rivers along an urban-rural gradient in an urban agglomeration: Correlation with land use, potential sources and pathways. Environmental Pollution, 2023, 321, 121096.	3.7	19
766	Medicinal plants as a cellulose source for the fabrication of poly(lactic acid) composites: A mini-review. Polymers From Renewable Resources, 2023, 14, 44-57.	0.8	0
767	Blending of Low-Density Polyethylene and Poly(Butylene Succinate) (LDPE/PBS) with Polyethylene–Graft–Maleic Anhydride (PE–g–MA) as a Compatibilizer on the Phase Morphology, Mechanical and Thermal Properties. Polymers, 2023, 15, 261.	2.0	6
768	Plastic pollution induced by the COVID-19: Environmental challenges and outlook. Environmental Science and Pollution Research, 2023, 30, 40405-40426.	2.7	9

#	Article	IF	CITATIONS
769	An integrated chemical engineering approach to understanding microplastics. AICHE Journal, 2023, 69,	1.8	4
770	Photochemical weathering of polyurethane microplastics produced complex and dynamic mixtures of dissolved organic chemicals. Environmental Sciences: Processes and Impacts, 2023, 25, 432-444.	1.7	8
771	Microplastics in multimedia environment: A systematic review on its fate, transport, quantification, health risk, and remedial measures. Groundwater for Sustainable Development, 2023, 20, 100889.	2.3	18
772	Biodegradation of poly(ethylene terephthalate): Mechanistic insights, advances, and future innovative strategies. Chemical Engineering Journal, 2023, 457, 141230.	6.6	25
773	Waste wool/polycaprolactone filament towards sustainable use in 3D printing. Journal of Cleaner Production, 2023, 386, 135781.	4.6	11
774	Recent developments in microplastic contaminated water treatment: Progress and prospects of carbon-based two-dimensional materials for membranes separation. Chemosphere, 2023, 316, 137704.	4.2	14
775	The barrier properties of sustainable multiphase and multicomponent packaging materials: A review. Progress in Materials Science, 2023, 133, 101071.	16.0	39
776	Degradation of bio-based film plastics in soil under natural conditions. Science of the Total Environment, 2023, 866, 161401.	3.9	6
777	Lakes with or without urbanization along their coasts had similar level of microplastic contamination, but significant differences were seen between sampling methods. Science of the Total Environment, 2023, 866, 161254.	3.9	4
778	Fragmentation and depolymerization of microplastics in the earthworm gut: A potential for microplastic bioremediation?. Journal of Hazardous Materials, 2023, 447, 130765.	6.5	31
779	Blending Recycled High-Density Polyethylene HDPE (rHDPE) with Virgin (vHDPE) as an Effective Approach to Improve the Mechanical Properties. Recycling, 2023, 8, 2.	2.3	9
780	Evaluating and Modeling the Degradation of PLA/PHB Fabrics in Marine Water. Polymers, 2023, 15, 82.	2.0	2
781	Microplastics Release from Conventional Plastics during Real Open Windrow Composting. Sustainability, 2023, 15, 758.	1.6	1
782	Microplastics in Fish and Fishery Products and Risks for Human Health: A Review. International Journal of Environmental Research and Public Health, 2023, 20, 789.	1.2	32
783	A review on state-of-the-art detection techniques for micro- and nano-plastics with prospective use in point-of-site detection. Comprehensive Analytical Chemistry, 2023, , 143-196.	0.7	1
784	Bioplastics, biodegradable plastics, and degradation in natural environments., 2023,, 47-67.		0
785	Enhancement of Photostabilization of Poly(Vinyl Chloride) in the Presence of Tin–Cephalexin Complexes. Polymers, 2023, 15, 550.	2.0	7
786	Polylactic acid synthesis, biodegradability, conversion to microplastics and toxicity: a review. Environmental Chemistry Letters, 2023, 21, 1761-1786.	8.3	39

#	ARTICLE	IF	Citations
787	Composite material from waste poly (ethylene terephthalate) reinforced with glass fiber and waste window glass filler. Green Chemistry Letters and Reviews, 2023, 16 , .	2.1	2
788	The environmental fate of nanoplastics: What we know and what we need to know about aggregation. NanoImpact, 2023, 29, 100453.	2.4	19
789	Effect of TiO2 Nanoparticles and Extrusion Process on the Physicochemical Properties of Biodegradable and Active Cassava Starch Nanocomposites. Polymers, 2023, 15, 535.	2.0	4
790	Biodegradability of synthetic plastics. , 2023, , 101-120.		3
792	Bioplastics: Innovation for Green Transition. Polymers, 2023, 15, 517.	2.0	15
793	Biodegradability of Polyvinyl chloride. , 2023, , 201-220.		1
794	Bio-based upcycling of poly(ethylene terephthalate) waste to UV-curable polyurethane acrylate. Polymer Chemistry, 2023, 14, 1110-1116.	1.9	3
795	Future prospects for the biodegradability of conventional plastics. , 2023, , 361-375.		0
796	Composition, properties and other factors influencing plastics biodegradability., 2023, , 17-45.		0
797	Estimated discharge of microplastics via urban stormwater during individual rain events. Frontiers in Environmental Science, $0,11,1$	1.5	6
798	Biodegradation and Carbon Resource Recovery of Poly(butylene adipate- <i>co</i> -terephthalate) (PBAT) by Mealworms: Removal Efficiency, Depolymerization Pattern, and Microplastic Residue. ACS Sustainable Chemistry and Engineering, 2023, 11, 1774-1784.	3.2	10
799	Operation clean up: A model for eco-leadership and sustainability implementation. Anaesthesia and Intensive Care, 0, , 0310057X2211024.	0.2	0
800	Biodegradation of Petroleum-Based Plastic Using Bacillus sp Minerals, Metals and Materials Series, 2023, , 675-685.	0.3	0
801	Microbial Approaches for the Plastic Bioremediation and Ecofriendly Environmental Sustainability. Asian Journal of Chemistry, 2023, 35, 289-300.	0.1	1
802	Tracing the Century‣ong Evolution of Microplastics Deposition in a Cold Seep. Advanced Science, 2023, 10, .	5.6	7
803	Land use and COVID-19 lockdowns influence debris composition and abundance in stormwater drains. Science of the Total Environment, 2023, 871, 161908.	3.9	4
804	Smart micro- and nanorobots for water purification., 2023, 1, 236-251.		35
805	Development, characterization and application of intelligent/active packaging of chitosan/chitin nanofibers films containing eggplant anthocyanins. Food Hydrocolloids, 2023, 139, 108496.	5.6	42

#	Article	IF	CITATIONS
806	Riverbank macro-litters monitoring in downstream of Saigon river, Ho Chi Minh City. Case Studies in Chemical and Environmental Engineering, 2023, 7, 100306.	2.9	1
807	Selective conversion of polyethylene wastes to methylated aromatics through cascade catalysis., 2023, 1, 529-538.		2
808	Non-emission hydrothermal low-temperature synthesis of carbon nanomaterials from poly (ethylene) Tj $ETQq000$ Reviews, 2023, 16, .	0 rgBT /0 2.1	verlock 10 Tf 7
809	Recent Advances in Catalytic Chemical Recycling of Polyolefins. ChemCatChem, 2023, 15, .	1.8	8
810	Spatio-temporal variation of soil microplastics as emerging pollutant after long-term application of plastic mulching and organic compost in apple orchards. Environmental Pollution, 2023, 328, 121571.	3.7	9
811	Microplastics alter soil enzyme activities and microbial community structure without negatively affecting plant growth in an agroecosystem. Chemosphere, 2023, 322, 138188.	4.2	24
812	Insights into characteristics of white rot fungus during environmental plastics adhesion and degradation mechanism of plastics. Journal of Hazardous Materials, 2023, 448, 130878.	6.5	12
813	Biopolymer production from biomass produced by Nordic microalgae grown in wastewater. Bioresource Technology, 2023, 376, 128901.	4.8	9
814	Triggering and identifying the polyurethane and polyethylene-degrading machinery of filamentous fungi secretomes. Environmental Pollution, 2023, 325, 121460.	3.7	4
815	Hybrid green composites using rice straw and jute fabric as reinforcement for soy protein-based resin. Composites Part B: Engineering, 2023, 256, 110626.	5.9	5
816	3D meso/macroporous carbon from MgO-templated pyrolysis of waste plastic as an efficient electrode for supercapacitors. Chemosphere, 2023, 322, 138174.	4.2	8
817	Deconstruction of waste personal protective equipment (PPE) using subcritical wet air oxidation. Journal of Supercritical Fluids, 2023, 196, 105900.	1.6	0
818	Biodegradation of polyethylene (PE) microplastics by mealworm larvae: Physiological responses, oxidative stress, and residual plastic particles. Journal of Cleaner Production, 2023, 402, 136831.	4.6	3
819	Synergy of silica sand and waste plastics as thermoplastic composites on abrasive wear characteristics under conditions of different loads and sliding speeds. Chemosphere, 2023, 323, 138233.	4.2	5
820	A systematic review on the aging of microplastics and the effects of typical factors in various environmental media. TrAC - Trends in Analytical Chemistry, 2023, 162, 117025.	5.8	15
821	Spatiotemporal variation in microplastics derived from polymer-coated fertilizer in an agricultural small river in Ishikawa Prefecture, Japan. Environmental Pollution, 2023, 325, 121422.	3.7	4
822	Recent progress of bioplastics in their properties, standards, certifications and regulations: A review. Science of the Total Environment, 2023, 878, 163156.	3.9	23
823	Gaseous products generated from polyethylene and polyethylene terephthalate during ultraviolet irradiation: Mechanism, pathway and toxicological analyses. Science of the Total Environment, 2023, 876, 162717.	3.9	8

#	Article	IF	Citations
824	Recent advances in biodegradable polymers – Properties, applications and future prospects. European Polymer Journal, 2023, 192, 112068.	2.6	29
825	Clinically important E. coli strains can persist, and retain their pathogenicity, on environmental plastic and fabric waste. Environmental Pollution, 2023, 326, 121466.	3.7	13
826	Long-term release kinetic characteristics of microplastic from commonly used masks into water under simulated natural environments. Science of the Total Environment, 2023, 876, 162526.	3.9	6
827	Plastics in the global environment assessed through material flow analysis, degradation and environmental transportation. Science of the Total Environment, 2023, 875, 162644.	3.9	14
828	Consumption and degradation of different consumer plastics by mealworms (Tenebrio molitor): Effects of plastic type, time, and mealworm origin. Journal of Cleaner Production, 2023, 403, 136842.	4.6	3
829	Super effective antimicrobial silver-sputtered coatings on poly(lactic acid) against bacteria and omicron SARS-CoV-2. Materials Today Chemistry, 2023, 30, 101481.	1.7	2
830	Fragmentation of nano- and microplastics from virgin- and additive-containing polypropylene by accelerated photooxidation. Environmental Pollution, 2023, 327, 121590.	3.7	5
831	Preparation of monocyclic aromatic hydrocarbons from chlorine-containing mixed waste plastics via tandem catalysis coupled with hydrothermal pretreatment. Chemical Engineering Journal, 2023, 465, 142885.	6.6	5
832	Omicron SARS-CoV-2 antiviral on poly(lactic acid) with nanostructured copper coating: Wear effects. Applied Surface Science, 2023, 623, 157015.	3.1	1
833	Low-carbon emitting university campus achieved via anaerobic digestion of canteen food wastes. Journal of Environmental Management, 2023, 335, 117533.	3.8	3
834	Assembly strategies for polyethylene-degrading microbial consortia based on the combination of omics tools and the "Plastisphere― Frontiers in Microbiology, 0, 14, .	1.5	3
835	Degradation of oxo-biodegradable rubber and its impact on ecosystem services. European Polymer Journal, 2023, 190, 112026.	2.6	1
836	Degradation and filling modification of plastic waste for improvement of the slurryability of coal-plastic-water slurry. Fuel, 2023, 344, 128137.	3.4	3
837	LDPE and biodegradable PLA-PBAT plastics differentially affect plant-soil nitrogen partitioning and dynamics in a Hordeum vulgare mesocosm. Journal of Hazardous Materials, 2023, 447, 130825.	6.5	12
838	The role of titanium dioxide on the behaviour and fate of plastics in the aquatic environment. Science of the Total Environment, 2023, 869, 161727.	3.9	7
839	How plastic debris and associated chemicals impact the marine food web: A review. Environmental Pollution, 2023, 321, 121156.	3.7	23
840	Biopolymers. , 2022, , 1-22.		0
841	Study of the laser-material interaction for innovative hybrid structures: Thermo-mechanical characterization of polyethylene-based polymers. Polymer Testing, 2023, 120, 107947.	2.3	2

#	Article	IF	CITATIONS
842	Multi-Analytical Approach to Characterize the Degradation of Different Types of Microplastics: Identification and Quantification of Released Organic Compounds. Molecules, 2023, 28, 1382.	1.7	7
843	A general model for air gasification of heterogenous municipal solid waste. Energy Conversion and Management, 2023, 278, 116749.	4.4	5
844	Acupuncture needle packaging waste—changing the negative trend. Deutsche Zeitschrift Für Akupunktur, 2023, 66, 20-26.	0.1	0
845	Genetic diversity and organic waste degrading capacity of <i>Hermetia illucens</i> from the evergreen forest of the Equatorial Choco lowland. PeerJ, 0, 11, e14798.	0.9	2
846	Challenges associated with cellulose composite material: Facet engineering and prospective. Environmental Research, 2023, 223, 115429.	3.7	28
847	A redesign of the toothpaste tube using green QFD II for improved usability and sustainability. Journal of Cleaner Production, 2023, 393, 136279.	4.6	5
848	May a Former Municipal Landfill Contaminate Groundwater in Microplastics? First Investigations from the "Prairie de Mauves Site―(Nantes, France). Microplastics, 2023, 2, 93-106.	1.6	5
850	Biotechnological methods to remove microplastics: a review. Environmental Chemistry Letters, 2023, 21, 1787-1810.	8.3	30
851	Fully Bioâ€based Poly(ketalâ€ester)s by Ringâ€opening Polymerization of a Bicylcic Lactone from Glycerol and Levulinic Acid. Chemistry - an Asian Journal, 2023, 18, .	1.7	1
852	Metal Release from Microplastics to Soil: Effects on Soil Enzymatic Activities and Spinach Production. International Journal of Environmental Research and Public Health, 2023, 20, 3106.	1.2	3
853	From trash to treasure: Sourcing high-value, sustainable cellulosic materials from living bioreactor waste streams. International Journal of Biological Macromolecules, 2023, 233, 123511.	3.6	7
854	Accelerated degradation of plastic products via yeast enzyme treatment. Scientific Reports, 2023, 13, .	1.6	3
855	Microplastics: The stemming environmental challenge and the quest for the missing mitigation strategies. International Biodeterioration and Biodegradation, 2023, 179, 105581.	1.9	4
856	Degradation of high density polyethylene (HDPE) through bacterial strain from Cow faeces. Biocatalysis and Agricultural Biotechnology, 2023, 48, 102646.	1.5	1
857	SUSTAINABLE PACKAGING MATERIAL FOR COTTON PADS PRODUCTION IN LATVIA. , 2022, , .		0
858	Enhancing plastic biodegradation process: strategies and opportunities. Critical Reviews in Biotechnology, 0, , 1-18.	5.1	8
859	Microbial Enzyme Biotechnology to Reach Plastic Waste Circularity: Current Status, Problems and Perspectives. International Journal of Molecular Sciences, 2023, 24, 3877.	1.8	13
860	Impact of Microplastics on the Ocular Surface. International Journal of Molecular Sciences, 2023, 24, 3928.	1.8	2

#	Article	IF	Citations
861	Accumulation and fate of microplastics in soils after application of biosolids on land: A review. Environmental Chemistry Letters, 2023, 21, 1745-1759.	8.3	7
862	Engineering biodegradable coatings for sustainable fertilisers. Microbiology Australia, 2023, 44, 9-12.	0.1	1
863	Synthesis of Bio-Based Polyester from Microbial Lipidic Residue Intended for Biomedical Application. International Journal of Molecular Sciences, 2023, 24, 4419.	1.8	3
864	Thermo-alkaline pre-treatment operated by digestate improved biomethane production of bioplastic. Bioresource Technology Reports, 2023, 21, 101374.	1.5	1
865	Co-pyrolysis of biomass and plastic: Circularity of wastes and comprehensive review of synergistic mechanism. Results in Engineering, 2023, 17, 100989.	2.2	26
866	Effect of Chain Extending Cross-Linkers on the Disintegration Behavior of Composted PBAT/PLA Blown Films. International Journal of Molecular Sciences, 2023, 24, 4525.	1.8	1
867	Hazardous waste: impact and disposal strategies. , 2023, , 153-166.		0
868	Interactions of Microplastics with Pesticides in Soils and Their Ecotoxicological Implications. Agronomy, 2023, 13, 701.	1.3	7
869	Dihydroxyterephthalate—A Trojan Horse PET Counit for Facile Chemical Recycling. Advanced Materials, 2023, 35, .	11.1	9
870	Utilization of Bacillus cereus strain CGK5 associated with cow feces in the degradation of commercially available high-density polyethylene (HDPE). Archives of Microbiology, 2023, 205, .	1.0	6
871	Trends in Polyester Upcycling for Diversifying a Problematic Waste Stream. Macromolecules, 2023, 56, 1747-1758.	2.2	12
872	Chemical upcycling of plastics as a solution to the plastic trash problem for an ideal, circular polymer economy and energy recovery. Environment, Development and Sustainability, 2024, 26, 5629-5664.	2.7	1
873	Poly(lactic acid) (PLA) as a building block for a circular economy. , 2023, , 235-271.		2
874	Persistence of Micro- and Nanoplastics in Soil. , 2023, , 97-124.		0
875	Abundance and Distribution of MPs and NPs in Soil: A Global Scenario., 2023,, 35-57.		0
876	Nanoplastics Weathering and Polycyclic Aromatic Hydrocarbon Mobilization. ACS Nano, 2023, 17, 5773-5784.	7.3	2
877	Bioinspired Antimicrobial PLA with Nanocones on the Surface for Rapid Deactivation of Omicron SARS-CoV-2. ACS Biomaterials Science and Engineering, 2023, 9, 1891-1899.	2.6	4
878	Facing our plastic waste crisis: biorecycling as a promising solution. Microbiology Australia, 2023, 44, 52-56.	0.1	2

#	Article	IF	CITATIONS
879	Functionalization and Thereafter Grafting with Lactic Acid to Synthesize Lignin-polylactic Acid Copolymer for Thin Film Preparation. Journal of Polymers and the Environment, 2023, 31, 3393-3403.	2.4	3
880	The Key to Solving Plastic Packaging Wastes: Design for Recycling and Recycling Technology. Polymers, 2023, 15, 1485.	2.0	15
881	Assessing the relative impacts and economic costs of Japanese knotweed management methods. Scientific Reports, 2023, 13 , .	1.6	4
882	Solvent-induced competing processes in polycarbonate degradation: depolymerization, chain scission, and branching/crosslinking. Polymer Chemistry, 0, , .	1.9	O
883	Computational Exploration of Bio-Degradation Patterns of Various Plastic Types. Polymers, 2023, 15, 1540.	2.0	5
886	The Minderoo-Monaco Commission on Plastics and Human Health. Annals of Global Health, 2023, 89, .	0.8	48
887	Microbe-mineral interactions in the Plastisphere: Coastal biogeochemistry and consequences for degradation of plastics. Frontiers in Marine Science, 0, 10, .	1.2	6
888	Problems of Centralized Depuration Systems. , 0, , .		O
889	Photodegradation Investigation Points to Aloe Vera as a Photoprotector for Poly(Lactic Acid). Journal of Polymers and the Environment, 0, , .	2.4	0
890	Metal Oxide Nanoparticles Containing Clotrimazole to Suppress Photodegradation of Poly(Vinyl) Tj ETQq1 1 0.78	34314 rgB	T /Overlock 1
891	Introducing heterotrophic iron ore bacteria as new candidates in promoting the recovery of e-waste strategic metals. World Journal of Microbiology and Biotechnology, 2023, 39, .	1.7	1
892	Bionanocomposites for active and smart food packaging: A review on its application, safety, and health aspects. Journal of Food Process Engineering, 2023, 46, .	1.5	7
893	Plastisphere microbiome: Methodology, diversity, and functionality., 2023, 2, .		9
894	Abundance of microplastic in different coastal areas using Phragmatopoma caudata (Kroyer in Morch,) Tj ETQq1	1 9.78431	4 ggBT /Ove
895	Abundance and distribution of microplastics in tropical estuarine mangrove areas around Penang, Malaysia. Frontiers in Marine Science, 0, 10 , .	1.2	1
896	Leveraging the bioeconomy for carbon drawdown. Green Chemistry, 2023, 25, 2930-2957.	4.6	11
897	The future for biochemical recycling of poly(ethylene terephthalate): From lab to process. Current Opinion in Green and Sustainable Chemistry, 2023, 42, 100822.	3.2	1
898	Effects of UV radiation on natural and synthetic materials. Photochemical and Photobiological Sciences, 2023, 22, 1177-1202.	1.6	18

#	Article	IF	Citations
899	Evaluation of the Deterioration of Untreated Commercial Polystyrene by Psychrotrophic Antarctic Bacterium. Polymers, 2023, 15, 1841.	2.0	0
900	A multimedia model to estimate the environmental fate of microplastic particles. Science of the Total Environment, 2023, 882, 163437.	3.9	8
901	Cascading Polymer Macro-Debris Upcycling and Microparticle Removal as an Effective Life Cycle Plastic Pollution Mitigation Strategy. Environmental Science & Environmental Science & 2023, 57, 6506-6519.	4.6	2
902	3D Printing of Green and Renewable Polymeric Materials: Toward Greener Additive Manufacturing. ACS Applied Polymer Materials, 2023, 5, 3201-3229.	2.0	9
903	Polymer composition optimization approach based on feature extraction of bound and free water using time-domain nuclear magnetic resonance. Journal of Magnetic Resonance, 2023, 351, 107438.	1.2	2
904	Versatile microbial communities rapidly assimilate ammonium hydroxide-treated plastic waste. Journal of Industrial Microbiology and Biotechnology, 2023, 50, .	1.4	1
905	Microplastic pollution in the sediments of interconnected lakebed, seabed, and seashore aquatic environments: polymer-specific total mass through the multianalytical $\hat{a} \in \mathbb{C}[SA\hat{a}]$ -procedure. Analytical and Bioanalytical Chemistry, 0 , , .	1.9	1
906	Analysis of ultraviolet and thermal degradations of four common microplastics and evidence of nanoparticle release. Journal of Hazardous Materials Letters, 2023, 4, 100078.	2.0	2
907	New insights in to the environmental behavior and ecological toxicity of microplastics. Journal of Hazardous Materials Advances, 2023, 10, 100298.	1.2	11
909	Fabrication of high-strength and multi-recyclable supramolecular polysiloxane by incorporating quadruple hydrogen bonds into main-chains for adhesive and oil-water separation. Polymer, 2023, 277, 125954.	1.8	4
910	Exploring a New Biocatalyst from <i>Bacillus thuringiensis</i> JNU01 for Polyethylene Biodegradation. Environmental Science and Technology Letters, 2023, 10, 485-492.	3.9	2
911	Ecosystem Health on a Global Scale. , 2023, , 150-189.		0
912	Occurrence and risks of microplastics in the ecosystems of the Middle East and North Africa (MENA). Environmental Science and Pollution Research, 2023, 30, 64800-64826.	2.7	1
913	Microplastics and nanoplastics toxicity assays: A revision towards to environmental-relevance in water environment. Journal of Hazardous Materials, 2023, 454, 131476.	6.5	13
928	Biopolymers. , 2023, , 3-24.		0
929	Biopolymer-Based Blends. , 2023, , 405-433.		0
940	Microbial Degradation of Plastics. , 2023, , 433-450.		0
981	Toxic Substances on Microplastics and Risk Assessment of Microplastics Pollution in the Mediterranean Sea. SpringerBriefs in Environmental Science, 2023, , 97-109.	0.3	0

#	Article	IF	Citations
994	Circularity in polymers: addressing performance and sustainability challenges using dynamic covalent chemistries. Chemical Science, 2023, 14, 5243-5265.	3.7	10
999	Bioplastic production from renewable biomass (seaweeds)., 2023,, 439-454.		0
1001	Microalgae in Bioplastic Production: A Comprehensive Review. Arabian Journal for Science and Engineering, 2023, 48, 7225-7241.	1.7	4
1012	Physical properties of modified Désirée potato starch-chitosan edible films. AIP Conference Proceedings, 2023, , .	0.3	0
1039	A Review on the Development of Biopolymer Nanocomposite-Based Triboelectric Nanogenerators (Bio-TENGs). ACS Applied Electronic Materials, 2023, 5, 3546-3559.	2.0	3
1049	Role of biosynthesized silver nanoparticles in environmental remediation: a review. Nanotechnology for Environmental Engineering, 2023, 8, 829-843.	2.0	3
1065	The Impacts of Medical Textile Waste After COVID-19: Reviewing Challenges and Potential Solutions. Materials Circular Economy, 2023, 5, .	1.6	1
1074	Introduction to Biodegradable Polymers. Materials Horizons, 2023, , 1-25.	0.3	0
1077	An overview on the recycling of waste poly(vinyl chloride). Green Chemistry, 2023, 25, 6971-7025.	4.6	7
1081	Face masks: a COVID-19 protector or environmental contaminant?. Environmental Science and Pollution Research, 2023, 30, 93363-93387.	2.7	2
1083	Micro(Nano)Plastics as Carriers of Toxic Agents and Their Impact on Human Health., 0,,.		3
1132	Emerging Materials and Environment: AÂBrief Introduction. Challenges and Advances in Computational Chemistry and Physics, 2024, , 1-78.	0.6	0
1137	Current studies on the degradation of microplastics in the terrestrial and aquatic ecosystem. Environmental Science and Pollution Research, 2023, 30, 102010-102026.	2.7	0
1180	Seaweed derived sustainable packaging. , 2024, , 263-287.		0
1183	A Simplistic Mathematical Model for Two-Stage Anaerobic Digestion of Plastic Wastes. Springer Proceedings in Earth and Environmental Sciences, 2023, , 255-268.	0.2	0
1189	Recycled Polymer Bio-based Composites: A Review of Compatibility and Performance Issues. , 2023, , 363-387.		0
1193	In Silico Study of Enzymatic Degradation of Bioplastic by Microalgae: An Outlook on Microplastic Environmental Impact Assessment, Challenges, and Opportunities. Molecular Biotechnology, 0, , .	1.3	0
1194	Removal of Microplastic Contaminants from Aquatic Environment. , 2023, , 69-92.		0

#	Article	IF	Citations
1198	Preliminary risk assessment of polypropylene, high-and low-density polyethylene microplastics modified asphalt mixtures for road construction. AIP Conference Proceedings, 2023, , .	0.3	0
1208	Managing plastic waste with nanotechnology: current sustainability prospects. Nanotechnology for Environmental Engineering, 0, , .	2.0	0
1228	Designing biodegradable alternatives to commodity polymers. Chemical Society Reviews, 2023, 52, 8085-8105.	18.7	1
1240	A brief review of polymeric blends based on natural polymers and synthetic thermoplastics polymers. Chemical Papers, 2024, 78, 665-697.	1.0	0
1242	A review of recent progress in the application of Raman spectroscopy and SERS detection of microplastics and derivatives. Mikrochimica Acta, 2023, 190, .	2.5	3
1244	A Review on the Fate of Microplastics: Their Degradation and Advanced Analytical Characterization. Journal of Polymers and the Environment, 0, , .	2.4	0
1250	Microplastic in Ecosystems: Abundance, Transportation, and Biodegradation. ACS Symposium Series, 0, $1-18$.	0.5	0
1252	Recent Advances in Nanotechnological Approaches to Enhance the Industrial Application of Essential Oils and Their Application in Food Packaging. , 2024, , 303-352.		0
1254	Impact of Xenobiotics Under Changing Climate Scenario., 2023,, 3-26.		0
1303	Biodegradable plastics as alternatives for polyethylene mulch films. Advances in Agronomy, 2023, , .	2.4	1
1325	Prevalence of microplastics and fate in wastewater treatment plants: a review. Environmental Chemistry Letters, 2024, 22, 657-690.	8.3	0
1336	Sustainable Solutions for Postharvest Berry Protection: Natural Edible Coatings. Food and Bioprocess Technology, 0, , .	2.6	0
1350	Optimizing bioplastics translation. , 0, , .		2
1352	Plastic debris: An overview of composition, sources, environmental occurrence, transport, and fate., 2024, , 1-31.		0
1355	A review of food packaging materials and its impact on environment. AIP Conference Proceedings, 2024, , .	0.3	0
1360	Sustainability and Environmental Degradability of Synthetic Polymers. , 2024, , .		0
1368	Recycling and depolymerisation of poly(ethylene terephthalate): a review. Polymer Chemistry, 2024, 15, 585-608.	1.9	0
1379	Anreicherung von Plastikpartikeln inÂAuenböden. , 2023, , 277-286.		0

#	Article	IF	CITATIONS
1385	Eco-friendly approaches for mitigating plastic pollution: advancements and implications for a greener future. Biodegradation, 0 , , .	1.5	0
1386	Exploring polyhydroxyalkanoates biosynthesis using hydrocarbons as carbon source: a comprehensive review. Biodegradation, 0, , .	1.5	0
1389	Environmental Degradation of Polymer-Based Composite Materials: Challenges and Mitigation Strategies. Minerals, Metals and Materials Series, 2024, , 1218-1236.	0.3	1
1409	Biodegradability of Polymers by Relatively Low-Cost and Readily Available Nonautomated Respirometry. , 2024, , 27-55.		O
1414	Advanced and Smart Technology for Sustainable Management of Microfiber Waste. Environmental Science and Engineering, 2024, , 261-278.	0.1	0
1463	Microplastic and Nanoplastic: A Threat to the Environment. , 2024, , 3-24.		O