Suppressing singlet oxygen generation in lithium–ox

Energy and Environmental Science 13, 2870-2877 DOI: 10.1039/d0ee01114b

Citation Report

CITATION REDORT

#	Article	IF	CITATIONS
1	Surface and catalyst driven singlet oxygen formation in Li-O2 cells. Electrochimica Acta, 2020, 362, 137175.	2.6	10
2	Singlet Oxygen in Lithiumâ "Oxygen Batteries. Batteries and Supercaps, 2021, 4, 286-293.	2.4	13
3	Mechanistic Understanding of Oxygen Electrodes in Rechargeable Multivalent Metalâ€Oxygen Batteries. Batteries and Supercaps, 2021, 4, 1588-1598.	2.4	6
4	Mechanism of mediated alkali peroxide oxidation and triplet versus singlet oxygen formation. Nature Chemistry, 2021, 13, 465-471.	6.6	41
5	lsotopic Depth Profiling of Discharge Products Identifies Reactive Interfaces in an Aprotic Li–O ₂ Battery with a Redox Mediator. Journal of the American Chemical Society, 2021, 143, 7394-7401.	6.6	29
6	The Potassium–Air Battery: Far from a Practical Reality?. Accounts of Materials Research, 2021, 2, 515-525.	5.9	17
7	Ambilaterality of Redox Mediators towards ¹ O ₂ in Liâ€O ₂ Batteries: Trap and Quencher. Advanced Functional Materials, 2021, 31, 2102442.	7.8	11
8	Singlet Oxygen in Electrochemical Cells: A Critical Review of Literature and Theory. Chemical Reviews, 2021, 121, 12445-12464.	23.0	48
9	Electronic properties of Ir3Li and ultra-nanocrystalline lithium superoxide formation. Nano Energy, 2021, 90, 106549.	8.2	3
10	Understanding Lithium-Mediated Oxygen Reactions at the Au DMSO interface: Are We There?. Journal of Physical Chemistry C, 2021, 125, 20762-20771.	1.5	7
11	Partial Disproportionation Gallium-Oxygen Reaction Boosts Lithium-Oxygen Batteries. Energy Storage Materials, 2021, 41, 475-484.	9.5	12
12	Catalytic redox mediators for non-aqueous Li-O2 battery. Energy Storage Materials, 2021, 43, 97-119.	9.5	24
13	Suppressing Singlet Oxygen Formation during the Charge Process of Li-O ₂ Batteries with a Co ₃ O ₄ Solid Catalyst Revealed by Operando Electron Paramagnetic Resonance. Journal of Physical Chemistry Letters, 2021, 12, 10346-10352.	2.1	10
14	Progress and Prospects in Redox Mediators for Highly Reversible Lithium–Oxygen Batteries: A Minireview. Energy & Fuels, 2021, 35, 19302-19319.	2.5	10
15	RuFe Alloy Nanoparticle-Supported Mesoporous Carbon: Efficient Bifunctional Catalyst for Li-O ₂ and Zn–Air Batteries. ACS Catalysis, 2022, 12, 1718-1731.	5.5	33
16	A long-life lithium-oxygen battery via a molecular quenching/mediating mechanism. Science Advances, 2022, 8, eabm1899.	4.7	26
17	Hunting the Culprits: Reactive Oxygen Species in Aprotic Lithium–Oxygen Batteries. Journal of Physical Chemistry C, 2022, 126, 1243-1255.	1.5	11
18	Decomposition pathway and stabilization of ether-based electrolytes in the discharge process of Li-O2 battery. Journal of Energy Chemistry, 2022, 69, 516-523.	7.1	20

#	Article	IF	CITATIONS
19	Vacancy-engineered CeO ₂ /Co heterostructure anchored on the nitrogen-doped porous carbon nanosheet arrays vertically grown on carbon cloth as an integrated cathode for the oxygen reduction reaction of rechargeable Zn–air battery. Journal of Materials Chemistry A, 2022, 10, 9858-9868.	5.2	18
20	Redox mediators for high-performance lithium–oxygen batteries. National Science Review, 2022, 9, nwac040.	4.6	54
21	Threshold potentials for fast kinetics during mediated redox catalysis of insulators in Li–O2 and Li–S batteries. Nature Catalysis, 2022, 5, 193-201.	16.1	51
22	Redox Mediators for Faster Lithium Peroxide Oxidation in a Lithium–Oxygen Cell: A Scanning Electrochemical Microscopy Study. ACS Applied Energy Materials, 2022, 5, 3724-3733.	2.5	5
23	CoS ₂ Nanoparticles Anchored on MoS ₂ Nanorods As a Superior Bifunctional Electrocatalyst Boosting Li ₂ O ₂ Heteroepitaxial Growth for Rechargeable Liâ€O ₂ Batteries. Small, 2022, 18, e2105752.	5.2	20
24	A robust interphase via in-situ pre-reconfiguring lithium anode surface for long-term lithium-oxygen batteries. Journal of Energy Chemistry, 2022, 72, 186-194.	7.1	16
25	Modeling the multi-step discharge and charge reaction mechanisms of non-aqueous Li-O2 batteries. Applied Energy, 2022, 317, 119189.	5.1	5
26	The study of different redox mediators for competent Li–air batteries. Journal of Power Sources, 2022, 538, 231379.	4.0	10
27	Atomically dispersed transition metal-N4 doped graphene as a Li O nucleation site in nonaqueous lithium-oxygen batteries. Electrochimica Acta, 2022, 422, 140554.	2.6	5
28	Semi-solid lithium/oxygen flow battery: an emerging, high-energy technology. Current Opinion in Chemical Engineering, 2022, 37, 100835.	3.8	6
29	Lightâ€Assisted Li–O ₂ Batteries with Lowered Bias Voltages by Redox Mediators. Small, 2022, 18, .	5.2	13
30	Aprotic Lithium arbon Dioxide Batteries: Reaction Mechanism and Catalyst Design. Chemical Record, 2022, 22, .	2.9	3
31	A New Cathode Material for a Li–O ₂ Battery Based on Lithium Superoxide. ACS Energy Letters, 2022, 7, 2619-2626.	8.8	21
32	Quenching singlet oxygen via intersystem crossing for a stable Li-O ₂ battery. Proceedings of the United States of America, 2022, 119, .	3.3	20
33	Solvation chemistry of electrolytes for stable anodes of lithium metal batteries. Nano Research, 2023, 16, 8072-8081.	5.8	14
34	Metal-related electrocatalysts for Li–CO ₂ batteries: an overview of the fundamentals to explore future-oriented strategies. Journal of Materials Chemistry A, 2022, 10, 25406-25430.	5.2	12
35	Discovery of organic catalysts boosting lithium carbonate decomposition toward ambient air operational lithium–air batteries. Journal of Materials Chemistry A, 2022, 10, 20464-20472.	5.2	5
36	Exclusive Solution Discharge in Li–O ₂ Batteries?. ACS Energy Letters, 2022, 7, 3112-3119.	8.8	8

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
37	Novel Coâ€Catalytic Activities of Solid and Liquid Phase Catalysts in Highâ€Rate Liâ€Air Batteries. Advanced Energy Materials, 2022, 12, .	10.2	8
38	Acceleration of Singlet Oxygen Evolution by Superoxide Dismutase Mimetics in Lithium–Oxygen Batteries. Advanced Functional Materials, 2022, 32, .	7.8	8
39	The path toward practical Li-air batteries. Joule, 2022, 6, 2458-2473.	11.7	28
40	Operando Fluorescence Detection of Singlet Oxygen inside High-Performance Li–O ₂ Batteries. Journal of Physical Chemistry C, 2023, 127, 78-84.	1.5	3
41	Completely Eradicating Singlet Oxygen in Li–O ₂ Battery via Cobalt(II)-Porphyrin Complex-Catalyzed LiOH Chemistry. Journal of Physical Chemistry Letters, 2023, 14, 846-853.	2.1	4
42	Edgeâ€Siteâ€Free and Topologicalâ€Defectâ€Rich Carbon Cathode for Highâ€Performance Lithiumâ€Oxygen Batteries. Advanced Science, 2023, 10, .	5.6	12
43	Enhanced Photoassisted Liâ€O ₂ Battery with Ceâ€UiOâ€66 Metalâ€Organic Framework Based Photocathodes. Advanced Materials Interfaces, 2023, 10, .	1.9	1
52	Effect of singlet oxygen on redox mediators in lithium–oxygen batteries. Journal of Materials Chemistry A. 2023. 11. 16003-16008.	5.2	2