Electrochemical glucose sensors in diabetes manageme

Chemical Society Reviews 49, 7671-7709

DOI: 10.1039/d0cs00304b

Citation Report

#	Article	IF	CITATIONS
1	A Critical Review of Electrochemical Glucose Sensing: Evolution of Biosensor Platforms Based on Advanced Nanosystems. Sensors, 2020, 20, 6013.	2.1	110
2	A review of biomarkers in the context of type 1 diabetes: Biological sensing for enhanced glucose control. Bioengineering and Translational Medicine, 2021, 6, e10201.	3.9	33
3	Wearable electrochemical biosensors in North America. Biosensors and Bioelectronics, 2021, 172, 112750.	5.3	167
4	Development of a Sensitive Self-Powered Glucose Biosensor Based on an Enzymatic Biofuel Cell. Biosensors, 2021, 11, 16.	2.3	33
5	Cultivation of Saccharomyces cerevisiae with Feedback Regulation of Glucose Concentration Controlled by Optical Fiber Glucose Sensor. Sensors, 2021, 21, 565.	2.1	5
6	<scp>PEDOT</scp> : <scp>PSS</scp> â€grafted graphene oxideâ€titanium dioxide nanohybridâ€based conducting paper for glucose detection. Polymers for Advanced Technologies, 2021, 32, 1774-1782.	1.6	16
7	Implantable Fiber Biosensors Based on Carbon Nanotubes. Accounts of Materials Research, 2021, 2, 138-146.	5.9	31
8	Towards deployable electrochemical sensors for per- and polyfluoroalkyl substances (PFAS). Chemical Communications, 2021, 57, 8121-8130.	2.2	16
9	Non-enzymatic Glucose Sensor Based on Porous Foam Au/Mxene Nanocomposites. Chinese Journal of Chemical Physics, $0, , .$	0.6	2
10	Recent Advances in Electrochemical Sensors for Wearable Sweat Monitoring: A Review. IEEE Sensors Journal, 2021, 21, 14522-14539.	2.4	55
11	Clinically oriented Alzheimer's biosensors: expanding the horizons towards point-of-care diagnostics and beyond. RSC Advances, 2021, 11, 20403-20422.	1.7	6
12	New Sensing Technologies: Sensors for In Vivo Analysis. , 2021, , .		0
13	Smartphone-Addressable 3D-Printed Electrochemical Ring for Nonenzymatic Self-Monitoring of Glucose in Human Sweat. Analytical Chemistry, 2021, 93, 3331-3336.	3.2	79
14	Self-Powered Wearable Biosensors. Accounts of Materials Research, 2021, 2, 184-197.	5.9	118
15	Cu-Doped ZnO Nanoparticles for Non-Enzymatic Glucose Sensing. Molecules, 2021, 26, 929.	1.7	31
16	Pentacyanoammineferrate-Based Non-Enzymatic Electrochemical Biosensing Platform for Selective Uric Acid Measurement. Sensors, 2021, 21, 1574.	2.1	4
17	Nickel Cobalt Oxide Nanoneedles for Electrochromic Glucose Sensors. ACS Applied Nano Materials, 2021, 4, 2143-2152.	2.4	54
18	Lab under the Skin: Microneedle Based Wearable Devices. Advanced Healthcare Materials, 2021, 10, e2002255.	3.9	141

#	Article	IF	Citations
19	Current treatment options and challenges in patients with Type 1 diabetes: Pharmacological, technical advances and future perspectives. Reviews in Endocrine and Metabolic Disorders, 2021, 22, 217-240.	2.6	19
20	Highly Concentrated, Conductive, Defect-free Graphene Ink for Screen-Printed Sensor Application. Nano-Micro Letters, 2021, 13, 87.	14.4	36
21	Exploring End-Group Effect of Alkanethiol Self-Assembled Monolayers on Electrochemical Aptamer-Based Sensors in Biological Fluids. Analytical Chemistry, 2021, 93, 5849-5855.	3.2	21
22	Nanosensors for Visual Detection of Glucose in Biofluids: Are We Ready for Instrument-Free Home-Testing?. Materials, 2021, 14, 1978.	1.3	16
23	Enzyme Immobilization on Gold Nanoparticles for Electrochemical Glucose Biosensors. Nanomaterials, 2021, 11, 1156.	1.9	24
24	Touch-Based Fingertip Blood-Free Reliable Glucose Monitoring: Personalized Data Processing for Predicting Blood Glucose Concentrations. ACS Sensors, 2021, 6, 1875-1883.	4.0	104
25	Glucose biosensors for clinical and personal use. Electrochemistry Communications, 2021, 125, 106973.	2.3	26
26	Addressing the Selectivity of Enzyme Biosensors: Solutions and Perspectives. Sensors, 2021, 21, 3038.	2.1	30
27	Self-powered wearable biosensors. , 2021, , .		0
28	Direct Bioelectrocatalytic Oxidation of Glucose by Gluconobacter oxydans Membrane Fractions in PEDOT:PSS/TEG-Modified Biosensors. Biosensors, 2021, 11, 144.	2.3	9
29	Electrochemical diagnostics of infectious viral diseases: Trends and challenges. Biosensors and Bioelectronics, 2021, 180, 113112.	5. 3	63
30	Bioinorganic Platforms for Sensing, Biomimicry, and Energy Catalysis. Chemistry Letters, 2021, 50, 974-986.	0.7	2
31	Flexible Wearable Sensors for Cardiovascular Health Monitoring. Advanced Healthcare Materials, 2021, 10, e2100116.	3.9	170
32	Trending Technology of Glucose Monitoring during COVIDâ€19 Pandemic: Challenges in Personalized Healthcare. Advanced Materials Technologies, 2021, 6, 2100020.	3.0	20
33	A review on recent advances in hierarchically porous metal and metal oxide nanostructures as electrode materials for supercapacitors and non-enzymatic glucose sensors. Journal of Saudi Chemical Society, 2021, 25, 101228.	2.4	42
34	Zinc Ferrite Nanoparticles: Simple Synthesis via Lyophilisation and Electrochemical Application as Glucose Biosensor. Nano Express, 0, , .	1.2	2
35	Wearable and Mobile Sensors for Personalized Nutrition. ACS Sensors, 2021, 6, 1745-1760.	4.0	106
36	Products for Monitoring Glucose Levels in the Human Body With Noninvasive Optical, Noninvasive Fluid Sampling, or Minimally Invasive Technologies. Journal of Diabetes Science and Technology, 2022, 16, 168-214.	1.3	30

#	Article	IF	Citations
37	Engineered CuO Nanofibers with Boosted Non-Enzymatic Glucose Sensing Performance. Journal of the Electrochemical Society, 2021, 168, 067507.	1.3	37
38	Recent advances in nanotechnology for simultaneous detection of multiple pathogenic bacteria. Nano Today, 2021, 38, 101121.	6.2	80
39	Continuous glucose monitoring systems - Current status and future perspectives of the flagship technologies in biosensor research Biosensors and Bioelectronics, 2021, 181, 113054.	5. 3	114
40	Programmable, Multiplexed DNA Circuits Supporting Clinically Relevant, Electrochemical Antibody Detection. ACS Sensors, 2021, 6, 2442-2448.	4.0	32
41	Amperometric biosensors in an uncompetitive inhibition processes: a complete theoretical and numerical analysis. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133, 655-668.	0.8	19
42	A Fully Integrated Closedâ€Loop System Based on Mesoporous Microneedlesâ€lontophoresis for Diabetes Treatment. Advanced Science, 2021, 8, e2100827.	5 . 6	91
43	Optical Glucose Sensor Using Pressure Sensitive Paint. Sensors, 2021, 21, 4474.	2.1	4
44	Research Progress and Application Prospects of Electrochemical Glucose Sensors. International Journal of Electrochemical Science, 2021, 16, 210633.	0.5	10
45	Biosensing Membrane Base on Ferulic Acid and Glucose Oxidase for an Amperometric Glucose Biosensor. Molecules, 2021, 26, 3757.	1.7	5
46	Electrochemical Response of Glucose Oxidase Adsorbed on Laser-Induced Graphene. Nanomaterials, 2021, 11, 1893.	1.9	17
47	Highly Sensitive Electrochemical Sensor for Diagnosis of Diabetic Ketoacidosis (DKA) by Measuring Ketone Bodies in Urine. Sensors, 2021, 21, 4902.	2.1	7
48	Substrate Materials for Biomolecular Immobilization within Electrochemical Biosensors. Biosensors, 2021, 11, 239.	2.3	23
49	RG Hyperparameter Optimization Approach for Improved Indirect Prediction of Blood Glucose Levels by Boosting Ensemble Learning. Electronics (Switzerland), 2021, 10, 1797.	1.8	6
50	Biomimetic Glucose Triggerâ€Insulin Release System Based on Hydrogel Loading Bidentate βâ€Cyclodextrin. Advanced Functional Materials, 2021, 31, 2104488.	7.8	15
51	Recent Advances in Enzymatic and Non-Enzymatic Electrochemical Glucose Sensing. Sensors, 2021, 21, 4672.	2.1	148
52	Simple and fast colorimetric and electrochemical methods for the ultrasensitive detection of glucose. Analytical and Bioanalytical Chemistry, 2021, 413, 5725-5731.	1.9	8
53	Nitric Oxide Release for Enhanced Biocompatibility and Analytical Performance of Implantable Electrochemical Sensors. Electroanalysis, 2021, 33, 1997-2015.	1.5	6
54	Recent advances in electrochemical enzymatic biosensors based on regular nanostructured materials. Journal of Electroanalytical Chemistry, 2021, 893, 115328.	1.9	21

#	ARTICLE	IF	CITATIONS
55	Modulating the foreign body response of implants for diabetes treatment. Advanced Drug Delivery Reviews, 2021, 174, 87-113.	6.6	45
56	Holographic Sensors in Biotechnology. Advanced Functional Materials, 2021, 31, 2105645.	7.8	22
57	Recent advances in flexible sweat glucose biosensors. Journal Physics D: Applied Physics, 2021, 54, 423001.	1.3	22
58	A bienzymatic amperometric glucose biosensor based on using a novel recombinant Mn peroxidase from corn and glucose oxidase with a Nafion membrane. Journal of Electroanalytical Chemistry, 2021, 895, 115387.	1.9	11
59	Copper Nanoparticles Decorated Halloysite Nanotube/Polyaniline Composites for High Performance Non-Enzymatic Glucose Sensor. Journal of the Electrochemical Society, 2021, 168, 086504.	1.3	6
60	Technological advances in electrochemical biosensors for the detection of disease biomarkers. Biomedical Engineering Letters, $2021, 11, 309-334$.	2.1	33
61	An Overview of Wearable and Implantable Electrochemical Glucose Sensors. Electroanalysis, 2022, 34, 237-245.	1.5	37
62	Epidermal Sensor for Potentiometric Analysis of Metabolite and Electrolyte. Analytical Chemistry, 2021, 93, 11525-11531.	3.2	32
63	State of Sweat: Emerging Wearable Systems for Real-Time, Noninvasive Sweat Sensing and Analytics. ACS Sensors, 2021, 6, 2787-2801.	4.0	76
64	Laser ablation enhancing the electrochemical sensing performance of copper foam toward glucose. Chinese Journal of Analytical Chemistry, 2021, 49, 75-80.	0.9	4
65	Amine mediated synthesis of nickel oxide nanoparticles and their superior electrochemical sensing performance for glucose detection. Inorganic Chemistry Communication, 2021, 131, 108779.	1.8	18
66	Pyrroloquinoline quinone-dependent glucose dehydrogenase bioelectrodes based on one-step electrochemical entrapment over single-wall carbon nanotubes. Talanta, 2021, 232, 122386.	2.9	8
67	Benefits of a Switch from Intermittently Scanned Continuous Glucose Monitoring (isCGM) to Real-Time (rt) CGM in Diabetes Type 1 Suboptimal Controlled Patients in Real-Life: A One-Year Prospective Study §. Sensors, 2021, 21, 6131.	2.1	9
68	Comparison of SERS pH probe responses after microencapsulation within hydrogel matrices. Journal of Biomedical Optics, 2021, 26, .	1.4	1
69	Recent Advances in Non-Enzymatic Glucose Sensors Based on Metal and Metal Oxide Nanostructures for Diabetes Management- A Review. Frontiers in Chemistry, 2021, 9, 748957.	1.8	60
70	Glucose Detection Devices and Methods Based on Metal–Organic Frameworks and Related Materials. Advanced Functional Materials, 2021, 31, 2106023.	7.8	78
71	NiO-Coated CuCo ₂ O ₄ Nanoneedle Arrays on Carbon Cloth for Non-enzymatic Glucose Sensing. ACS Applied Nano Materials, 2021, 4, 9821-9830.	2.4	24
72	Disposable electrochemical glucose sensor based on water-soluble quinone-based mediators with flavin adenine dinucleotide-dependent glucose dehydrogenase. Biosensors and Bioelectronics, 2021, 189, 113357.	5.3	13

#	Article	IF	CITATIONS
73	An ultrasensitive electrochemical sensing platform for rapid detection of rutin with a hybridized 2D-1D MXene-FeWO4 nanocomposite. Sensors and Actuators B: Chemical, 2021, 344, 130202.	4.0	51
74	Microfluidic integration for electrochemical biosensor applications. Current Opinion in Electrochemistry, 2021, 29, 100755.	2.5	34
75	Plasmonic contact lens materials for glucose sensing in human tears. Sensors and Actuators B: Chemical, 2021, 344, 130297.	4.0	28
76	Design, synthesis and bioactivity evaluation of thiazolidinedione derivatives as partial agonists targeting PPARÎ ³ . Bioorganic Chemistry, 2021, 116, 105342.	2.0	7
77	Design of a bioelectronic tongue for glucose monitoring using zinc oxide nanofibers and graphene derivatives. Sensors and Actuators Reports, 2021, 3, 100050.	2.3	9
78	Smart advancements of key challenges in graphene-assembly glucose sensor technologies: A mini review. Materials Letters, 2021, 303, 130508.	1.3	23
79	Smart sensor implant technology in total knee arthroplasty. Journal of Clinical Orthopaedics and Trauma, 2021, 22, 101605.	0.6	16
80	The Rise of Soft Neural Electronics. Giant, 2021, 8, 100075.	2.5	5
81	Highly sensitive non-enzymatic glucose sensor based on carbon nanotube microelectrode set. Sensors and Actuators B: Chemical, 2021, 348, 130688.	4.0	25
82	Novel enzymatic graphene oxide based biosensor for the detection of glutathione in biological body fluids. Chemosphere, 2022, 287, 132187.	4.2	160
83	Cu2O nanowires with exposed $\{111\}$ facet for nonenzymatic detection of glucose in complex biological fluids. Chemical Engineering Journal, 2022, 429, 132267.	6.6	16
84	Potentialities of core@shell nanomaterials for biosensor technologies. Materials Letters, 2022, 306, 130912.	1.3	25
85	Personalized Patient Safety Management: Sensors and Real-Time Data Analysis. Intelligent Systems Reference Library, 2021, , 267-305.	1.0	0
86	Synthesis of Cu(OH)F microspheres using atmospheric dielectric barrier discharge microplasma: a high-performance non-enzymatic electrochemical sensor. New Journal of Chemistry, 2021, 45, 18277-18281.	1.4	2
87	Construction of biocomputing systems based on switchable bioelectrocatalysis and stimulus-responsive film electrodes. Sensors and Actuators Reports, 2021, 3, 100054.	2.3	4
88	Functional Ionic Liquids Decorated Carbon Hybrid Nanomaterials for the Electrochemical Biosensors. Biosensors, 2021, 11, 414.	2.3	12
89	Fabrication of Cu(II) oxide-hydroxide nanostructures onto graphene paper by laser and thermal processes for sensitive nano-electrochemical sensing of glucose. Nanotechnology, 2022, 33, 045501.	1.3	3
90	Organic Bioelectronic Devices for Metabolite Sensing. Chemical Reviews, 2022, 122, 4581-4635.	23.0	55

#	Article	IF	Citations
91	Materials Approaches for Improving Electrochemical Sensor Performance. Journal of Physical Chemistry B, 2021, 125, 11820-11834.	1.2	18
92	Laserâ€Induced Graphene on Paper toward Efficient Fabrication of Flexible, Planar Electrodes for Electrochemical Sensing. Advanced Materials Interfaces, 2021, 8, 2101502.	1.9	48
93	Learning from Nature: Constructing a Smart Bionic Structure for Highâ€Performance Glucose Sensing in Human Serums. Advanced Functional Materials, 2022, 32, .	7.8	24
94	Fluorescence quenching-based bodipy-boronic acid linked viologen dual system for potential glucose sensing applications. Sensor Review, 2022, 42, 62-69.	1.0	2
95	Carbon-based aerogels for biomedical sensing: Advances toward designing the ideal sensor. Advances in Colloid and Interface Science, 2021, 298, 102550.	7.0	33
96	Glucose detection through surface-enhanced Raman spectroscopy: A review. Analytica Chimica Acta, 2022, 1206, 339226.	2.6	47
97	Nano/micro-scaled materials based optical biosensing of glucose. Ceramics International, 2021, , .	2.3	9
98	N-doped carbon dots regulate porous hollow nickel-cobalt sulfide: High-performance electrode materials in supercapacitor and enzymeless glucose sensor. Journal of Power Sources, 2021, 516, 230685.	4.0	19
99	Template-free synthesis of millimeter-scale carbon nanorod arrays on boron-doped diamond with superior glucose sensing performance. Applied Surface Science, 2022, 572, 151468.	3.1	4
100	Current progress in organic–inorganic hetero-nano-interfaces based electrochemical biosensors for healthcare monitoring. Coordination Chemistry Reviews, 2022, 452, 214282.	9.5	57
101	Reduced Graphene Oxide-Coated Silica Nanospheres as Flexible Enzymatic Biosensors for Detection of Glucose in Sweat. ACS Applied Nano Materials, 2021, 4, 12442-12452.	2.4	24
102	Recent advancements in flexible and wearable sensors for biomedical and healthcare applications. Journal Physics D: Applied Physics, 2022, 55, 134001.	1.3	31
103	Current Challenges and Future Trends of Enzymatic Paper-Based Point-of-Care Testing for Diabetes Mellitus Type 2. Biosensors, 2021, 11, 482.	2.3	7
104	Emergence of microneedles as a potential therapeutics in diabetes mellitus. Environmental Science and Pollution Research, 2022, 29, 3302-3322.	2.7	11
105	Lab-on-a-chip technologies for food safety, processing, and packaging applications: a review. Environmental Chemistry Letters, 2022, 20, 901-927.	8.3	15
106	Flexible Plasmonic Biosensors for Healthcare Monitoring: Progress and Prospects. ACS Nano, 2021, 15, 18822-18847.	7. 3	78
107	Emerging wearable flexible sensors for sweat analysis. Bio-Design and Manufacturing, 2022, 5, 64-84.	3.9	29
108	Emerging biosensing and transducing techniques for potential applications in point-of-care diagnostics. Chemical Science, 2022, 13, 2857-2876.	3.7	36

#	Article	IF	Citations
109	Recent advancement in electrode materials and fabrication, microfluidic designs, and self-powered systems for wearable non-invasive electrochemical glucose monitoring. Applied Materials Today, 2022, 26, 101350.	2.3	15
110	A Methodical Review on the Applications and Potentialities of Using Nanobiosensors for Disease Diagnosis. BioMed Research International, 2022, 2022, 1-20.	0.9	18
111	A Flexible Microfluidic Chip-Based Universal Fully Integrated Nanoelectronic System with Point-of-Care Raw Sweat, Tears, or Saliva Glucose Monitoring for Potential Noninvasive Glucose Management. Analytical Chemistry, 2022, 94, 1890-1900.	3.2	38
112	Electronic Tattoo with Transferable Printed Electrodes and Interconnects for Wireless Electrophysiology Monitoring. Advanced Materials Technologies, 2022, 7, .	3.0	14
114	Electrochemiluminescent Ion-Channeling Framework for Membrane Binding and Transmembrane Activity Assays. Analytical Chemistry, 2022, 94, 2154-2162.	3.2	4
115	Lab on a body for biomedical electrochemical sensing applications: The next generation of microfluidic devices. Progress in Molecular Biology and Translational Science, 2022, 187, 249-279.	0.9	6
116	Long-Term <i>In Vivo</i> Glucose Monitoring by Polymer-Dot Transducer in an Injectable Hydrogel Implant. Analytical Chemistry, 2022, 94, 2195-2203.	3.2	9
117	Nanomaterials for IoT Sensing Platforms and Point-of-Care Applications in South Korea. Sensors, 2022, 22, 610.	2.1	5
118	Recent advances in flexible and wearable sensors for monitoring chemical molecules. Nanoscale, 2022, 14, 1653-1669.	2.8	48
119	Remote Healthcare for Elderly People Using Wearables: A Review. Biosensors, 2022, 12, 73.	2.3	26
120	Flexible electrochemical sensors integrated with nanomaterials for in situ determination of small molecules in biological samples: A review. Analytica Chimica Acta, 2022, 1207, 339461.	2.6	17
121	Potentio-tunable FET sensor having a redox-polarizable single electrode for the implementation of a wearable, continuous multi-analyte monitoring device. Analytical and Bioanalytical Chemistry, 2022, 414, 3267.	1.9	1
122	A wearable sensing system based on smartphone and diaper to detect urine in-situ for patients with urinary incontinence. Sensors and Actuators B: Chemical, 2022, 357, 131459.	4.0	13
123	Bismuth and metal-doped bismuth nanoparticles produced by laser ablation for electrochemical glucose sensing. Sensors and Actuators B: Chemical, 2022, 357, 131334.	4.0	11
124	Enzyme-free glucose sensors with efficient synergistic electro-catalysis based on a ferrocene derivative and two metal nanoparticles. RSC Advances, 2022, 12, 5072-5079.	1.7	12
125	The basics of noninvasive methods. , 2022, , 93-156.		0
126	A Wide Dynamic Detection Range Glucose Sensor by Synergetic two P+N Organic Field-Effect Transistors., 2022,,.		1
127	Differential Amperometric Microneedle Biosensor for Wearable Levodopa Monitoring of Parkinson's Disease. Biosensors, 2022, 12, 102.	2.3	11

#	Article	IF	CITATIONS
128	The Construct CoSe2 on Carbon Nanosheets as High Sensitivity Catalysts for Electro-Catalytic Oxidation of Glucose. Nanomaterials, 2022, 12, 572.	1.9	5
129	Permittivity-Inspired Microwave Resonator-Based Biosensor Based on Integrated Passive Device Technology for Glucose Identification. Biosensors, 2021, 11, 508.	2.3	9
130	Emerging technology for point-of-care diagnostics: Recent developments., 2022,, 15-42.		0
131	Progress in Bioelectrocatalysis. , 2022, , 37-53.		0
132	Opportunities and limitations of membrane-based preconcentration for rapid and continuous diagnostic applications. Sensors & Diagnostics, 2022, 1, 222-234.	1.9	0
133	An amphiprotic paper-based electrode for glucose detection based on layered carbon nanotubes with silver and polystyrene particles. Analytical Methods, 2022, 14, 1268-1278.	1.3	4
134	Wearable microfluidic-based e-skin sweat sensors. RSC Advances, 2022, 12, 8691-8707.	1.7	30
135	Cell-membrane-inspired polymers for constructing biointerfaces with efficient molecular recognition. Journal of Materials Chemistry B, 2022, 10, 3397-3419.	2.9	8
136	Treating an Unconscious Patient With Diabetes Wearing a Device Attached to Their Body. Journal of Diabetes Science and Technology, 2022, 16, 583-586.	1.3	1
137	Detection of cellular metabolites by redox enzymatic cascades. Biotechnology Journal, 2022, 17, e2100466.	1.8	2
138	An Antiâ€Biofouling Flexible Fiber Biofuel Cell Working in the Brain. Small Methods, 2022, 6, e2200142.	4.6	11
139	Photosensitive-Stamp-Inspired Scalable Fabrication Strategy of Wearable Sensing Arrays for Noninvasive Real-Time Sweat Analysis. Analytical Chemistry, 2022, 94, 4547-4555.	3.2	14
140	Inkjet Printing: A Viable Technology for Biosensor Fabrication. Chemosensors, 2022, 10, 103.	1.8	24
141	Flow-Injection Amperometric Determination of Glucose Using Nickel Oxide-Cobalt (II,III) Oxide and Nickel Oxide-Copper Nanoparticle Modified Pencil Graphite Electrodes. Analytical Letters, 2022, 55, 2046-2057.	1.0	4
142	Flexible Ceramic Film Sensors for Free-Form Devices. Sensors, 2022, 22, 1996.	2.1	15
143	Cu NWs@Pd with controllable diameter: synthesis and their enhanced sensor performances in the detection of glucose and H2O2. Journal of Nanoparticle Research, 2022, 24, 1.	0.8	5
144	Harnessing the Potential of Biological Recognition Elements for Water Pollution Monitoring. ACS Sensors, 2022, 7, 704-715.	4.0	13
145	Recent Advancement in Biofluid-Based Glucose Sensors Using Invasive, Minimally Invasive, and Non-Invasive Technologies: A Review. Nanomaterials, 2022, 12, 1082.	1.9	29

#	ARTICLE	IF	CITATIONS
146	Batch-producible fibrous microelectrodes for enzyme-free electrochemical detection of glucose. Journal of Materials Science: Materials in Electronics, 2022, 33, 11511-11522.	1.1	2
147	Oxidation of copper electrodes on flexible polyimide substrates for non-enzymatic glucose sensing. Materials Research Express, 2022, 9, 045010.	0.8	2
148	Glucose Sensing Based on the Interaction of Gold Nanoparticles@Linoleic Acid With the Glucose. IEEE Sensors Journal, 2022, 22, 7169-7176.	2.4	1
149	A portable ascorbic acid in sweat analysis system based on highly crystalline conductive nickel-based metal-organic framework (Ni-MOF). Journal of Colloid and Interface Science, 2022, 616, 326-337.	5.0	24
150	Recent Advances of Prussian Blue-Based Wearable Biosensors for Healthcare. Analytical Chemistry, 2022, 94, 297-311.	3.2	22
151	Ferroceneâ€Functionalized Multiwalled Carbon Nanotubes for the Simultaneous Determination of Dopamine, Uric Acid, and Xanthine. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	2
152	Homogeneous Electrochemiluminescence in the Sensors Game: What Have We Learned from Past Experiments?. Analytical Chemistry, 2022, 94, 349-365.	3.2	34
153	Innovative Eco-Friendly Conductive Ink Based on Carbonized Lignin for the Production of Flexible and Stretchable Bio-Sensors. Nanomaterials, 2021, 11, 3428.	1.9	8
154	Nano-tattoosâ€"a novel approach for glucose monitoring and diabetes management. , 2022, , 97-110.		0
155	Smart Diaper Based on Integrated Multiplex Carbon Nanotube-Coated Electrode Array Sensors for <i>In Situ</i> Urine Monitoring. ACS Applied Nano Materials, 2022, 5, 4767-4778.	2.4	16
156	Nanomaterialsâ€assisted metabolic analysis toward in vitro diagnostics. Exploration, 2022, 2, .	5.4	13
157	Photomemristive sensing <i>via</i> charge storage in 2D carbon nitrides. Materials Horizons, 2022, 9, 1866-1877.	6.4	11
158	Hydrogen-Bonding 2D Coordination Polymer for Enzyme-Free Electrochemical Glucose Sensing. CrystEngComm, 0, , .	1.3	3
160	Continuous Glucose Monitoring for Diabetes Management Based on Miniaturized Biosensors. , 2022, , 149-175.		6
161	One-Step Electrodeposition of Bimetallic Nanocatalyst Anchored on Nanomatrix for Nonenzymatic Sensing of Glucose. SSRN Electronic Journal, 0, , .	0.4	0
162	Graphene Quantum Dot-Doped Pedot for the Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid. SSRN Electronic Journal, 0, , .	0.4	0
163	Development of an All-Carbon Electrochemical Biosensor on a Flexible Substrate for the Sensitive Detection of Glucose., 2022, 16, .		1
164	Green Fabrication of Nonenzymatic Glucose Sensor Using Multi-Walled Carbon Nanotubes Decorated with Copper (II) Oxide Nanoparticles for Tear Fluid Analysis. Applied Biochemistry and Biotechnology, 2022, 194, 3689-3705.	1.4	3

#	Article	IF	CITATIONS
165	Three-Phases Interface Induced Local Alkalinity Generation Enables Electrocatalytic Glucose Oxidation in Neutral Electrolyte. Frontiers in Bioengineering and Biotechnology, 2022, 10, 909187.	2.0	0
166	316 stainless steel wire mesh for visual detection of H2O2, glutathione and glucose based on the peroxidase-like activity. Analytical Sciences, 2022, , .	0.8	1
167	An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nature Biomedical Engineering, 2022, 6, 1214-1224.	11.6	186
168	Toward Next-Generation Mobile Diagnostics: Near-Field Communication-Powered Electrochemiluminescent Detection. ACS Sensors, 2022, 7, 1544-1554.	4.0	10
169	Functionalization of Glucose Oxidase in Organic Solvent: Towards Direct Electrical Communication across Enzyme-Electrode Interface. Biosensors, 2022, 12, 335.	2.3	8
170	Electrochemical multi-sensors obtained by applying an electric discharge treatment to 3D-printed poly(lactic acid). Applied Surface Science, 2022, 597, 153623.	3.1	13
171	Recent advances in carbon nanotube-based biosensors for biomolecular detection. TrAC - Trends in Analytical Chemistry, 2022, 154, 116658.	5.8	46
172	Breathable Nanomesh pressure sensor with layered polyaniline grown at Gas-liquid interface. Chemical Engineering Journal, 2022, 445, 136717.	6.6	9
173	Functional graphitic carbon (IV) nitride: A versatile sensing material. Coordination Chemistry Reviews, 2022, 466, 214611.	9.5	22
174	Construction of a binder-free non-enzymatic glucose sensor based on Cu@Ni core–shell nanoparticles anchored on 3D chiral carbon nanocoils-nickel foam hierarchical scaffold. Journal of Colloid and Interface Science, 2022, 624, 320-337.	5.0	35
175	Enhanced Piezoelectric Performance of Electrospun Pvdf-Trfe by Polydopamine-Assisted Attachment of Zno Nanowires for Impact Force Sensing. SSRN Electronic Journal, 0, , .	0.4	0
176	Construction of liquid metal-based soft microfluidic sensors via soft lithography. Journal of Nanobiotechnology, 2022, 20, .	4.2	24
177	Solvothermal preparation of CeO2 nanoparticles–graphene nanocomposites as an electrochemical sensor for sensitive detecting pentachlorophenol. Carbon Letters, 2022, 32, 1277-1285.	3.3	50
178	Nanomaterial-based optical- and electrochemical-biosensors for urine glucose detection: A comprehensive review., 2022, 1, 100016.		17
179	Electrochemical biosensors for stem cell analysis; applications in diagnostics, differentiation and follow-up. TrAC - Trends in Analytical Chemistry, 2022, 156, 116696.	5.8	17
180	MOF based electrochemical sensors for the detection of physiologically relevant biomolecules: An overview. Coordination Chemistry Reviews, 2022, 468, 214627.	9.5	86
181	Recent advancements in noninvasive glucose monitoring and closed-loop management systems for diabetes. Journal of Materials Chemistry B, 2022, 10, 5537-5555.	2.9	9
182	Stretchable Nonâ€Enzymatic Fuel Cellâ€Based Sensor Patch Integrated with Threadâ€Embedded Microfluidics for Selfâ€Powered Wearable Glucose Monitoring. Advanced Materials Interfaces, 2022, 9,	1.9	10

#	Article	IF	CITATIONS
183	Closing the loop for patients with Parkinson disease: where are we?. Nature Reviews Neurology, 2022, 18, 497-507.	4.9	19
184	Review—Electrochemistry and Other Emerging Technologies for Continuous Glucose Monitoring Devices. , 2022, 1, 031601.		56
185	Wearable hollow microneedle sensing patches for the transdermal electrochemical monitoring of glucose. Talanta, 2022, 249, 123695.	2.9	50
186	Paper-Based Colorimetric Glucose Sensor Using Prussian Blue Nanoparticles as Mimic Peroxidase. SSRN Electronic Journal, 0, , .	0.4	0
187	Commercial Non-invasive Glucose Sensor Devices for Monitoring Diabetes. Springer Series on Bio- and Neurosystems, 2022, , 273-292.	0.2	1
188	Recent Developments and Future Perspective on Electrochemical Glucose Sensors Based on 2D Materials. Biosensors, 2022, 12, 467.	2.3	33
189	Review of point-of-care platforms for diabetes: (1) sensing. Sensors and Actuators Reports, 2022, 4, 100113.	2.3	8
190	A review on artificial pancreas and regenerative medicine used in the management of Type 1 diabetes mellitus. Journal of Medical Engineering and Technology, 2022, 46, 693-702.	0.8	3
191	Ionic Liquidâ€Based Polymer Nanocomposites for Sensors, Energy, Biomedicine, and Environmental Applications: Roadmap to the Future. Advanced Science, 2022, 9, .	5.6	62
192	Smartphone-Based Electrochemical Systems for Glucose Monitoring in Biofluids: A Review. Sensors, 2022, 22, 5670.	2.1	12
193	The Impact of the Functional Layer Composition of Glucose Test-Strips on the Stability of Electrochemical Response. Chemosensors, 2022, 10, 298.	1.8	1
194	Ti2C-TiO2 MXene Nanocomposite-Based High-Efficiency Non-Enzymatic Glucose Sensing Platform for Diabetes Monitoring. Sensors, 2022, 22, 5589.	2.1	8
195	Functional Fiber Materials to Smart Fiber Devices. Chemical Reviews, 2023, 123, 613-662.	23.0	69
196	Proton conduction and electrochemical enzyme-free glucose sensitive sensing based on a newly constructed Co-MOF and its composite with hydroxyl carbon nanotubes. Polyhedron, 2022, 226, 116095.	1.0	8
197	Enhanced Electrocatalytic Activity and Ultrasensitive Enzyme-Free Glucose Sensing Based on Heterogeneous Co(OH) ₂ Nanosheets/CuO Microcoral Arrays via Interface Engineering. Industrial & Samp; Engineering Chemistry Research, 2022, 61, 12567-12575.	1.8	2
198	Silk-Based Electrochemical Sensor for the Detection of Glucose in Sweat. Biomacromolecules, 2022, 23, 3928-3935.	2.6	20
199	Al-Assisted Fusion of Scanning Electrochemical Microscopy Images Using Novel Soft Probe. ACS Measurement Science Au, 2022, 2, 576-583.	1.9	7
200	Electrospun nanofiber-based glucose sensors for glucose detection. Frontiers in Chemistry, 0, 10, .	1.8	50

#	Article	IF	CITATIONS
201	Covalent incorporation of metalloporphyrin in luminescent polymer dot transducer for continuous glucose monitoring. Journal of Luminescence, 2022, 251, 119202.	1.5	2
202	A responsive hydrogel-based microneedle system for minimally invasive glucose monitoring. Smart Materials in Medicine, 2023, 4, 69-77.	3.7	12
203	Engineering Co3O4 with Co defects for highly sensitive nonenzymatic detection of glucose. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 654, 130096.	2.3	2
204	Topical advancements in electrochemical and optical signal amplification for biomolecules detection: A comparison. Materials Today Chemistry, 2022, 26, 101119.	1.7	6
205	Wearable energy devices on mask-based printed electrodes for self-powered glucose biosensors. Sensing and Bio-Sensing Research, 2022, 38, 100525.	2.2	13
206	An Electrochemical Nonenzymatic Microsensor Modified by CuCo ₂ O ₄ Nanoparticles for Glucose Sensing. IEEE Sensors Journal, 2022, 22, 21462-21469.	2.4	3
207	Voltammetry Peak Tracking for Longer-Lasting and Reference-Electrode-Free Electrochemical Biosensors. Biosensors, 2022, 12, 782.	2.3	7
208	Property Comparison of Transitionâ€Metal Dichalcogenides (MoS ₂ , MoSe ₂ and) Tj ETC	Qq1 1 0.78 0.7	84314 rgBT 2
209	Free-standing hybrid material of Cu/Cu ₂ O/CuO modified by graphene with commercial Cu foil using for non-enzymatic glucose detection. Nanotechnology, 2022, 33, 505702.	1.3	2
210	Electrochemical Biosensing of Glucose Based on the Enzymatic Reduction of Glucose. Sensors, 2022, 22, 7105.	2.1	6
211	Deciphering Highly Sensitive Non-Enzymatic Glucose Sensor Based on Nanoscale CuO/PEDOT-MoS ₂ Electrodes in Chronoamperometry., 2022, 1, 046504.		6
212	Plasmonic/magnetic nanoarchitectures: From controllable design to biosensing and bioelectronic interfaces. Biosensors and Bioelectronics, 2022, , 114744.	5.3	3
213	Starch-Based Electrochemical Sensors and Biosensors: A Review. , 0, , .		2
214	Stretchable and bendable textile matrix based on cellulose fibers for wearable self-powered glucose biosensors. Cellulose, 2022, 29, 8919-8935.	2.4	6
215	Electrochemical fabrication of $Co(OH)2$ nanoparticles decorated carbon cloth for non-enzymatic glucose and uric acid detection. Mikrochimica Acta, 2022, 189, .	2.5	8
216	Paper-based colorimetric glucose sensor using Prussian blue nanoparticles as mimic peroxidase. Biosensors and Bioelectronics, 2023, 219, 114787.	5.3	10
217	Skin-Attachable Sensors for Biomedical Applications. , 2023, 1, 256-268.		1
218	Nanostructured Nickelâ€based Nonâ€enzymatic Electrochemical Glucose Sensors. Chemistry - an Asian Journal, 2022, 17, .	1.7	8

#	Article	IF	CITATIONS
219	Real-Time, <i>In Vivo</i> Molecular Monitoring Using Electrochemical Aptamer Based Sensors: Opportunities and Challenges. ACS Sensors, 2022, 7, 2823-2832.	4.0	37
220	Nickel-based catalysts for non-enzymatic electrochemical sensing of glucose: A review. Physics in Medicine, 2022, 14, 100054.	0.6	13
221	Flower-like NiCo2O4 nanoflake surface covered on carbon nanolayer for high-performance electro-oxidation of non-enzymatic glucose biosensor. Materials Today Chemistry, 2022, 26, 101156.	1.7	4
222	Non-enzymatic amperometric glucose sensor based on bimetal-oxide modified carbon fiber ultra-microelectrode. Sensing and Bio-Sensing Research, 2022, 38, 100532.	2.2	5
223	Determining zero-point of blood glucose detection through potentiostat circuit configuration. IEEE Sensors Journal, 2022, , 1-1.	2.4	0
224	A Comprehensive Review of the Recent Developments in Wearable Sweat-Sensing Devices. Sensors, 2022, 22, 7670.	2.1	12
225	Paper-Based Screen-Printed Ionic-Liquid/Graphene Electrode Integrated with Prussian Blue/MXene Nanocomposites Enabled Electrochemical Detection for Glucose Sensing. Biosensors, 2022, 12, 852.	2.3	13
226	A Non–Enzymatic Electrochemical Sensor of Cu@Co–MOF Composite for Glucose Detection with High Sensitivity and Selectivity. Chemosensors, 2022, 10, 416.	1.8	7
227	Enzyme powered self-assembly of hydrogel biosensor for colorimetric detection of metabolites. Sensors and Actuators B: Chemical, 2023, 375, 132942.	4.0	7
228	Enzyme-based amperometric biosensors: 60Âyears later … Quo Vadis?. Analytica Chimica Acta, 2022, 1234, 340517.	2.6	22
229	Electrochemical biosensor employing PbS colloidal quantum dots/Au nanospheres-modified electrode for ultrasensitive glucose detection. Nano Research, 2023, 16, 4085-4092.	5.8	10
230	Nucleic acid aptamers as aptasensors for plant biology. Trends in Plant Science, 2023, 28, 359-371.	4.3	4
231	A Mediated Enzymatic Electrochemical Sensor Using Paper-Based Laser-Induced Graphene. Biosensors, 2022, 12, 995.	2.3	3
232	Wearable chemical sensors for biomarker discovery in the omics era. Nature Reviews Chemistry, 2022, 6, 899-915.	13.8	136
233	A Review on Non-Enzymatic Electrochemical Biosensors of Glucose Using Carbon Nanofiber Nanocomposites. Biosensors, 2022, 12, 1004.	2.3	13
234	Machine Learning with Neural Networks to Enhance Selectivity of Nonenzymatic Electrochemical Biosensors in Multianalyte Mixtures. ACS Applied Materials & Samp; Interfaces, 2022, 14, 52684-52690.	4.0	15
235	Programming a triple-shelled CuS@Ni(OH)2@CuS heterogeneous nanocage as robust electrocatalysts enabling long-term highly sensitive glucose detection. Electrochimica Acta, 2023, 438, 141588.	2.6	2
236	Emerging biotransduction strategies on soft interfaces for biosensing. Nanoscale, 2022, 15, 80-91.	2.8	0

#	Article	IF	CITATIONS
237	Graphene electrochemical transistor incorporated with gel electrolyte for wearable and non-invasive glucose monitoring. Analytica Chimica Acta, 2023, 1239, 340719.	2.6	6
238	In-situ construction of Au/Cu2O nanowire arrays for sensitive glucose sensing. Talanta, 2023, 254, 124194.	2.9	7
239	Reduced graphene oxide supported MXene based metal oxide ternary composite electrodes for non-enzymatic glucose sensor applications. Scientific Reports, 2022, 12, .	1.6	2
240	Review—Micro-Fuel Cell Principal Biosensors for Monitoring Transdermal Volatile Organic Compounds in Humans. , 2022, 1, 041602.		10
241	Nanostructured Transition Metal Sulfide-based Glucose and Lactic Acid Electrochemical Sensors for Clinical Applications. Current Topics in Medicinal Chemistry, 2023, 23, 284-294.	1.0	4
242	Electrochemical biomaterials for self-powered implantable "tissue batteriesâ€∙ A tutorial review. Nano Research, 2023, 16, 5447-5463.	5.8	2
243	Masticatory system–inspired microneedle theranostic platform for intelligent and precise diabetic management. Science Advances, 2022, 8, .	4.7	11
244	Leveraging the future of diagnosis and management of diabetes: From old indexes to new technologies. European Journal of Clinical Investigation, 2023, 53, .	1.7	2
245	Highly Sensitive ZnO/Au Nanosquare Arrays Electrode for Glucose Biosensing by Electrochemical and Optical Detection. Molecules, 2023, 28, 617.	1.7	4
246	Point-of-Care Biosensors for Healthcare Applications. , 2022, , 1-23.		0
247	Recent advances in layered double hydroxidesâ€based electrochemical sensors: Insight in transition metal contribution. Electroanalysis, 2023, 35, .	1.5	4
248	Skin Interstitial Fluid-Based SERS Tags Labeled Microneedles for Tracking of Peritonitis Progression and Treatment Effect. ACS Sensors, 2023, 8, 372-380.	4.0	8
249	Noncancerous disease-targeting AlEgens. Chemical Society Reviews, 2023, 52, 1024-1067.	18.7	30
250	Carbon nanomaterials: A growing tool for the diagnosis and treatment of diabetes mellitus. Environmental Research, 2023, 221, 115250.	3.7	11
251	Recent advances on paper-based microfluidic devices for bioanalysis. TrAC - Trends in Analytical Chemistry, 2023, 158, 116893.	5.8	25
252	Simultaneous noninvasive monitoring of diabetes and hypoxia using core-shell nanozyme – oxidase enzyme biosensors. Sensors and Actuators B: Chemical, 2023, 380, 133337.	4.0	4
253	Laser-Induced Graphene Arrays-Based Three-Phase Interface Enzyme Electrode for Reliable Bioassays. Biomimetics, 2023, 8, 26.	1.5	4
254	Effect of 2-D nanomaterials on sensitivity of plasmonic biosensor for efficient urine glucose detection. Frontiers in Materials, 0, 9, .	1.2	18

#	Article	IF	CITATIONS
255	Carbon Nanotube Fiber-Based Flexible Microelectrode for Electrochemical Glucose Sensors. ACS Omega, 2023, 8, 2272-2280.	1.6	21
256	Flexible biosensor based on signal amplification of gold nanoparticles-composite flower clusters for glucose detection in sweat. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 661, 130908.	2.3	9
257	A hybrid of NiCo-PBNCs nano-composite supported two-dimensional molybdenum disulfide as excellent peroxidase mimics for colorimetric glucose detection. Journal of Dispersion Science and Technology, 2024, 45, 368-379.	1.3	1
258	Glucose biosensing with gold and silver nanoparticles for real-time applications. , 2023, , 109-136.		O
259	Enhanced Piezoelectric Performance of Electrospun PVDFâ€TrFE by Polydopamineâ€Assisted Attachment of ZnO Nanowires for Impact Force Sensing. Macromolecular Materials and Engineering, 2023, 308, .	1.7	2
260	Conformational-switch biosensors as novel tools to support continuous, real-time molecular monitoring in lab-on-a-chip devices. Lab on A Chip, 2023, 23, 1339-1348.	3.1	9
261	Hydrogel-Coated Microelectrode Resists Protein Passivation of In Vivo Amperometric Sensors. Analytical Chemistry, 2023, 95, 3390-3397.	3.2	9
262	Progress on the influence of non-enzymatic electrodes characteristics on the response to glucose detection: a review (2016–2022). Reviews in Chemical Engineering, 2024, 40, 123-148.	2.3	3
263	Glucose Sensors Based on Chitosan Capped ZnS Doped Mn Nanomaterials., 2023, 7, 1-4.		2
264	Reversible Recognition-Based Boronic Acid Probes for Glucose Detection in Live Cells and Zebrafish. Journal of the American Chemical Society, 0, , .	6.6	4
265	Insight into continuous glucose monitoring: from medical basics to commercialized devices. Mikrochimica Acta, $2023,190,.$	2.5	7
266	One-step laser synthesis platinum nanostructured 3D porous graphene: A flexible dual-functional electrochemical biosensor for glucose and pH detection in human perspiration. Talanta, 2023, 257, 124362.	2.9	19
267	pH and non-enzymatic glucose response at ultra-low concentration using submicrochannel heterogeneous membrane. Chemical Engineering Journal, 2023, 463, 142438.	6.6	1
268	Branched CuxAuy nanoalloy with controllable atomic ratios and "clean surface": Synthesis and their superior performances in hydrogen evolution reaction and biosensors. Journal of Alloys and Compounds, 2023, 947, 169617.	2.8	2
269	High-performance enzyme-free glucose and hydrogen peroxide sensors based on bimetallic AuCu nanoparticles coupled with multi-walled carbon nanotubes. Microchemical Journal, 2023, 189, 108504.	2.3	5
270	Application and modification of nickel-based metal-organic frameworks in electrochemical sensing. , 2023, 2, 100053.		8
271	Mimicking the light harvesting system for sensitive pattern recognition of monosaccharides. Sensors and Actuators B: Chemical, 2023, 385, 133677.	4.0	2
272	The widest linear range of glucose test strips based on various mediators and membranes for whole blood analysis. Journal of Electroanalytical Chemistry, 2023, 938, 117445.	1.9	3

#	Article	IF	CITATIONS
273	NiNP/Cu-MOF-C/GCE for the the noninvasive detection of glucose in natural saliva samples. Microchemical Journal, 2023, 190, 108657.	2.3	3
274	A novel non-enzymatic electrochemical sensor based on NiS/Co3S4@h-Ni NWs core-shell electrode for glucose detection in human serum. Materials Chemistry and Physics, 2023, 302, 127730.	2.0	0
275	Point-of-Care Biosensors for Glucose Sensing. , 2022, , 107-136.		1
276	Minimally invasive electrochemical continuous glucose monitoring sensors: Recent progress and perspective. Biosensors and Bioelectronics, 2023, 225, 115103.	5.3	19
277	Flexible, Bifunctional Sensing Platform Made with Biodegradable Mats for Detecting Glucose in Urine. ACS Sustainable Chemistry and Engineering, 2023, 11, 2209-2218.	3.2	12
278	Point of care blood glucose devices in the hospital setting. Critical Reviews in Clinical Laboratory Sciences, 2023, 60, 290-299.	2.7	1
279	Partially Oxidized Carbon Nanomaterials with Ni/NiO Heterostructures as Durable Glucose Sensors. Inorganic Chemistry, 2023, 62, 3288-3296.	1.9	15
280	Eco-friendly fabrication of nonenzymatic electrochemical sensor based on cobalt/polymelamine/nitrogen-doped graphitic-porous carbon nanohybrid material for glucose monitoring in human blood. Environmental Research, 2023, 223, 115403.	3.7	4
281	Polymer and biopolymer based nanocomposites for glucose sensing. International Journal of Polymeric Materials and Polymeric Biomaterials, 2024, 73, 490-521.	1.8	2
282	Glucose Monitoring Techniques and Their Calibration. , 2023, , 1-23.		0
283	Multimodal Simultaneous Amperometry and Electrochemical Impedance Spectroscopy Measurement for Biosensing Applications. , 2022, , .		0
284	Smart Graphene-Based Electrochemical Nanobiosensor for Clinical Diagnosis: Review. Sensors, 2023, 23, 2240.	2.1	15
285	Graphene-interfaced flexible and stretchable micro–nano electrodes: from fabrication to sweat glucose detection. Materials Horizons, 2023, 10, 1580-1607.	6.4	17
286	Prevalence and management of type 2 diabetes among Chinese Americans. Ethnicity and Health, 2023, 28, 809-821.	1.5	0
287	Continuous Glucose Monitoring in Hypoxic Environments Based on Water Splitting-Assisted Electrocatalysis. Chemosensors, 2023, 11, 149.	1.8	1
288	A review of electrochemical glucose sensing based on transition metal phosphides. Journal of Applied Physics, 2023, 133, .	1.1	4
289	Reusable Dualâ€Photopolymerized Holographic Glucose Sensors. Advanced Functional Materials, 2023, 33, .	7.8	8
290	Development of Smartphone-Controlled and Microneedle-Based Wearable Continuous Glucose Monitoring System for Home-Care Diabetes Management. ACS Sensors, 2023, 8, 1241-1251.	4.0	16

#	Article	IF	CITATIONS
291	All-Fiber Integrated Thermoelectrically Powered Physiological Monitoring Biosensor. Advanced Fiber Materials, 2023, 5, 1025-1036.	7.9	6
292	Device integration of electrochemical biosensors. , 2023, 1, 346-360.		81
293	Wearable sweat biosensors on textiles for health monitoring. Journal of Semiconductors, 2023, 44, 021601.	2.0	10
294	A Novel Method for the Pre-Column Derivatization of Saccharides from Polygonatum cyrtonema Hua. by Integrating Lambert–Beer Law and Response Surface Methodology. Molecules, 2023, 28, 2186.	1.7	2
295	Accurate Post-Calibration Predictions for Noninvasive Glucose Measurements in People Using Confocal Raman Spectroscopy. ACS Sensors, 2023, 8, 1272-1279.	4.0	9
296	Advances in Electrochemical Sensors for Detecting Analytes in Biofluids. , 2023, 2, .		8
297	3D-assembled microneedle ion sensor-based wearable system for the transdermal monitoring of physiological ion fluctuations. Microsystems and Nanoengineering, 2023, 9, .	3.4	11
298	Technology Roadmap for Flexible Sensors. ACS Nano, 2023, 17, 5211-5295.	7.3	238
299	Enzymatic Glucose Fiber Sensor for Glucose Concentration Measurement with a Heterodyne Interferometry. Sensors, 2023, 23, 2990.	2.1	0
300	CuO/Cu/rGO nanocomposite anodic titania nanotubes for boosted non-enzymatic glucose biosensors. New Journal of Chemistry, 2023, 47, 7890-7902.	1.4	6
301	Shield, Anchor, and Adhesive Roles of Methylene Blue in Tyrosinase Adsorbed on Carbon Felt for a Flow Injection Amperometric Enzyme Biosensor for Phenolic Substrates and Inhibitors. Langmuir, 2023, 39, 4676-4691.	1.6	1
302	Ni-MOF derived rod-like nickel hydroxide through controllable hydrolysis for efficient electrocatalytic glucose oxidation. Microchemical Journal, 2023, 190, 108694.	2.3	1
303	Rare Earth Element-Based Nonenzymatic Glucose Sensor. , 2023, , 393-410.		0
304	The application of nanoparticles in point-of-care testing (POCT) immunoassays. Analytical Methods, 2023, 15, 2154-2180.	1.3	9
305	Controllableâ€Swelling Microneedle–Assisted Ultrasensitive Paper Sensing Platforms for Personal Health Monitoring. Advanced Healthcare Materials, 2023, 12, .	3.9	4
308	Screen-printed electrochemical sensor platforms. , 2023, , 745-774.		0
309	Analysis and Validation of Planar Microwave Diagonal Stub Loaded Closed Loop Resonator for Glucose Monitoring., 2022,,.		0
312	Electrochemical biosensors for biomolecules. , 2023, , 275-291.		0

#	Article	IF	Citations
318	Electrochemistry of Freely Diffusing Mediators in Polyelectrolyte Membranes Used for Blood Glucose Test Strips with a High Upper Limit of the Linear Range. , 0, , .		0
319	Principle of enzyme-linked electrochemical sensors. , 2024, , 589-601.		0
333	Insulin detection in diabetes mellitus: challenges and new prospects. Nature Reviews Endocrinology, 2023, 19, 487-495.	4.3	7
338	Development of nanozyme based sensors as diagnostic tools in clinic applications: a review. Journal of Materials Chemistry B, 2023, 11, 6762-6781.	2.9	6
344	Solid-state reaction process for metal oxide nanostructures. , 2023, , 77-94.		0
348	Digital health for aging populations. Nature Medicine, 2023, 29, 1623-1630.	15.2	27
358	Dermal-fluid-enabled detection platforms for non-invasive ambulatory monitoring. Sensors $\&$ Diagnostics, 0, , .	1.9	0
363	Sweat sugar detection sensor based on image colorimetric analysis. , 2023, , .		0
364	Carbon Nanodots-Based Electrodes in Biomolecular Screening and Analysis., 2023,, 763-788.		0
365	Disposable Electrochemical Nanobiosensors for Biomolecular Analysis., 2023,, 569-598.		0
379	Skin-interfaced colorimetric microfluidic devices for on-demand sweat analysis. Npj Flexible Electronics, 2023, 7, .	5.1	6
381	Glucose Monitoring Techniques and Their Calibration., 2023,, 1855-1877.		0
383	Recent Trends in Enzyme-Based Electrosensing Devices Modified with Nanomaterials., 2023,, 223-257.		0
401	BioWeave: Weaving Thread-Based Sweat-Sensing On-Skin Interfaces. , 2023, , .		0
404	Advances in biomedical systems based on microneedles: design, fabrication, and application. Biomaterials Science, 0, , .	2.6	0
416	Implantable Electrochemical Microsensors for In Vivo Monitoring of Animal Physiological Information. Nano-Micro Letters, 2024, 16, .	14.4	2
428	Wearable Electrochemical Biosensors for Glucose Monitoring. , 2024, , 35-66.		0
429	Harvesting and manipulating sweat and interstitial fluid in microfluidic devices. Lab on A Chip, 2024, 24, 1244-1265.	3.1	0

ARTICLE IF CITATIONS

The application of biosensors in precision medicine. , 2024, , 133-162.