Microbiota Supplementation with Bifidobacterium and Infant Gut Microbiota and Metabolome: An Observation

Cell Reports Medicine 1, 100077 DOI: 10.1016/j.xcrm.2020.100077

Citation Report

#	Article	IF	CITATIONS
1	Probiotics to prevent necrotising enterocolitis in very preterm or very low birth weight infants. The Cochrane Library, 2020, 2020, CD005496.	1.5	83
2	Influence of probiotic supplementation on the developing microbiota in human preterm neonates. Gut Microbes, 2020, 12, 1826747.	4.3	26
3	Preterm Infants Harbour a Rapidly Changing Mycobiota That Includes Candida Pathobionts. Journal of Fungi (Basel, Switzerland), 2020, 6, 273.	1.5	21
4	A good start in life is important—perinatal factors dictate early microbiota development and longer term maturation. FEMS Microbiology Reviews, 2020, 44, 763-781.	3.9	39
5	The early life microbiota protects neonatal mice from pathological small intestinal epithelial cell shedding. FASEB Journal, 2020, 34, 7075-7088.	0.2	27
6	The microbiota–gut–brain axis: A novel nutritional therapeutic target for growth retardation. Critical Reviews in Food Science and Nutrition, 2022, 62, 4867-4892.	5.4	12
7	Integrated Microbiome and Metabolome Analysis Reveals a Positive Change in the Intestinal Environment of Myostatin Edited Large White Pigs. Frontiers in Microbiology, 2021, 12, 628685.	1.5	14
8	Impact of Probiotic B. infantis EVC001 Feeding in Premature Infants on the Gut Microbiome, Nosocomially Acquired Antibiotic Resistance, and Enteric Inflammation. Frontiers in Pediatrics, 2021, 9, 618009.	0.9	38
9	Effects of Lactobacillus reuteri supplementation on the gut microbiota in extremely preterm infants in a randomized placebo-controlled trial. Cell Reports Medicine, 2021, 2, 100206.	3.3	29
10	Probiotic Effector Compounds: Current Knowledge and Future Perspectives. Frontiers in Microbiology, 2021, 12, 655705.	1.5	13
11	Colonization of Supplemented Bifidobacterium breve M-16V in Low Birth Weight Infants and Its Effects on Their Gut Microbiota Weeks Post-administration. Frontiers in Microbiology, 2021, 12, 610080.	1.5	15
12	Synbiotics for preventing necrotising enterocolitis in preterm infants. The Cochrane Library, 0, , .	1.5	3
13	Thirdhand smoke associations with the gut microbiomes of infants admitted to a neonatal intensive care unit: An observational study. Environmental Research, 2021, 197, 111180.	3.7	15
14	A synbiotic intervention modulates meta-omics signatures of gut redox potential and acidity in elective caesarean born infants. BMC Microbiology, 2021, 21, 191.	1.3	13
15	Benchmark of 16S rRNA gene amplicon sequencing using Japanese gut microbiome data from the V1–V2 and V3–V4 primer sets. BMC Genomics, 2021, 22, 527.	1.2	43
16	Molecular Mechanism of Microbiota Metabolites in Preterm Birth: Pathological and Therapeutic Insights. International Journal of Molecular Sciences, 2021, 22, 8145.	1.8	18
17	The Pregnancy and EARly Life study (PEARL) - a longitudinal study to understand how gut microbes contribute to maintaining health during pregnancy and early life. BMC Pediatrics, 2021, 21, 357.	0.7	2
19	Gut Microbiota Development: Influence of Diet from Infancy to Toddlerhood. Annals of Nutrition and Metabolism, 2021, 77, 21-34.	1.0	37

#	Article	IF	CITATIONS
20	Prebiotics to prevent necrotising enterocolitis in very preterm or very low birth weight infants. The Cochrane Library, 2021, 2021, .	1.5	2
22	Aberrant gut-microbiota-immune-brain axis development in premature neonates with brain damage. Cell Host and Microbe, 2021, 29, 1558-1572.e6.	5.1	80
23	Effects of fish protein with glycation extent on gut microbiota and colonic barrier function in mice fed a high-fat diet. Journal of Functional Foods, 2021, 85, 104636.	1.6	8
25	iProbiotics: a machine learning platform for rapid identification of probiotic properties from whole-genome primary sequences. Briefings in Bioinformatics, 2022, 23, .	3.2	23
26	Multispecies probiotics alter fecal short-chain fatty acids and lactate levels in weaned pigs by modulating gut microbiota. Journal of Animal Science and Technology, 2021, 63, 1142-1158.	0.8	35
28	The Role of Microbiota in Infant Health: From Early Life to Adulthood. Frontiers in Immunology, 2021, 12, 708472.	2.2	87
29	Nurturing the Early Life Gut Microbiome and Immune Maturation for Long Term Health. Microorganisms, 2021, 9, 2110.	1.6	34
30	<i>Bifidobacterium</i> catabolism of human milk oligosaccharides overrides endogenous competitive exclusion driving colonization and protection. Gut Microbes, 2021, 13, 1986666.	4.3	18
31	Human Milk-Based or Bovine Milk-Based Fortifiers Differentially Impact the Development of the Gut Microbiota of Preterm Infants. Frontiers in Pediatrics, 2021, 9, 719096.	0.9	8
32	Early-Life Adversity Leaves Its Imprint on the Oral Microbiome for More Than 20 Years and Is Associated with Long-Term Immune Changes. International Journal of Molecular Sciences, 2021, 22, 12682.	1.8	8
33	Role of Bifidobacteria on Infant Health. Microorganisms, 2021, 9, 2415.	1.6	40
34	Dynamic Associations of Milk Components With the Infant Gut Microbiome and Fecal Metabolites in a Mother–Infant Model by Microbiome, NMR Metabolomic, and Time-Series Clustering Analyses. Frontiers in Nutrition, 2021, 8, 813690.	1.6	7
35	Microbiomes in physiology: insights into 21stâ€century global medical challenges. Experimental Physiology, 2022, 107, 257-264.	0.9	6
36	Probiotic supplementation in neonates with congenital gastrointestinal surgical conditions: a pilot randomised controlled trial. Pediatric Research, 2022, 92, 1122-1131.	1.1	6
37	B. infantis EVC001 Is Well-Tolerated and Improves Human Milk Oligosaccharide Utilization in Preterm Infants in the Neonatal Intensive Care Unit. Frontiers in Pediatrics, 2021, 9, 795970.	0.9	5
38	Inferring early-life host and microbiome functions by mass spectrometry-based metaproteomics and metabolomics. Computational and Structural Biotechnology Journal, 2022, 20, 274-286.	1.9	5
40	Non-coding RNAs and glioblastoma: Insight into their roles in metastasis. Molecular Therapy - Oncolytics, 2022, 24, 262-287.	2.0	32
41	Effect of single versus multistrain probiotic in extremely preterm infants: a randomised trial. BMJ Open Gastroenterology, 2022, 9, e000811.	1.1	11

#	Article	IF	CITATIONS
42	Randomized, Doubleâ€Blind, Placeboâ€Controlled Study to Assess the Effect of Two Probiotics on the Preterms' Gut Microbiota. Journal of Pediatric Gastroenterology and Nutrition, 2022, 74, .	0.9	3
43	To Probiotic or Not to Probiotic: A Metagenomic Comparison of the Discharge Gut Microbiome of Infants Supplemented With Probiotics in NICU and Those Who Are Not. Frontiers in Pediatrics, 2022, 10, 838559.	0.9	5
44	Synbiotics to prevent necrotising enterocolitis in very preterm or very low birth weight infants. The Cochrane Library, 2022, 2022, CD014067.	1.5	7
45	Multi-strain probiotics for extremely preterm infants: a randomized controlled trial. Pediatric Research, 2022, 92, 1663-1670.	1.1	7
47	Enterococcus innesii sp. nov., isolated from the wax moth Galleria mellonella. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	0.8	9
48	Clinical implications of preterm infant gut microbiome development. Nature Microbiology, 2022, 7, 22-33.	5.9	50
49	Antimicrobial utilization in very-low-birth-weight infants: association with probiotic use. Journal of Perinatology, 2022, , .	0.9	0
50	Effect of sea cucumber peptides on the immune response and gut microbiota composition in ovalbumin-induced allergic mice. Food and Function, 2022, 13, 6338-6349.	2.1	6
51	Metabolic Phenotype and Microbiome of Infants Fed Formula Containing Lactobacillus paracasei Strain F-19. Frontiers in Pediatrics, 2022, 10, 856951.	0.9	4
52	Individuality of the Extremely Premature Infant Gut Microbiota Is Driven by Ecological Drift. MSystems, 2022, 7, e0016322.	1.7	4
53	Supplementation with a probiotic mixture accelerates gut microbiome maturation and reduces intestinal inflammation in extremely preterm infants. Cell Host and Microbe, 2022, 30, 696-711.e5.	5.1	63
56	Highly Specialized Carbohydrate Metabolism Capability in <i>Bifidobacterium</i> Strains Associated with Intestinal Barrier Maturation in Early Preterm Infants. MBio, 2022, 13, .	1.8	10
58	Exploring the long-term colonisation and persistence of probiotic-prophylaxis species on the gut microbiome of preterm infants: a pilot study. European Journal of Pediatrics, 0, , .	1.3	4
59	Preterm Infant Fecal Microbiota and Metabolite Profiles Are Modulated in a Probiotic Specific Manner. Journal of Pediatric Gastroenterology and Nutrition, 2022, 75, 535-542.	0.9	10
60	Metabolic model of necrotizing enterocolitis in the premature newborn gut resulting from enteric dysbiosis. Frontiers in Pediatrics, 0, 10, .	0.9	8
61	Capturing the antibiotic resistome of preterm infants reveals new benefits of probiotic supplementation. Microbiome, 2022, 10, .	4.9	16
62	Special Diets in Infants and Children and Impact on Gut Microbioma. Nutrients, 2022, 14, 3198.	1.7	16
63	Modulating Microbiota as a New Strategy for Breast Cancer Prevention and Treatment. Microorganisms, 2022, 10, 1727.	1.6	18

#	Article	IF	CITATIONS
64	Strain-specific impacts of probiotics are a significant driver of gut microbiome development in very preterm infants. Nature Microbiology, 2022, 7, 1525-1535.	5.9	48
65	Rhythmicity of intestinal IgA responses confers oscillatory commensal microbiota mutualism. Science Immunology, 2022, 7, .	5.6	30
66	Human Milk Oligosaccharide Utilization in Intestinal Bifidobacteria Is Governed by Global Transcriptional Regulator NagR. MSystems, 2022, 7, .	1.7	6
71	Mode of delivery modulates the intestinal microbiota and impacts the response to vaccination. Nature Communications, 2022, 13, .	5.8	9
72	Effects of monoglucoside and diglucoside anthocyanins from Yan 73 (Vitis vinifera L.) and spine grape (Vitis davidii Foex) skin on intestinal microbiota in vitro. Food Chemistry: X, 2022, 16, 100501.	1.8	7
73	Lactobacillus reuteri improves the development and maturation of fecal microbiota in piglets through mother-to-infant microbe and metabolite vertical transmission. Microbiome, 2022, 10, .	4.9	14
74	Polygonatum sibiricum saponin Exerts Beneficial Hypoglycemic Effects in Type 2 Diabetes Mice by Improving Hepatic Insulin Resistance and Glycogen Synthesis-Related Proteins. Nutrients, 2022, 14, 5222.	1.7	14
75	Amino acid availability acts as a metabolic rheostat to determine the magnitude of ILC2 responses. Journal of Experimental Medicine, 2023, 220, .	4.2	8
76	Gut Microbiota and Eating Disorders on the Extremes of Aging. Healthy Ageing and Longevity, 2023, , 99-127.	0.2	0
77	Bifidobacterium: Host–Microbiome Interaction and Mechanism of Action in Preventing Common Gut-Microbiota-Associated Complications in Preterm Infants: A Narrative Review. Nutrients, 2023, 15, 709.	1.7	10
78	Fixing the Damage: The Evolution of Probiotics from Fermented Food to Biotherapeutic Products. , 2023, , 245-276.		0
79	Enzymatic synthesis of propionyl-fructooligosaccharides and their evaluation as a gut microbiota modulator. Food Hydrocolloids, 2023, 142, 108782.	5.6	5
80	Clinical NEC prevention practices drive different microbiome profiles and functional responses in the preterm intestine. Nature Communications, 2023, 14, .	5.8	3
82	Effects of Lactobacillus on the Differentiation of Intestinal Mucosa Immune Cells and the Composition of Gut Microbiota in Soybean-Sensitized Mice. Foods, 2023, 12, 627.	1.9	4
83	Bifidobacterium bacteraemia is rare with routine probiotics use in preterm infants: A further case report with literature review. Anaerobe, 2023, 80, 102713.	1.0	1
84	Therapeutic Potential of Gut Microbiota and Its Metabolite Short-Chain Fatty Acids in Neonatal Necrotizing Enterocolitis. Life, 2023, 13, 561.	1.1	12
85	Milk glycan metabolism by intestinal bifidobacteria: insights from comparative genomics. Critical Reviews in Biochemistry and Molecular Biology, 2022, 57, 562-584.	2.3	1
86	Non-invasive faecal cytokine and microbiome profiles predict commencement of necrotizing enterocolitis in a proof-of-concept study. , 2023, , .		0

#	Article	IF	CITATIONS
87	Unveiling the Human Gastrointestinal Tract Microbiome: The Past, Present, and Future of Metagenomics. Biomedicines, 2023, 11, 827.	1.4	6
88	Pathogenesis from the microbial-gut-brain axis in white matter injury in preterm infants: A review. Frontiers in Integrative Neuroscience, 0, 17, .	1.0	0
89	Microbial metabolites as modulators of the infant gut microbiome and host-microbial interactions in early life. Gut Microbes, 2023, 15, .	4.3	14
90	Translating neonatal microbiome science into commercial innovation: metabolism of human milk oligosaccharides as a basis for probiotic efficacy in breast-fed infants. Gut Microbes, 2023, 15, .	4.3	8
91	Supplemental enzymes and probiotics on the gut health of broilers fed with a newly harvested corn diet. Poultry Science, 2023, 102, 102740.	1.5	1