A New Kinetic Model of a Growing Bacterial Population

Journal of General Microbiology 22, 589-617 DOI: 10.1099/00221287-22-3-589

Citation Report

#	Article	IF	CITATIONS
1	Continuous cultivation of microorganisms. Folia Microbiologica, 1961, 6, 192-209.	2.3	8
2	Integration of Cell Reactions. Nature, 1963, 199, 7-11.	27.8	29
3	A Genealogical Study of Clonal Development of <i>Escherichia coli</i> . Journal of Applied Bacteriology, 1963, 26, 127-151.	1.1	17
4	Stability of product limited continuous culture systems. Biotechnology and Bioengineering, 1963, 5, 49-52.	3.3	12
5	Statistics and dynamics of procaryotic cell populations. Mathematical Biosciences, 1967, 1, 327-374.	1.9	274
6	Dynamics of microbial propagation: Models considering inhibitors and variable cell composition. Biotechnology and Bioengineering, 1967, 9, 129-170.	3.3	135
7	The simulation of bacterial cultures on a digital computer. Journal of Theoretical Biology, 1967, 17, 91-107.	1.7	2
8	A dynamic mathematical model of the chemostat. Biotechnology and Bioengineering, 1970, 12, 747-769.	3.3	76
9	Mathematical Models for Fermentation Processes. Advances in Applied Microbiology, 1970, , 419-465.	2.4	103
10	Continuous cultivation of microorganisms. Folia Microbiologica, 1971, 16, 389-415.	2.3	52
11	Mixed microbial populations. , 1972, , 97-143.		21
12	Chapter I Computer Use in Microbiology. Methods in Microbiology, 1972, , 1-28.	0.8	Ο
13	Exponential growth in systems limited by substrate concentration. Biotechnology and Bioengineering, 1973, 15, 589-596.	3.3	11
14	Equations of substrate-limited growth: The case for blackman kinetics. Biotechnology and Bioengineering, 1973, 15, 1159-1177.	3.3	97
15	The Effect of Temperature on the Growth of the Fireblight Pathogen, <i>Erwinia amylovora</i> . Journal of Applied Bacteriology, 1974, 37, 643-648.	1.1	44
16	Sigmoidal and growth rate kinetic hysteresis in biochemical systems. The Chemical Engineering Journal, 1974, 8, 113-123.	0.3	4
17	Experimental Bacterial Ecology Studied in Continuous Culture. Advances in Microbial Physiology, 1974, , 165-212.	2.4	98
18	Cell size as an indicator of changes in intracellular composition of Azotobacter vinelandii. Canadian Journal of Microbiology, 1975, 21, 927-935.	1.7	11

ATION REDO

#	Article	IF	CITATIONS
19	A two-state microbial growth kinetics model. Water Research, 1975, 9, 491-498.	11.3	13
20	Predictions of cellular growth patterns by a feedback model. Journal of Theoretical Biology, 1977, 68, 415-435.	1.7	9
21	A dynamic kinetic model of the activated sludge process. Biotechnology and Bioengineering, 1977, 19, 1431-1447.	3.3	18
22	Interaction of two inhibitors which act on different enzymes of a metabolic pathway. Journal of Theoretical Biology, 1978, 74, 411-437.	1.7	29
23	Transient state microbial growth in perfect mixing. Chemical Engineering Science, 1978, 33, 365-377.	3.8	5
24	The binding of lipopolysaccharide from Escherichia coli to mammalian cell membranes and its effect on liposomes. Biochimica Et Biophysica Acta - Biomembranes, 1978, 508, 260-276.	2.6	45
25	Kinetic Hysteresis in Enzyme and Fermentation Systems. Plant, Cell and Environment, 1978, , 73-89.	5.7	2
26	Sedimentation behaviour of red mud—reply. Chemical Engineering Science, 1979, 34, 752-753.	3.8	0
27	Statistical models of cell populations. Advances in Biochemical Engineering/Biotechnology, 1979, , 1-47.	1.1	26
28	INVITED REVIEW MICROBIAL GROWTH KINETICS. Chemical Engineering Communications, 1981, 8, 181-211.	2.6	27
29	The dynamics of microbial growth on soluble substrates. Water Research, 1982, 16, 365-382.	11.3	108
30	The growth dynamics of a methanol-utilizing bacterium L3 in a batch bioreactor. Biotechnology and Bioengineering, 1984, 26, 1352-1363.	3.3	8
31	Feedback identification of continuous microbial growth systems. Biotechnology and Bioengineering, 1986, 28, 1323-1333.	3.3	19
32	Dynamics of continuous stirred-tank biochemical reactor utilizing inhibitory substrate. Biotechnology and Bioengineering, 1988, 31, 198-202.	3.3	24
33	Bio-oxidation of inhibitory substrate in a continuous stirred tank biochemical reactor. The Chemical Engineering Journal, 1988, 38, B17-B25.	0.3	5
34	Uptake rate of phenol byPseudomonas putidagrown in unsteady state. Biotechnology and Bioengineering, 1988, 32, 1097-1103.	3.3	36
35	Bioprocess Kinetics. , 1988, , 197-306.		1
36	A simple model to describe transient differences between cell number and biomass growth rates ofEscherichia coli. Biotechnology and Bioengineering, 1991, 37, 127-132.	3.3	7

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
37	Operational range for a continuous stirred-tank bioreactor degrading an inhibitory substrate. The Chemical Engineering Journal, 1992, 50, B1-B7.	0.3	8
38	The Origin of Life and the Origin of Enzymes. Advances in Enzymology and Related Areas of Molecular Biology, 2006, 27, 347-380.	1.3	34
39	Metabolic responses of microorganisms growing on inhibitory substrates in nonsteady state culture. Journal of Chemical Technology and Biotechnology, 2007, 54, 223-229.	3.2	14
40	An extended bottleneck model: Accounting for the metabolic turnover effect in microorganisms. Journal of Chemical Technology and Biotechnology Biotechnology, 1983, 33, 155-163.	0.2	3
42	Key Parameters for Scaling up the Synthesis of Magnetite Nanoparticles in Organic Media: Stirring Rate and Growth Kinetic. Industrial & Engineering Chemistry Research, 2013, 52, 17841-17847.	3.7	20
43	Evolution of the first genetic cells and the universal genetic code: A hypothesis based on macromolecular coevolution of RNA and proteins. Journal of Theoretical Biology, 2014, 357, 220-244.	1.7	11
44	A population balance model for bioreactors combining interdivision time distributions and micromixing concepts. Biochemical Engineering Journal, 2017, 126, 135-145.	3.6	17
46	A two-dimensional population balance model for cell growth including multiple uptake systems. Chemical Engineering Research and Design, 2018, 132, 966-981.	5.6	16
47	Microbial floes and flocculation in fermentation process engineering. Advances in Biochemical Engineering/Biotechnology, 1976, , 41-124.	1.1	21
48	Biologische Grundfragen bei der homokontinuierlichen Kultur von Mikroorganismen. , 1962, , 93-135.		42
49	SITUATION AND MAIN TRENDS IN FURTHER DEVELOPMENTS OF CONTINUOUS CULTIVATION., 1964, , 11-21.		3
50	ORIGIN OF PREBIOLOGICAL SYSTEMS. , 1968, , 101-126.		1
51	Continuous Systems. , 1966, , 31-66.		3
52	Rhythmic Response of Serratia marcescens to Elevated Temperature. Journal of Bacteriology, 1965, 89, 791-798.	2.2	25
53	Estimating Heterotrophic Bacterial Productivity by Inorganic Radiocarbon Uptake: Importance of Establishing Time Courses of Uptake. Marine Ecology - Progress Series, 1982, 8, 167-172.	1.9	21
54	The Role of Models in Theoretical Biology. , 1967, , 165-218.		0
55	EVOLUTION OF "PROTOBIONTS―AND THE ORIGIN OF THE FIRST ORGANISMS. , 1968, , 127-152.		0
58	A self-sustaining serpentinization mega-engine feeds the fougerite nanoengines implicated in the emergence of guided metabolism. Frontiers in Microbiology, 0, 14, .	3.5	4