Adaptive laboratory evolution of Pseudomonas putida l ferulic acid catabolism and tolerance

Metabolic Engineering Communications

11, e00143

DOI: 10.1016/j.mec.2020.e00143

Citation Report

#	Article	IF	CITATIONS
1	Defined Microbial Mixed Culture for Utilization of Polyurethane Monomers. ACS Sustainable Chemistry and Engineering, 2020, 8, 17466-17474.	3.2	60
2	Transcriptome Profiling Combined With Activities of Antioxidant and Soil Enzymes Reveals an Ability of Pseudomonas sp. CFA to Mitigate p-Hydroxybenzoic and Ferulic Acid Stresses in Cucumber. Frontiers in Microbiology, 2020, 11, 522986.	1.5	6
3	Lignin valorization by bacterial genus Pseudomonas: State-of-the-art review and prospects. Bioresource Technology, 2021, 320, 124412.	4.8	60
6	Characterization of aromatic acid/proton symporters in Pseudomonas putida KT2440 toward efficient microbial conversion of lignin-related aromatics. Metabolic Engineering, 2021, 64, 167-179.	3.6	24
7	Spatiotemporal Manipulation of the Mismatch Repair System of <i>Pseudomonas putida</i> Accelerates Phenotype Emergence. ACS Synthetic Biology, 2021, 10, 1214-1226.	1.9	11
8	Advanced strategies and tools to facilitate and streamline microbial adaptive laboratory evolution. Trends in Biotechnology, 2022, 40, 38-59.	4.9	49
9	Muconic Acid Production Using Engineered <i>Pseudomonas putida</i> KT2440 and a Guaiacol-Rich Fraction Derived from Kraft Lignin. ACS Sustainable Chemistry and Engineering, 2021, 9, 8097-8106.	3.2	31
10	Towards robust <i>Pseudomonas</i> cell factories to harbour novel biosynthetic pathways. Essays in Biochemistry, 2021, 65, 319-336.	2.1	44
11	A navigation guide of synthetic biology tools for Pseudomonas putida. Biotechnology Advances, 2021, 49, 107732.	6.0	48
12	Engineering Pseudomonas putida for efficient aromatic conversion to bioproduct using high throughput screening in a bioreactor. Metabolic Engineering, 2021, 66, 229-238.	3.6	27
13	Microorganisms as bioabatement agents in biomass to bioproducts applications. Biomass and Bioenergy, 2021, 151, 106161.	2.9	14
14	Generation of <i>Pseudomonas putida</i> KT2440 Strains with Efficient Utilization of Xylose and Galactose via Adaptive Laboratory Evolution. ACS Sustainable Chemistry and Engineering, 2021, 9, 11512-11523.	3.2	32
16	Combinatorial pathway balancing provides biosynthetic access to 2-fluoro-cis,cis-muconate in engineered Pseudomonas putida. Chem Catalysis, 2021, 1, 1234-1259.	2.9	19
17	Rapid Enabling of Gluconobacter oxydans Resistance to High D-Sorbitol Concentration and High Temperature by Microdroplet-Aided Adaptive Evolution. Frontiers in Bioengineering and Biotechnology, 2021, 9, 731247.	2.0	3
18	Tandem chemical deconstruction and biological upcycling of poly(ethylene terephthalate) to β-ketoadipic acid by Pseudomonas putida KT2440. Metabolic Engineering, 2021, 67, 250-261.	3.6	74
19	Recent developments in short- and medium-chain- length Polyhydroxyalkanoates: Production, properties, and applications. International Journal of Biological Macromolecules, 2021, 187, 422-440.	3.6	40
20	Exploiting unconventional prokaryotic hosts for industrial biotechnology. Trends in Biotechnology, 2022, 40, 385-397.	4.9	33
21	Synthetically engineered microbial scavengers for enhanced bioremediation. Journal of Hazardous Materials, 2021, 419, 126516.	6.5	31

CITATION REPORT

#	Article	IF	CITATIONS
22	Cytochromes P450 in the biocatalytic valorization of lignin. Current Opinion in Biotechnology, 2022, 73, 43-50.	3.3	16
23	Microbial utilization of lignin-derived aromatics <i>via</i> a synthetic catechol <i>meta</i> -cleavage pathway. Green Chemistry, 2021, 23, 8238-8250.	4.6	6
24	Adaptive laboratory evolution of Pseudomonas putida and Corynebacterium glutamicum to enhance anthranilate tolerance. Microbiology (United Kingdom), 2020, 166, 1025-1037.	0.7	20
25	Construction of a p-coumaric and ferulic acid auto-regulatory system in Pseudomonas putida KT2440 for protocatechuate production from lignin-derived aromatics. Bioresource Technology, 2022, 344, 126221.	4.8	11
26	Adaptive laboratory evolution for improved tolerance of isobutyl acetate in Escherichia coli. Metabolic Engineering, 2022, 69, 50-58.	3.6	13
27	An appraisal on valorization of lignin: A byproduct from biorefineries and paper industries. Biomass and Bioenergy, 2021, 155, 106295.	2.9	16
28	Microbial assimilation of lignin-derived aromatic compounds and conversion to value-added products. Current Opinion in Microbiology, 2022, 65, 64-72.	2.3	27
29	When metabolic prowess is too much of a good thing: how carbon catabolite repression and metabolic versatility impede production of esterified α,ï‰-diols in Pseudomonas putida KT2440. Biotechnology for Biofuels, 2021, 14, 218.	6.2	7
30	Efficient lactic acid production from dilute acid-pretreated lignocellulosic biomass by a synthetic consortium of engineered Pseudomonas putida and Bacillus coagulans. Biotechnology for Biofuels, 2021, 14, 227.	6.2	24
31	Characterization of Highly Ferulate-Tolerant Acinetobacter baylyi ADP1 Isolates by a Rapid Reverse Engineering Method. Applied and Environmental Microbiology, 2022, 88, AEM0178021.	1.4	5
32	Guiding stars to the field of dreams: Metabolically engineered pathways and microbial platforms for a sustainable lignin-based industry. Metabolic Engineering, 2022, 71, 13-41.	3.6	36
33	Diversifying Isoprenoid Platforms via Atypical Carbon Substrates and Non-model Microorganisms. Frontiers in Microbiology, 2021, 12, 791089.	1.5	6
34	Debottlenecking 4-hydroxybenzoate hydroxylation in Pseudomonas putida KT2440 improves muconate productivity from p-coumarate. Metabolic Engineering, 2022, 70, 31-42.	3.6	25
35	Strategies to increase tolerance and robustness of industrial microorganisms. Synthetic and Systems Biotechnology, 2022, 7, 533-540.	1.8	22
36	Bioconversion of wastewater-derived cresols to methyl muconic acids for use in performance-advantaged bioproducts. Green Chemistry, 2022, 24, 3677-3688.	4.6	4
37	Critical enzyme reactions in aromatic catabolism for microbial lignin conversion. Nature Catalysis, 2022, 5, 86-98.	16.1	51
38	Microbial production of 2-pyrone-4,6-dicarboxylic acid from lignin derivatives in an engineered Pseudomonas putida and its application for the synthesis of bio-based polyester. Bioresource Technology, 2022, 352, 127106.	4.8	15
39	The metabolic potential of plastics as biotechnological carbon sources – Review and targets for the future. Metabolic Engineering, 2022, 71, 77-98.	3.6	55

CITATION REPORT

#	Article	IF	CITATIONS
40	Microbial production of medium-chain-length α, ω-diols via two-stage process under mild conditions. Bioresource Technology, 2022, 352, 127111.	4.8	4
42	Engineering <i>Pseudomonas putida</i> for improved utilization of syringyl aromatics. Biotechnology and Bioengineering, 2022, 119, 2541-2550.	1.7	7
43	Identifying ligninolytic bacteria for lignin valorization to bioplastics. Bioresource Technology, 2022, 358, 127383.	4.8	14
44	Membrane transporter identification and modulation via adaptive laboratory evolution. Metabolic Engineering, 2022, 72, 376-390.	3.6	16
45	Dynamic flux regulation for high-titer anthranilate production by plasmid-free, conditionally-auxotrophic strains of Pseudomonas putida. Metabolic Engineering, 2022, 73, 11-25.	3.6	16
46	The production of polyhydroxyalkanoates using volatile fatty acids derived from the acidogenic biohydrogen effluents: An overview. Bioresource Technology Reports, 2022, 18, 101111.	1.5	3
47	Translating advances in microbial bioproduction to sustainable biotechnology. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	7
48	Metabolic engineering of Pseudomonas taiwanensis VLB120 for rhamnolipid biosynthesis from biomass-derived aromatics. Metabolic Engineering Communications, 2022, 15, e00202.	1.9	3
49	Biotransformation of toxic lignin and aromatic compounds of lignocellulosic feedstock into eco-friendly biopolymers by Pseudomonas putida KT2440. Bioresource Technology, 2022, 363, 128001.	4.8	13
50	Evolution of <i>p</i> oumaroylated lignin in eudicots provides new tools for cell wall engineering. New Phytologist, 2023, 237, 251-264.	3.5	10
51	Unraveling the mechanism of furfural tolerance in engineered Pseudomonas putida by genomics. Frontiers in Microbiology, 0, 13, .	1.5	6
52	Creative biological lignin conversion routes toward lignin valorization. Trends in Biotechnology, 2022, 40, 1550-1566.	4.9	41
53	Recent progress in adaptive laboratory evolution of industrial microorganisms. Journal of Industrial Microbiology and Biotechnology, 2023, 50, .	1.4	11
54	Understanding Functional Redundancy and Promiscuity of Multidrug Transporters in E. coli under Lipophilic Cation Stress. Membranes, 2022, 12, 1264.	1.4	1
55	Combining genetic engineering and bioprocess concepts for improved phenylpropanoid production. Biotechnology and Bioengineering, 2023, 120, 613-628.	1.7	3
56	Efficient biosynthesis of (R)-mandelic acid from styrene oxide by an adaptive evolutionary Gluconobacter oxydans STA. , 2023, 16, .		0
57	Improved Whole-Cell Biocatalyst for the Synthesis of Vitamin E Precursor 2,3,5-Trimethylhydroquinone. Journal of Agricultural and Food Chemistry, 2023, 71, 1162-1169.	2.4	0
58	Customized valorization of waste streams by Pseudomonas putida: State-of-the-art, challenges, and future trends. Bioresource Technology, 2023, 371, 128607.	4.8	10

#	Article	IF	CITATIONS
59	Biological conversion of cyclic ketones from catalytic fast pyrolysis with <i>Pseudomonas putida</i> KT2440. Green Chemistry, 2023, 25, 3278-3291.	4.6	2
60	RB-TnSeq identifies genetic targets for improved tolerance of Pseudomonas putida towards compounds relevant to lignin conversion. Metabolic Engineering, 2023, 77, 208-218.	3.6	5
72	Recent advances on the systems metabolically engineered Pseudomonas species as versatile biosynthetic platforms for the production of polyhydroxyalkanoates. Systems Microbiology and Biomanufacturing, 2024, 4, 473-499.	1.5	0
73	Biotransformation of lignin into 4-vinylphenol derivatives toward lignin valorization. Green Chemistry, 2024, 26, 1770-1789.	4.6	0