Comparative host-coronavirus protein interaction network mechanisms

Science 370, DOI: 10.1126/science.abe9403

Citation Report

#	Article	IF	CITATIONS
1	Comparative Multiplexed Interactomics of SARS-CoV-2 and Homologous Coronavirus Nonstructural Proteins Identifies Unique and Shared Host-Cell Dependencies. ACS Infectious Diseases, 2020, 6, 3174-3189.	1.8	92
2	Genetic interaction mapping informs integrative structure determination of protein complexes. Science, 2020, 370, .	6.0	24
3	One year update on the COVID-19 pandemic: Where are we now?. Acta Tropica, 2021, 214, 105778.	0.9	142
4	Genetic Screens Identify Host Factors for SARS-CoV-2 and Common Cold Coronaviruses. Cell, 2021, 184, 106-119.e14.	13.5	320
5	The SARS-CoV-2 RNA–protein interactome in infected human cells. Nature Microbiology, 2021, 6, 339-353.	5.9	245
6	Identification of 37 Heterogeneous Drug Candidates for Treatment of COVID-19 via a Rational Transcriptomics-Based Drug Repurposing Approach. Pharmaceuticals, 2021, 14, 87.	1.7	5
7	Homozygosity for rs17775810 Minor Allele Associated With Reduced Mortality of COVID-19 in the UK Biobank Cohort. In Vivo, 2021, 35, 965-968.	0.6	9
9	Proteomic Approaches to Study SARS-CoV-2 Biology and COVID-19 Pathology. Journal of Proteome Research, 2021, 20, 1133-1152.	1.8	27
10	Mass spectrometryâ€based protein–protein interaction networks for the study of human diseases. Molecular Systems Biology, 2021, 17, e8792.	3.2	96
11	Elucidation of host-virus surfaceome interactions using spatial proteotyping. Advances in Virus Research, 2021, 109, 105-134.	0.9	4
12	Ontological modeling and analysis of experimentally or clinically verified drugs against coronavirus infection. Scientific Data, 2021, 8, 16.	2.4	14
13	Resources and computational strategies to advance small molecule SARS-CoV-2 discovery: Lessons from the pandemic and preparing for future health crises. Computational and Structural Biotechnology Journal, 2021, 19, 2537-2548.	1.9	18
14	H2V: a database of human genes and proteins that respond to SARS-CoV-2, SARS-CoV, and MERS-CoV infection. BMC Bioinformatics, 2021, 22, 18.	1.2	9
15	Comparative Host Interactomes of the SARS-CoV-2 Nonstructural Protein 3 and Human Coronavirus Homologs. Molecular and Cellular Proteomics, 2021, 20, 100120.	2.5	15
16	Targeting protein-protein interaction interfaces in COVID-19 drug discovery. Computational and Structural Biotechnology Journal, 2021, 19, 2246-2255.	1.9	28
17	Systematic Genome-Scale Identification of Host Factors for SARS-CoV-2 Infection Across Models Yields a Core Single Gene Dependency; <i>Ace2</i> . SSRN Electronic Journal, 0, , .	0.4	0
19	Highlighting membrane protein structure and function: AÂcelebration of the Protein Data Bank. Journal of Biological Chemistry, 2021, 296, 100557.	1.6	42
20	Cytoplasmic short linear motifs in ACE2 and integrin Î ² ₃ link SARS-CoV-2 host cell receptors to mediators of endocytosis and autophagy. <u>Science Signaling, 2021, 14, .</u>	1.6	65

#	Article	IF	CITATIONS
22	Mapping the SARS-CoV-2–Host Protein–Protein Interactome by Affinity Purification Mass Spectrometry and Proximity-Dependent Biotin Labeling: A Rational and Straightforward Route to Discover Host-Directed Anti-SARS-CoV-2 Therapeutics. International Journal of Molecular Sciences, 2021, 22, 532.	1.8	38
23	Proteomics-Based Insights Into the SARS-CoV-2–Mediated COVID-19 Pandemic: A Review of the First Year of Research. Molecular and Cellular Proteomics, 2021, 20, 100103.	2.5	17
26	Plitidepsin has potent preclinical efficacy against SARS-CoV-2 by targeting the host protein eEF1A. Science, 2021, 371, 926-931.	6.0	247
27	A plasmid DNA-launched SARS-CoV-2 reverse genetics system and coronavirus toolkit for COVID-19 research. PLoS Biology, 2021, 19, e3001091.	2.6	163
29	Conserved host-pathogen interactions identify novel treatment options in betacoronavirus infections. Signal Transduction and Targeted Therapy, 2021, 6, 57.	7.1	0
30	Nucleoside Analogs and Nucleoside Precursors as Drugs in the Fight against SARS-CoV-2 and Other Coronaviruses. Molecules, 2021, 26, 986.	1.7	60
31	SARS-CoV-2 ORF9b inhibits RIG-I-MAVS antiviral signaling by interrupting K63-linked ubiquitination of NEMO. Cell Reports, 2021, 34, 108761.	2.9	174
33	SARS oVâ€2 infection remodels the host protein thermal stability landscape. Molecular Systems Biology, 2021, 17, e10188.	3.2	17
34	Alternatively Splicing Interactomes Identify Novel Isoform-Specific Partners for NSD2. Frontiers in Cell and Developmental Biology, 2021, 9, 612019.	1.8	0
35	Functional interrogation of a SARS-CoV-2 host protein interactome identifies unique and shared coronavirus host factors. Cell Host and Microbe, 2021, 29, 267-280.e5.	5.1	127
37	Molecular Basis of the Therapeutical Potential of Clove (Syzygium aromaticum L.) and Clues to Its Anti-COVID-19 Utility. Molecules, 2021, 26, 1880.	1.7	81
38	CNBP Binds and Unfolds In Vitro G-Quadruplexes Formed in the SARS-CoV-2 Positive and Negative Genome Strands. International Journal of Molecular Sciences, 2021, 22, 2614.	1.8	34
40	Rapid Detection of COVID-19 Using MALDI-TOF-Based Serum Peptidome Profiling. Analytical Chemistry, 2021, 93, 4782-4787.	3.2	65
43	Structural and Drug Screening Analysis of the Non-structural Proteins of Severe Acute Respiratory Syndrome Coronavirus 2 Virus Extracted From Indian Coronavirus Disease 2019 Patients. Frontiers in Genetics, 2021, 12, 626642.	1.1	16
46	Creating collaboration by breaking down scientific barriers. Cell, 2021, 184, 2271-2275.	13.5	7
48	COVID-19 and Alzheimer's disease: how one crisis worsens the other. Translational Neurodegeneration, 2021, 10, 15.	3.6	74
49	Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV. Nature, 2021, 594, 246-252.	13.7	475
51	Repurposing of Anticancer Drugs Expands Possibilities for Antiviral and Anti-Inflammatory Discovery in COVID-19. Cancer Discovery, 2021, 11, 1336-1344.	7.7	20

ARTICLE IF CITATIONS # Fluvoxamine: A Review of Its Mechanism of Action and Its Role in COVID-19. Frontiers in Pharmacology, 1.6 138 52 2021, 12, 652688. Top-Down and Bottom-Up Proteomics Methods to Study RNA Virus Biology. Viruses, 2021, 13, 668. 1.5 56 Epigenetic mechanisms influencing COVID-19. Genome, 2021, 64, 372-385. 0.9 41 Infection and Immune Memory: Variables in Robust Protection by Vaccines Against SARS-CoV-2. 2.2 Frontiers in Immunology, 2021, 12, 660019. Comprehensive interactome analysis of the spike protein of swine acute diarrhea syndrome 58 1.2 2 coronavirus. Biosafety and Health, 2021, 3, 156-163. Detect and destroy: CRISPR-based technologies for the response against viruses. Cell Host and Microbe, 2021, 29, 689-703. 59 5.1 A comprehensive library of fluorescent constructs of SARS oVâ€2 proteins and their initial 61 0.7 17 characterisation in different cell types. Biology of the Cell, 2021, 113, 311-328. Recent progress in mass spectrometry-based strategies for elucidating protein–protein interactions. 2.4 Cellular and Molecular Life Sciences, 2021, 78, 5325-5339. A Biochemical and Structural Understanding of TOM Complex Interactions and Implications for 63 1.8 14 Human Health and Disease. Cells, 2021, 10, 1164. Anti-Coronavirus Vaccines: Past Investigations on SARS-CoV-1 and MERS-CoV, the Approved Vaccines from BioNTech/Pfizer, Moderna, Oxford/AstraZeneca and others under Development Against SARSCoV-1.2 49 2 Infection. Current Medicinal Chemistry, 2022, 29, 4-18. Stepâ€byâ€step design of proteins for small molecule interaction: A review on recent milestones. Protein 4 65 3.1 Science, 2021, 30, 1502-1520. How DNA and RNA Viruses Exploit Host Chaperones to Promote Infection. Viruses, 2021, 13, 958. 1.5 Development of New Benzylpiperazine Derivatives as If ₁ Receptor Ligands with <i>in Vivo</i> 67 1.7 7 Antinociceptive and Anti-Allodynic Effects. ACS Chemical Neuroscience, 2021, 12, 2003-2012. Hospital mortality in COVID-19 patients in Belgium treated with statins, ACE inhibitors and/or ARBs. Human Vaccines and Immunotherapeutics, 2021, 17, 2841-2850. 1.4 Predictable fold switching by the<scp>SARSâ€CoV</scp>â€2 protein<scp>ORF9b</scp>. Protein Science, 69 9 3.12021, 30, 1723-1729. A large-scale computational screen identifies strong potential inhibitors for disrupting SARS-CoV-2 S-protein and human ACE2 interaction. Journal of Biomolecular Structure and Dynamics, 2021, , 1-14. Secondary analysis of transcriptomes of SARS-CoV-2 infection models to characterize COVID-19. 72 3.14 Patterns, 2021, 2, 100247. Insights into SARS-CoV-2 Persistence and Its Relevance. Viruses, 2021, 13, 1025. 1.5

#	Article	IF	CITATIONS
74	Efficient generation of isogenic primary human myeloid cells using CRISPR-Cas9 ribonucleoproteins. Cell Reports, 2021, 35, 109105.	2.9	29
75	Crystal structure of SARS-CoV-2 Orf9b in complex with human TOM70 suggests unusual virus-host interactions. Nature Communications, 2021, 12, 2843.	5.8	71
76	TMEM41B is a host factor required for the replication of diverse coronaviruses including SARS-CoV-2. PLoS Pathogens, 2021, 17, e1009599.	2.1	39
80	In Silico and In Vitro Analyses Validate Human MicroRNAs Targeting the SARS-CoV-2 3′-UTR. International Journal of Molecular Sciences, 2021, 22, 6094.	1.8	9
81	Drosophila, a powerful model to study virus-host interactions and pathogenicity in the fight against SARS-CoV-2. Cell and Bioscience, 2021, 11, 110.	2.1	12
82	Regulation of epithelial sodium channel activity by SARS-CoV-1 and SARS-CoV-2 proteins. Biophysical Journal, 2021, 120, 2805-2813.	0.2	18
83	Integrated docking and enhanced sampling-based selection of repurposing drugs for SARS-CoV-2 by targeting host dependent factors. Journal of Biomolecular Structure and Dynamics, 2022, 40, 9897-9908.	2.0	7
84	SARS-CoV-2 Portrayed against HIV: Contrary Viral Strategies in Similar Disguise. Microorganisms, 2021, 9, 1389.	1.6	4
85	Network medicine links SARS-CoV-2/COVID-19 infection to brain microvascular injury and neuroinflammation in dementia-like cognitive impairment. Alzheimer's Research and Therapy, 2021, 13, 110.	3.0	108
87	Multi-Target Directed Ligands (MTDLs) Binding the $lf1$ Receptor as Promising Therapeutics: State of the Art and Perspectives. International Journal of Molecular Sciences, 2021, 22, 6359.	1.8	13
88	Control of Innate Immune Activation by Severe Acute Respiratory Syndrome Coronavirus 2 and Other Coronaviruses. Journal of Interferon and Cytokine Research, 2021, 41, 205-219.	0.5	5
90	Transcriptomics-based drug repositioning pipeline identifies therapeutic candidates for COVID-19. Scientific Reports, 2021, 11, 12310.	1.6	31
91	Al-based spectroscopic monitoring of real-time interactions between SARS-CoV-2 and human ACE2. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	7
93	Animal models for SARS-Cov2/Covid19 research-A commentary. Biochemical Pharmacology, 2021, 188, 114543.	2.0	14
94	Drugs that offer the potential to reduce hospitalization and mortality from SARS-CoV-2 infection: The possible role of the sigma-1 receptor and autophagy. Expert Opinion on Therapeutic Targets, 2021, 25, 435-449.	1.5	27
95	Stress Decreases Host Viral Resistance and Increases Covid Susceptibility in Embryonic Stem Cells. Stem Cell Reviews and Reports, 2021, 17, 2164-2177.	1.7	8
97	How and to What Extent Immunological Responses to SARS-CoV-2 Shape Pulmonary Function in COVID-19 Patients. Frontiers in Physiology, 2021, 12, 628288.	1.3	5
98	Drug-induced phospholipidosis confounds drug repurposing for SARS-CoV-2. Science, 2021, 373, 541-547.	6.0	148

#	Article	IF	CITATIONS
99	The sigma 1 receptor: A local media influencer. Cell Calcium, 2021, 97, 102430.	1.1	2
100	SARS-CoV-2 Antiviral Therapy. Clinical Microbiology Reviews, 2021, 34, e0010921.	5.7	64
101	Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp14/nsp10 exoribonuclease. Biochemical Journal, 2021, 478, 2445-2464.	1.7	32
102	Plitidepsin: Mechanisms and Clinical Profile of a Promising Antiviral Agent against COVID-19. Journal of Personalized Medicine, 2021, 11, 668.	1.1	16
103	Sigmar1's Molecular, Cellular, and Biological Functions in Regulating Cellular Pathophysiology. Frontiers in Physiology, 2021, 12, 705575.	1.3	43
105	Bioinformatic Analysis of Temporal and Spatial Proteome Alternations During Infections. Frontiers in Genetics, 2021, 12, 667936.	1.1	12
106	The unfolding palette of COVID-19 multisystemic syndrome and its neurological manifestations. Brain, Behavior, & Immunity - Health, 2021, 14, 100251.	1.3	22
107	Combined computational and cellular screening identifies synergistic inhibition of SARS-CoV-2 by lenvatinib and remdesivir. Journal of General Virology, 2021, 102, .	1.3	4
108	Diverse Effects of Exosomes on COVID-19: A Perspective of Progress From Transmission to Therapeutic Developments. Frontiers in Immunology, 2021, 12, 716407.	2.2	40
109	Microbiome, probiotics, and COVID-19: promising approaches to support innate and acquired immunity systems. Eksperimental'naya I Klinicheskaya Gastroenterologiya, 2021, , 68-75.	0.1	2
110	ORF3a-Mediated Incomplete Autophagy Facilitates Severe Acute Respiratory Syndrome Coronavirus-2 Replication. Frontiers in Cell and Developmental Biology, 2021, 9, 716208.	1.8	74
111	Reynoutria Rhizomes as a Natural Source of SARS-CoV-2 Mpro Inhibitors–Molecular Docking and In Vitro Study. Pharmaceuticals, 2021, 14, 742.	1.7	24
112	Interactomes of SARS oVâ€2 and human coronaviruses reveal host factors potentially affecting pathogenesis. EMBO Journal, 2021, 40, e107776.	3.5	53
115	Association Between FIASMAs and Reduced Risk of Intubation or Death in Individuals Hospitalized for Severe COVIDâ€19: An Observational Multicenter Study. Clinical Pharmacology and Therapeutics, 2021, 110, 1498-1511.	2.3	59
116	Mutational Landscape and Interaction of SARS-CoV-2 with Host Cellular Components. Microorganisms, 2021, 9, 1794.	1.6	9
117	Overview of SARS-CoV-2 genome-encoded proteins. Science China Life Sciences, 2022, 65, 280-294.	2.3	88
118	ACE2-targeting monoclonal antibody as potent and broad-spectrum coronavirus blocker. Signal Transduction and Targeted Therapy, 2021, 6, 315.	7.1	53
119	An ancient viral epidemic involving host coronavirus interacting genes more than 20,000 years ago in East Asia. Current Biology, 2021, 31, 3504-3514.e9.	1.8	71

#	Article	IF	CITATIONS
120	Nonsteroidal anti-inflammatory drugs and glucocorticoids in COVID-19. Advances in Biological Regulation, 2021, 81, 100818.	1.4	10
121	Inhibitors of VPS34 and fatty-acid metabolism suppress SARS-CoV-2 replication. Cell Reports, 2021, 36, 109479.	2.9	51
122	Chimeric spike mRNA vaccines protect against Sarbecovirus challenge in mice. Science, 2021, 373, 991-998.	6.0	144
123	Mediator complex subunit 12 is a gatekeeper of SARS-CoV-2 infection in breast cancer cells. Genes and Diseases, 2022, 9, 5-8.	1.5	2
124	Comparative transcriptomic analysis of SARS-CoV-2 infected cell model systems reveals differential innate immune responses. Scientific Reports, 2021, 11, 17146.	1.6	21
125	Multi-Tissue Transcriptomic-Informed In Silico Investigation of Drugs for the Treatment of Dengue Fever Disease. Viruses, 2021, 13, 1540.	1.5	1
126	Intracellular Life Cycle Kinetics of SARS-CoV-2 Predicted Using Mathematical Modelling. Viruses, 2021, 13, 1735.	1.5	15
127	Phosphorylation of SARS-CoV-2 Orf9b Regulates Its Targeting to Two Binding Sites in TOM70 and Recruitment of Hsp90. International Journal of Molecular Sciences, 2021, 22, 9233.	1.8	15
128	Progress and pitfalls of a year of drug repurposing screens against COVID-19. Current Opinion in Virology, 2021, 49, 183-193.	2.6	25
129	A systemsâ€level study reveals hostâ€targeted repurposable drugs against SARSâ€CoVâ€2 infection. Molecular Systems Biology, 2021, 17, e10239.	3.2	22
130	Inactivation of Coronaviruses during Sample Preparation for Proteomics Experiments. Journal of Proteome Research, 2021, 20, 4598-4602.	1.8	2
131	A proteome-wide genetic investigation identifies several SARS-CoV-2-exploited host targets of clinical relevance. ELife, 2021, 10, .	2.8	23
132	Understanding Individual SARS-CoV-2 Proteins for Targeted Drug Development against COVID-19. Molecular and Cellular Biology, 2021, 41, e0018521.	1.1	21
133	Pathophysiology of pulmonary function anomalies in COVID-19 survivors. Breathe, 2021, 17, 210065.	0.6	18
134	Natural Products as Potential Lead Compounds for Drug Discovery Against SARS-CoV-2. Natural Products and Bioprospecting, 2021, 11, 611-628.	2.0	15
135	Multiple Sclerosis and SARS-CoV-2: Has the Interplay Started?. Frontiers in Immunology, 2021, 12, 755333.	2.2	33
136	Interactome Analysis of the Nucleocapsid Protein of SARS-CoV-2 Virus. Pathogens, 2021, 10, 1155.	1.2	25
137	Cellular host factors for SARS-CoV-2 infection. Nature Microbiology, 2021, 6, 1219-1232.	5.9	127

#	Article	IF	CITATIONS
138	Special Features of COVID-19 in the FMODB: Fragment Molecular Orbital Calculations and Interaction Energy Analysis of SARS-CoV-2-Related Proteins. Journal of Chemical Information and Modeling, 2021, 61, 4594-4612.	2.5	10
139	A sequenceâ€based method for predicting extant fold switchers that undergo αâ€helixÂ↔Âβâ€strand transitior Biopolymers, 2021, 112, e23471.	^{1S} .12	11
140	Mechanisms of Antiviral Immune Evasion of SARS-CoV-2. Journal of Molecular Biology, 2022, 434, 167265.	2.0	72
141	Clinical trials with antiviral drugs against <scp>COVID</scp> â€19: some progress and many shattered hopes. Environmental Microbiology, 2021, 23, 6364-6376.	1.8	12
142	Target Discovery for Host-Directed Antiviral Therapies: Application of Proteomics Approaches. MSystems, 2021, 6, e0038821.	1.7	10
143	The roles of lipids in SARS-CoV-2 viral replication and the host immune response. Journal of Lipid Research, 2021, 62, 100129.	2.0	47
144	Old drug fluvoxamine, new hope for COVID-19. European Archives of Psychiatry and Clinical Neuroscience, 2022, 272, 161-163.	1.8	19
145	Structural biology of SARS-CoV-2 and implications for therapeutic development. Nature Reviews Microbiology, 2021, 19, 685-700.	13.6	259
148	FYN, SARS-CoV-2, and IFITM3 in the neurobiology of Alzheimer's disease. Brain Disorders, 2021, 3, 100022.	1.1	11
149	MAVS: A Two-Sided CARD Mediating Antiviral Innate Immune Signaling and Regulating Immune Homeostasis. Frontiers in Microbiology, 2021, 12, 744348.	1.5	11
150	Local topology and bifurcation hot-spots in proteins with SARS-CoV-2 spike protein as an example. PLoS ONE, 2021, 16, e0257886.	1.1	1
152	Identification of Niemann-Pick C1 protein as a potential novel SARS-CoV-2 intracellular target. Antiviral Research, 2021, 194, 105167.	1.9	19
153	Antibody landscapes of SARS-CoV-2 can reveal novel vaccine and diagnostic targets. Current Opinion in Virology, 2021, 50, 139-146.	2.6	7
154	The proximal proteome of 17 SARS-CoV-2 proteins links to disrupted antiviral signaling and host translation. PLoS Pathogens, 2021, 17, e1009412.	2.1	27
155	Recent advances in drug repurposing using machine learning. Current Opinion in Chemical Biology, 2021, 65, 74-84.	2.8	28
156	Synthesis and antiviral activity of fatty acyl conjugates of remdesivir against severe acute respiratory syndrome coronavirus 2 and Ebola virus. European Journal of Medicinal Chemistry, 2021, 226, 113862.	2.6	8
157	Indomethacin-based PROTACs as pan-coronavirus antiviral agents. European Journal of Medicinal Chemistry, 2021, 226, 113814.	2.6	46
158	An overview of human proteins and genes involved in SARS-CoV-2 infection. Gene, 2022, 808, 145963.	1.0	22

#	Article	IF	CITATIONS
159	Development and application of therapeutic antibodies against COVID-19. International Journal of Biological Sciences, 2021, 17, 1486-1496.	2.6	47
160	The chemical biology of coronavirus host–cell interactions. RSC Chemical Biology, 2021, 2, 30-46.	2.0	4
161	The aging transcriptome and cellular landscape of the human lung in relation to SARS-CoV-2. Nature Communications, 2021, 12, 4.	5.8	63
162	Lessons learned 1 year after SARS-CoV-2 emergence leading to COVID-19 pandemic. Emerging Microbes and Infections, 2021, 10, 507-535.	3.0	202
163	Repurposing of CNS drugs to treat COVID-19 infection: targeting the sigma-1 receptor. European Archives of Psychiatry and Clinical Neuroscience, 2021, 271, 249-258.	1.8	81
164	Structure of SARS-CoV-2 ORF8, a rapidly evolving immune evasion protein. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	198
165	Internal treatment in traditional Chinese medicine for patients with COVID-19. Medicine (United) Tj ETQq0 0 0 r	gBT /Overlo 0.4	ock 10 Tf 50
174	Network analytics for drug repurposing in COVID-19. Briefings in Bioinformatics, 2022, 23, .	3.2	16
175	Current status of structure-based drug repurposing against COVID-19 by targeting SARS-CoV-2 proteins. Biophysics and Physicobiology, 2021, 18, 226-240.	0.5	6
176	CoV-er all the bases: Structural perspectives of SARS-CoV-2 RNA synthesis. The Enzymes, 2021, 49, 1-37.	0.7	6
177	Insights from the Interfaces of Corona Viral Proteins: Homomers Versus Heteromers. Biomedical and Pharmacology Journal, 2021, 14, 1613-1631.	0.2	0
178	Indomethacin: an exploratory study of antiviral mechanism and host-pathogen interaction in COVID-19. Expert Review of Anti-Infective Therapy, 2022, 20, 383-390.	2.0	11
179	Mortality in association with antipsychotic medication use and clinical outcomes among geriatric psychiatry outpatients with COVID-19. PLoS ONE, 2021, 16, e0258916.	1.1	6
181	Identification of driver genes for critical forms of COVID-19 in a deeply phenotyped young patient cohort. Science Translational Medicine, 2022, 14, eabj7521.	5.8	71
183	The acid sphingomyelinase/ceramide system in COVID-19. Molecular Psychiatry, 2022, 27, 307-314.	4.1	71

184	A global effort to dissect the human genetic basis of resistance to SARS-CoV-2 infection. Nature Immunology, 2022, 23, 159-164.	7.0	41
185	Partial structure, dampened mobility, and modest impact of a His tag in the SARS-CoV-2 Nsp2 C-terminal region. European Biophysics Journal, 2021, 50, 1129-1137.	1.2	5
186	<scp>Foldâ€switching</scp> proteins. Biopolymers, 2021, 112, e23478.	1.2	2

	CITATION	REPORT	
#	ARTICLE An antibody-based proximity labeling map reveals mechanisms of SARS-CoV-2 inhibition of antiviral immunity. Cell Chemical Biology, 2022, 29, 5-18.e6.	IF 2.5	Citations
188	A Vimentin-Targeting Oral Compound with Host-Directed Antiviral and Anti-Inflammatory Actions Addresses Multiple Features of COVID-19 and Related Diseases. MBio, 2021, 12, e0254221.	1.8	18
189	Investigating the conformational dynamics of SARS-CoV-2 NSP6 protein with emphasis on non-transmembrane 91–112 & 231–290 regions. Microbial Pathogenesis, 2021, 161, 105236.	1.3	8
190	SARSâ€CoVâ€2–host proteome interactions for antiviral drug discovery. Molecular Systems Biology, 2021, 17, e10396.	3.2	53
191	Structural basis for the interaction of <scp>SARS oV</scp> â€⊋ virulence factor nsp1 with <scp>DNA</scp> polymerase α–primase. Protein Science, 2022, 31, 333-344.	3.1	23
192	Insights into COVID-19 Vaccine Development Based on Immunogenic Structural Proteins of SARS-CoV-2, Host Immune Responses, and Herd Immunity. Cells, 2021, 10, 2949.	1.8	26
193	Monoclonal Human Antibodies That Recognise the Exposed N and C Terminal Regions of the Often-Overlooked SARS-CoV-2 ORF3a Transmembrane Protein. Viruses, 2021, 13, 2201.	1.5	4
194	Impaired innate antiviral defenses in COVID-19: Causes, consequences and therapeutic opportunities. Seminars in Immunology, 2021, 55, 101522.	2.7	12
195	Identification and Development of Therapeutics for COVID-19. MSystems, 2021, 6, e0023321.	1.7	20
197	COVID-ONE-hi: The One-stop Database for COVID-19-specific Humoral Immunity and Clinical Parameters. Genomics, Proteomics and Bioinformatics, 2021, 19, 669-678.	3.0	8
200	SARS-CoV-2 Nsp5 Activates NF-κB Pathway by Upregulating SUMOylation of MAVS. Frontiers in Immunology, 2021, 12, 750969.	2.2	39
201	C/EBPZ modulates the differentiation and proliferation of preadipocytes. International Journal of Obesity, 2022, 46, 523-534.	1.6	2
202	"Multiomics―Approaches to Understand and Treat COVID-19: Mass Spectrometry and Next-Generation Sequencing. Biochem, 2021, 1, 210-237.	0.5	5
203	Identification of a therapeutic interfering particle—A single-dose SARS-CoV-2 antiviral intervention with a high barrier to resistance. Cell, 2021, 184, 6022-6036.e18.	13.5	36
204	Roles of host mitochondria in the development of COVID-19 pathology: Could mitochondria be a potential therapeutic target?. Molecular Biomedicine, 2021, 2, 38.	1.7	19
205	Guide tree optimization with genetic algorithm to improve multiple protein 3D-structure alignment. Bioinformatics, 2022, 38, 985-989.	1.8	6
206	Dynamic Changes in Central and Peripheral Neuro-Injury vs. Neuroprotective Serum Markers in COVID-19 Are Modulated by Different Types of Anti-Viral Treatments but Do Not Affect the Incidence of Late and Early Strokes. Biomedicines, 2021, 9, 1791.	1.4	7
207	The trRosetta server for fast and accurate protein structure prediction. Nature Protocols, 2021, 16, 5634-5651.	5.5	290

#	Article	IF	CITATIONS
208	A 3D structural SARS-CoV-2–human interactome to explore genetic and drug perturbations. Nature Methods, 2021, 18, 1477-1488.	9.0	17
209	Proximity-dependent biotinylation detects associations between SARS coronavirus nonstructural protein 1 and stress granule–associated proteins. Journal of Biological Chemistry, 2021, 297, 101399.	1.6	7
210	Use of Realâ€World Evidence to Drive Drug Development Strategy and Inform Clinical Trial Design. Clinical Pharmacology and Therapeutics, 2022, 111, 77-89.	2.3	38
211	Large scale discovery of coronavirus-host factor protein interaction motifs reveals SARS-CoV-2 specific mechanisms and vulnerabilities. Nature Communications, 2021, 12, 6761.	5.8	47
212	Dynamic, but Not Necessarily Disordered, Human-Virus Interactions Mediated through SLiMs in Viral Proteins. Viruses, 2021, 13, 2369.	1.5	10
213	Co-Regulation of Protein Coding Genes by Transcription Factor and Long Non-Coding RNA in SARS-CoV-2 Infected Cells: An In Silico Analysis. Non-coding RNA, 2021, 7, 74.	1.3	5
214	Computational prediction of the potential target of SARSâ€CoVâ€2 inhibitor plitidepsin via molecular docking, dynamic simulations and MMâ€PBSA calculations. Chemistry and Biodiversity, 2021, , .	1.0	4
215	Fluvoxamine for the Early Treatment of SARS-CoV-2 Infection: A Review of Current Evidence. Drugs, 2021, 81, 2081-2089.	4.9	28
216	Development of novel phenoxyalkylpiperidines as high-affinity Sigma-1 ($\ddot{l}f1$) receptor ligands with potent anti-amnesic effect. European Journal of Medicinal Chemistry, 2021, 228, 114038.	2.6	2
217	Multiscale interactome analysis coupled with off-target drug predictions reveals drug repurposing candidates for human coronavirus disease. Scientific Reports, 2021, 11, 23315.	1.6	10
218	Forced association of SARS-CoV-2 proteins with the yeast proteome perturb vesicle trafficking. Microbial Cell, 2021, 8, 280-296.	1.4	3
219	Identification of the susceptibility genes for COVID-19 in lung adenocarcinoma with global data and biological computation methods. Computational and Structural Biotechnology Journal, 2021, 19, 6229-6239.	1.9	8
221	Mechanisms of action of fluvoxamine for COVID-19: a historical review. Molecular Psychiatry, 2022, 27, 1898-1907.	4.1	73
222	Probing the formation, structure and free energy relationships of M protein dimers of SARS-CoV-2. Computational and Structural Biotechnology Journal, 2022, 20, 573-582.	1.9	9
223	A structural view of the SARS-CoV-2 virus and its assembly. Current Opinion in Virology, 2022, 52, 123-134.	2.6	42
224	Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature, 2022, 603, 587-598.	13.7	216
226	Teaching old drugs new tricks to treat COVID-19. , 2022, 1, 2-5.		1
227	Efficacy of Combination Therapy with the JAK Inhibitor Baricitinib in the Treatment of COVID-19. SN Comprehensive Clinical Medicine, 2022, 4, 42.	0.3	5

#	Article	IF	CITATIONS
229	Type I interferons and SARS-CoV-2: from cells to organisms. Current Opinion in Immunology, 2022, 74, 172-182.	2.4	49
230	From systems to structure — using genetic data to model protein structures. Nature Reviews Genetics, 2022, 23, 342-354.	7.7	14
232	Understanding viruses and viral infections by biophotonic methods. Translational Biophotonics, 0, , .	1.4	2
233	The Remarkable Evolutionary Plasticity of Coronaviruses by Mutation and Recombination: Insights for the COVID-19 Pandemic and the Future Evolutionary Paths of SARS-CoV-2. Viruses, 2022, 14, 78.	1.5	64
234	Calcium Signals during SARS-CoV-2 Infection: Assessing the Potential of Emerging Therapies. Cells, 2022, 11, 253.	1.8	24
235	SARS-CoV-2 nucleocapsid protein adheres to replication organelles before viral assembly at the Golgi/ERGIC and lysosome-mediated egress. Science Advances, 2022, 8, eabl4895.	4.7	53
236	Interoperability of COVID-19 Clinical Phenotype Data with Host and Viral Genetics Data. BioMed, 2022, 2, 69-81.	0.6	3
237	SARS-CoV-2 nucleocapsid protein binds host mRNAs and attenuates stress granules to impair host stress response. IScience, 2022, 25, 103562.	1.9	68
238	Structural biology of SARS-CoV-2: open the door for novel therapies. Signal Transduction and Targeted Therapy, 2022, 7, 26.	7.1	139
239	Montelukast is a dual-purpose inhibitor of SARS-CoV-2 infection and virus-induced IL-6 expression identified by structure-based drug repurposing. Computational and Structural Biotechnology Journal, 2022, 20, 799-811.	1.9	10
240	Proteomic landscape of SARS-CoV-2– and MERS-CoV–infected primary human renal epithelial cells. Life Science Alliance, 2022, 5, e202201371.	1.3	5
241	Olanzapine, risperidone and quetiapine: Do these atypical antipsychotics have a protective effect for SARS-CoV-2?. Schizophrenia Research, 2022, 241, 140-141.	1.1	2
242	Proteolysis targeting chimeras in antiviral research. Future Medicinal Chemistry, 2022, 14, 459-462.	1.1	14
243	SARS-CoV-2 accessory protein ORF8 is secreted extracellularly as a glycoprotein homodimer. Journal of Biological Chemistry, 2022, 298, 101724.	1.6	28
244	T cell response to intact SARS-CoV-2 includes coronavirus cross-reactive and variant-specific components. JCI Insight, 2022, 7, .	2.3	12
245	Long COVID, neuropsychiatric disorders, psychotropics, present and future. Acta Neuropsychiatrica, 2022, 34, 109-126.	1.0	30
246	A Review of SARS-CoV2: Compared With SARS-CoV and MERS-CoV. Frontiers in Medicine, 2021, 8, 628370.	1.2	35
248	Identifying factors contributing to increased susceptibility to COVID-19 risk: a systematic review of Mendelian randomization studies. International Journal of Epidemiology, 2022, 51, 1088-1105.	0.9	25

#	Article	IF	CITATIONS
249	Structural basis of HIV inhibition by L-nucleosides: Opportunities for drug development and repurposing. Drug Discovery Today, 2022, 27, 1832-1846.	3.2	4
252	Stem cell therapy for COVID-19 pneumonia. Molecular Biomedicine, 2022, 3, 6.	1.7	7
253	Integrated analysis of microbe-host interactions in Crohn's disease reveals potential mechanisms of microbial proteins on host gene expression. IScience, 2022, 25, 103963.	1.9	7
254	SARS-CoV-2 Infection Triggers Phosphorylation: Potential Target for Anti-COVID-19 Therapeutics. Frontiers in Immunology, 2022, 13, 829474.	2.2	23
255	SARS-CoV-2 learned the â€~Alpha'bet of immune evasion. Nature Immunology, 2022, 23, 351-353.	7.0	3
256	Identification of cell type specific ACE2 modifiers by CRISPR screening. PLoS Pathogens, 2022, 18, e1010377.	2.1	9
257	Host and Viral Zinc-Finger Proteins in COVID-19. International Journal of Molecular Sciences, 2022, 23, 3711.	1.8	8
258	SARS-CoV-2 Nsp14 mediates the effects of viral infection on the host cell transcriptome. ELife, 2022, 11,	2.8	22
259	Evaluation of RevX solution extract as a potential inhibitor of the main protease of SARS-CoV-2—In vitro study and molecular docking. Heliyon, 2022, 8, e09034.	1.4	1
260	Targeting of Protein Kinase CK2 Elicits Antiviral Activity on Bovine Coronavirus Infection. Viruses, 2022, 14, 552.	1.5	4
261	Uncovering Novel Viral Innate Immune Evasion Strategies: What Has SARS-CoV-2 Taught Us?. Frontiers in Microbiology, 2022, 13, 844447.	1.5	4
262	Viral Mimicry of Interleukin-17A by SARS-CoV-2 ORF8. MBio, 2022, 13, e0040222.	1.8	38
263	Durability of the Single-Dose Ad26.COV2.S Vaccine in the Prevention of COVID-19 Infections and Hospitalizations in the US Before and During the Delta Variant Surge. JAMA Network Open, 2022, 5, e222959.	2.8	42
265	RNA–protein interactomes as invaluable resources to study RNA viruses: Insights from SARS CoVâ€2 studies. Wiley Interdisciplinary Reviews RNA, 2022, , e1727.	3.2	3
266	Role of the TOM Complex in Protein Import into Mitochondria: Structural Views. Annual Review of Biochemistry, 2022, 91, 679-703.	5.0	31
267	Repurposing Multiple-Molecule Drugs for COVID-19-Associated Acute Respiratory Distress Syndrome and Non-Viral Acute Respiratory Distress Syndrome via a Systems Biology Approach and a DNN-DTI Model Based on Five Drug Design Specifications. International Journal of Molecular Sciences, 2022, 23, 3649.	1.8	5
268	Psychotropic Medication Use Is Associated With Greater 1-Year Incidence of Dementia After COVID-19 Hospitalization. Frontiers in Medicine, 2022, 9, 841326.	1.2	7
269	Molecular Virology of SARS-CoV-2 and Related Coronaviruses. Microbiology and Molecular Biology Reviews, 2022, 86, e0002621.	2.9	22

#	Article	IF	CITATIONS
271	COVID-19 and Aging-Related Genome (Chromosome) Instability in the Brain: Another Possible Time-Bomb of SARS-CoV-2 Infection. Frontiers in Aging Neuroscience, 2022, 14, 786264.	1.7	4
273	A functional map of HIV-host interactions in primary human T cells. Nature Communications, 2022, 13, 1752.	5.8	27
274	Predicted coronavirus Nsp5 protease cleavage sites in the human proteome. BMC Genomic Data, 2022, 23, 25.	0.7	15
275	Categorization of <scp>COVID</scp> â€19 severity to determine mortality risk. Pharmacoepidemiology and Drug Safety, 2022, 31, 721-728.	0.9	10
277	A bioinformatic approach of targeting SARS-CoV-2 replication by silencing a conserved alternative reserve of the orf8 gene using host miRNAs. Computers in Biology and Medicine, 2022, 145, 105436.	3.9	5
278	Antidepressants for COVID-19: A systematic review. Journal of Affective Disorders, 2022, 307, 108-114.	2.0	12
279	Inhibition of SARS-CoV-2 infection in human iPSC-derived cardiomyocytes by targeting the Sigma-1 receptor disrupts cytoarchitecture and beating. PeerJ, 2021, 9, e12595.	0.9	5
280	TOM70 in Glial Cells as a Potential Target for Treatment of COVID-19. Frontiers in Cellular Neuroscience, 2021, 15, 811376.	1.8	0
281	MicroRNA-Mediated Regulation of the Virus Cycle and Pathogenesis in the SARS-CoV-2 Disease. International Journal of Molecular Sciences, 2021, 22, 13192.	1.8	10
282	Drug repurposing and other strategies for rapid coronavirus antiviral development: lessons from the early stage of the COVID-19 pandemic. , 2021, , 39-68.		0
283	A virus-specific monocyte inflammatory phenotype is induced by SARS-CoV-2 at the immune–epithelial interface. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	21
284	An overall protective effect of antipsychotic drugs against COVID-19 seems implausible. Schizophrenia Research, 2021, , .	1.1	0
285	Evolution of enhanced innate immune evasion by SARS-CoV-2. Nature, 2022, 602, 487-495.	13.7	237
287	An insight into SARS-CoV-2 membrane protein interaction with spike, envelope, and nucleocapsid proteins. Journal of Biomolecular Structure and Dynamics, 2023, 41, 1062-1071.	2.0	18
288	Replication of the coronavirus genome: A paradox among positive-strand RNA viruses. Journal of Biological Chemistry, 2022, 298, 101923.	1.6	26
289	An open label randomized clinical trial of Indomethacin for mild and moderate hospitalised Covid-19 patients. Scientific Reports, 2022, 12, 6413.	1.6	22
290	The Intricacy of the Viral-Human Protein Interaction Networks: Resources, Data, and Analyses. Frontiers in Microbiology, 2022, 13, 849781.	1.5	2
291	Innate immune suppression by SARS-CoV-2 mRNA vaccinations: The role of G-quadruplexes, exosomes, and MicroRNAs. Food and Chemical Toxicology, 2022, 164, 113008.	1.8	70

#	Article	IF	CITATIONS
292	Genome-wide CRISPR screens identify GATA6 as a proviral host factor for SARS-CoV-2 via modulation of ACE2. Nature Communications, 2022, 13, 2237.	5.8	27
293	Characterization and functional interrogation of the SARS-CoV-2 RNA interactome. Cell Reports, 2022, 39, 110744.	2.9	30
295	Mutations in the nonstructural proteins of SARS-CoV-2 may contribute to adverse clinical outcome in patients with COVID-19. International Journal of Infectious Diseases, 2022, 122, 123-129.	1.5	7
296	Association Between the Use of Psychotropic Medications and the Risk of COVID-19 Infection Among Long-term Inpatients With Serious Mental Illness in a New York State–wide Psychiatric Hospital System. JAMA Network Open, 2022, 5, e2210743.	2.8	18
297	Propagation and Quantification of SARS-CoV-2. Methods in Molecular Biology, 2022, 2452, 111-129.	0.4	2
298	Systems Biology of Virus-Host Protein Interactions: From Hypothesis Generation to Mechanisms of Replication and Pathogenesis. Annual Review of Virology, 2022, 9, .	3.0	5
299	Therapeutic Targeting of Rab GTPases: Relevance for Alzheimer's Disease. Biomedicines, 2022, 10, 1141.	1.4	9
300	<scp>AlphaFold2</scp> fails to predict protein fold switching. Protein Science, 2022, 31, .	3.1	65
301	HPiP: an R/Bioconductor package for predicting host–pathogen protein–protein interactions from protein sequences using ensemble machine learning approach. Bioinformatics Advances, 2022, 2, .	0.9	3
303	Structural and Functional Insights into GID/CTLH E3 Ligase Complexes. International Journal of Molecular Sciences, 2022, 23, 5863.	1.8	12
304	Rise of the SARS-CoV-2 Variants: can proteomics be the silver bullet?. Expert Review of Proteomics, 2022, 19, 197-212.	1.3	2
305	The impact of the suppression of highly connected protein interactions on the corona virus infection. Scientific Reports, 2022, 12, .	1.6	1
307	Binding of SARS-CoV-2 protein ORF9b to mitochondrial translocase TOM70 prevents its interaction with chaperone HSP90. Biochimie, 2022, 200, 99-106.	1.3	6
308	Outcomes of 2111 COVID-19 Hospitalized Patients Treated with Hydroxychloroquine/Azithromycin and Other Regimens in Marseille, France, 2020: A Monocentric Retrospective Analysis. Therapeutics and Clinical Risk Management, 0, Volume 18, 603-617.	0.9	5
309	Structural basis of Tom20 and Tom22 cytosolic domains as the human TOM complex receptors. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	25
311	The SARS-CoV-2 protein NSP2 impairs the silencing capacity of the human 4EHP-GICYF2 complex. IScience, 2022, 25, 104646.	1.9	15
312	Host Kinase CSNK2 is a Target for Inhibition of Pathogenic SARS-like β-Coronaviruses. ACS Chemical Biology, 2022, 17, 1937-1950.	1.6	16
313	In-Silico targeting of SARS-CoV-2 NSP6 for drug and natural products repurposing. Virology, 2022, 573, 96-110.	1.1	7

#	Article	IF	CITATIONS
314	Genomic, proteomic and metabolomic profiling of severe acute respiratory syndrome-Coronavirus-2. , 2022, , 49-76.		0
315	Alkaloids and Alkaloid-Like Compounds are Potential Scaffolds of Antiviral Agents against SARS-CoV-2 (COVID-19) Virus. Heterocycles, 2022, 105, 115.	0.4	2
316	Comparison of Two RNA Extraction Methods for the Molecular Detection of SARS-CoV-2 from Nasopharyngeal Swab Samples. Diagnostics, 2022, 12, 1561.	1.3	3
317	The Robustness of Cellular Immunity Determines the Fate of SARS-CoV-2 Infection. Frontiers in Immunology, 0, 13, .	2.2	28
318	Medications Associated with Lower Mortality in a SARS-CoV-2 Positive Cohort of 26,508 Veterans. Journal of General Internal Medicine, 2022, 37, 4144-4152.	1.3	5
319	Repurposing the Antiplatelet Agent Ticlopidine to Counteract the Acute Phase of ER Stress Condition: An Opportunity for Fighting Coronavirus Infections and Cancer. Molecules, 2022, 27, 4327.	1.7	1
320	Network Embedding Across Multiple Tissues and Data Modalities Elucidates the Context of Host Factors Important for COVID-19 Infection. Frontiers in Genetics, 0, 13, .	1.1	2
321	The consequences of viral infection on host DNA damage response: a focus on SARS-CoVs. Journal of Genetic Engineering and Biotechnology, 2022, 20, 104.	1.5	5
322	SARS-CoV-2 Amino Acid Mutations Detection in Greek Patients Infected in the First Wave of the Pandemic. Microorganisms, 2022, 10, 1430.	1.6	0
323	Selection of Bis-Indolyl Pyridines and Triphenylamines as New Inhibitors of SARS-CoV-2 Cellular Entry by Modulating the Spike Protein/ACE2 Interfaces. Antimicrobial Agents and Chemotherapy, 2022, 66, .	1.4	9
324	Many dissimilar NusG protein domains switch between $\hat{I}\pm$ -helix and \hat{I}^2 -sheet folds. Nature Communications, 2022, 13, .	5.8	20
326	Mechanisms of mitochondrial respiratory adaptation. Nature Reviews Molecular Cell Biology, 2022, 23, 817-835.	16.1	61
327	New Use of the SSRI Fluvoxamine in the Treatment of COVID-19 Symptoms. , 0, , .		1
328	Sigma-1 receptor: A potential target for the development of antidepressants. Neurochemistry International, 2022, 159, 105390.	1.9	7
329	Enhanced inflammation and suppressed adaptive immunity in COVID-19 with prolonged RNA shedding. Cell Discovery, 2022, 8, .	3.1	10
330	Evaluation of immune evasion in SARS-CoV-2 Delta and Omicron variants. Computational and Structural Biotechnology Journal, 2022, 20, 4501-4516.	1.9	8
331	Human coronaviruses disassemble processing bodies. PLoS Pathogens, 2022, 18, e1010724.	2.1	9
332	Home as the new frontier for the treatment of COVID-19: the case for anti-inflammatory agents. Lancet Infectious Diseases, The, 2023, 23, e22-e33.	4.6	38

#	Article	IF	CITATIONS
333	Structural basis for Sarbecovirus ORF6 mediated blockage of nucleocytoplasmic transport. Nature Communications, 2022, 13, .	5.8	12
334	RK-33, a small molecule inhibitor of host RNA helicase DDX3, suppresses multiple variants of SARS-CoV-2. Frontiers in Microbiology, 0, 13, .	1.5	4
335	COVIDâ \in 19 metabolism: Mechanisms and therapeutic targets. MedComm, 2022, 3, .	3.1	15
337	Illuminating the dark protein-protein interactome. Cell Reports Methods, 2022, 2, 100275.	1.4	10
338	SARS-CoV-2 Non-Structural Proteins and Their Roles in Host Immune Evasion. Viruses, 2022, 14, 1991.	1.5	19
339	Recent advances in applying G-quadruplex for SARS-CoV-2 targeting and diagnosis: A review. International Journal of Biological Macromolecules, 2022, 221, 1476-1490.	3.6	9
340	Structure and dynamics of human complication-disease network. Chaos, Solitons and Fractals, 2022, 164, 112633.	2.5	1
341	Chronic neuropsychiatric sequelae of SARSâ€CoVâ€2: Protocol and methods from the Alzheimer's Association Global Consortium. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2022, 8, .	1.8	9
342	Exploring SARS-CoV2 host-pathogen interactions and associated fungal infections cross-talk: Screening of targets and understanding pathogenesis. Computational and Structural Biotechnology Journal, 2022, 20, 4351-4359.	1.9	4
343	Development and application of ribonucleic acid therapy strategies against COVID-19. International Journal of Biological Sciences, 2022, 18, 5070-5085.	2.6	18
344	Proteomics research of SARS-CoV-2 and COVID-19 disease. Medical Review, 2022, 2, 427-445.	0.3	1
345	SARS-CoV-2 ORF8 is a viral cytokine regulating immune responses. International Immunology, 2023, 35, 43-52.	1.8	14
346	Developing Isoxazole as a Native Photoâ€Cross‣inker for Photoaffinity Labeling and Chemoproteomics. Angewandte Chemie, 0, , .	1.6	1
347	Antidepressant use and risk of intubation or death in hospitalized patients with COVID-19: A retrospective cohort study of clinical effectiveness. Frontiers in Psychiatry, 0, 13, .	1.3	2
348	Developing Isoxazole as a Native Photoâ€Crossâ€Linker for Photoaffinity Labeling and Chemoproteomics. Angewandte Chemie - International Edition, 2022, 61, .	7.2	7
349	Interaction of HDAC2 with SARS-CoV-2 NSP5 and IRF3 Is Not Required for NSP5-Mediated Inhibition of Type I Interferon Signaling Pathway. Microbiology Spectrum, 2022, 10, .	1.2	5
350	Durability of Protection Post–Primary COVID-19 Vaccination in the United States. Vaccines, 2022, 10, 1458.	2.1	8
351	Molecular Bases of Serotonin Reuptake Inhibitor Antidepressant-Attributed Effects in COVID-19: A New Insight on the Role of Bradykinins. Journal of Personalized Medicine, 2022, 12, 1487.	1.1	3

#	Article	IF	CITATIONS
352	Cyclin D3 restricts SARS oVâ€⊋ envelope incorporation into virions and interferes with viralÂspread. EMBO Journal, 2022, 41, .	3.5	9
353	Translation landscape of SARS-CoV-2 noncanonical subgenomic RNAs. Virologica Sinica, 2022, 37, 813-822.	1.2	4
355	Multiomics approach reveals the ubiquitination-specific processes hijacked by SARS-CoV-2. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	23
356	SIRT5 is a proviral factor that interacts with SARS-CoV-2 Nsp14 protein. PLoS Pathogens, 2022, 18, e1010811.	2.1	8
357	Proteomic insights into SARS-CoV-2 infection mechanisms, diagnosis, therapies and prognostic monitoring methods. Frontiers in Immunology, 0, 13, .	2.2	6
358	Structural characterization of SARS-CoV-2 dimeric ORF9b reveals potential fold-switching trigger mechanism. Science China Life Sciences, 2023, 66, 152-164.	2.3	2
359	SARS-CoV-2 Nsp6 damages Drosophila heart and mouse cardiomyocytes through MGA/MAX complex-mediated increased glycolysis. Communications Biology, 2022, 5, .	2.0	17
360	Druggable targets and therapeutic development for COVID-19. Frontiers in Chemistry, 0, 10, .	1.8	4
361	Insights into pandemic respiratory viruses: manipulation of the antiviral interferon response by SARS-CoV-2 and influenzaAA virus. Current Opinion in Immunology, 2022, 78, 102252.	2.4	5
363	Recent computational drug repositioning strategies against SARS-CoV-2. Computational and Structural Biotechnology Journal, 2022, 20, 5713-5728.	1.9	3
364	Metamorphic proteins under a computational microscope: Lessons from a fold-switching RfaH protein. Computational and Structural Biotechnology Journal, 2022, 20, 5824-5837.	1.9	5
366	A comprehensive SARS-CoV-2–human protein–protein interactome reveals COVID-19 pathobiology and potential host therapeutic targets. Nature Biotechnology, 2023, 41, 128-139.	9.4	61
367	Direct Interaction of Coronavirus Nonstructural Protein 3 with Melanoma Differentiation-Associated Gene 5 Modulates Type I Interferon Response during Coronavirus Infection. International Journal of Molecular Sciences, 2022, 23, 11692.	1.8	5
368	Tissue―and cellâ€expression of druggable host proteins provide insights into repurposing drugs for <scp>COVID</scp> â€19. Clinical and Translational Science, 0, , .	1.5	2
369	A network view of human immune system and virus-human interaction. Frontiers in Immunology, 0, 13, .	2.2	0
370	Impairment of antiviral immune response and disruption of cellular functions by SARS-CoV-2 ORF7a and ORF7b. IScience, 2022, 25, 105444.	1.9	14
371	A proteome-scale map of the SARS-CoV-2–human contactome. Nature Biotechnology, 2023, 41, 140-149.	9.4	29
372	Host protein kinases required for SARS-CoV-2 nucleocapsid phosphorylation and viral replication. Science Signaling, 2022, 15, .	1.6	26

#	Article	IF	CITATIONS
373	SARS-CoV-2 ORF8: One protein, seemingly one structure, and many functions. Frontiers in Immunology, 0, 13, .	2.2	21
374	Selenoprotein S: A versatile disordered protein. Archives of Biochemistry and Biophysics, 2022, 731, 109427.	1.4	6
375	Full-dose NSAIDs at the first sign of respiratory infection?. Lancet Infectious Diseases, The, 2022, 22, 1533-1534.	4.6	2
376	Evidence of mitochondria origin of SARS-CoV-2 double-membrane vesicles: a review F1000Research, 0, 10, 1009.	0.8	1
378	Application of Computational Biology and Artificial Intelligence in Drug Design. International Journal of Molecular Sciences, 2022, 23, 13568.	1.8	17
379	Translation—A tug of war during viral infection. Molecular Cell, 2023, 83, 481-495.	4.5	8
380	CORUM: the comprehensive resource of mammalian protein complexes–2022. Nucleic Acids Research, 2023, 51, D539-D545.	6.5	34
381	Subgenomic RNAs and Their Encoded Proteins Contribute to the Rapid Duplication of SARS-CoV-2 and COVID-19 Progression. Biomolecules, 2022, 12, 1680.	1.8	0
382	Atlas of interactions between SARS-CoV-2 macromolecules and host proteins. , 2023, 2, 100068.		6
383	Proteomic analysis of antiviral innate immunity. Current Opinion in Virology, 2023, 58, 101291.	2.6	1
384	SARS-CoV-2 Inhibitors Identified by Phenotypic Analysis of a Collection of Viral RNA-Binding Molecules. Pharmaceuticals, 2022, 15, 1448.	1.7	1
385	The New Version of the ANDDigest Tool with Improved Al-Based Short Names Recognition. International Journal of Molecular Sciences, 2022, 23, 14934.	1.8	10
386	Cytoplasmic ribonucleoprotein complexes, RNA helicases and coronavirus infection. Frontiers in Virology, 0, 2, .	0.7	0
387	A new framework for host-pathogen interaction research. Frontiers in Immunology, 0, 13, .	2.2	3
388	Focus on Marine Animal Safety and Marine Bioresources in Response to the SARS-CoV-2 Crisis. International Journal of Molecular Sciences, 2022, 23, 15136.	1.8	3
389	A Systemic Study of Subcellular Localization of Porcine Epidemic Diarrhea Virus Proteins. Pathogens, 2022, 11, 1555.	1.2	0
390	An overview of PROTACs: a promising drug discovery paradigm. Molecular Biomedicine, 2022, 3, .	1.7	35
391	Nsp1 proteins of human coronaviruses HCoV-OC43 and SARS-CoV2 inhibit stress granule formation. PLoS Pathogens, 2022, 18, e1011041.	2.1	12

#	Article	IF	CITATIONS
392	Role of Hsp70 in Post-Translational Protein Targeting: Tail-Anchored Membrane Proteins and Beyond. International Journal of Molecular Sciences, 2023, 24, 1170.	1.8	3
393	A knowledge-based protein-protein interaction inhibition (KPI) pipeline: an insight from drug repositioning for COVID-19 inhibition. Journal of Biomolecular Structure and Dynamics, 0, , 1-14.	2.0	0
394	Mass Spectrometry for Assessing Protein–Nucleic Acid Interactions. Analytical Chemistry, 2023, 95, 115-127.	3.2	1
395	Circulating Peptidome Is Strongly Altered in COVID-19 Patients. International Journal of Environmental Research and Public Health, 2023, 20, 1564.	1.2	2
396	Multi-OMICs landscape of SARS-CoV-2-induced host responses in human lung epithelial cells. IScience, 2023, 26, 105895.	1.9	6
398	Systems biology in COVID-19. , 2023, , 301-320.		0
399	Proteomic understanding of SARS-CoV-2 infection and COVID-19: Biological, diagnostic, and therapeutic perspectives. , 2023, , 61-85.		0
400	Proactive vs. reactive country responses to the COVID-19 pandemic shock. PLOS Global Public Health, 2023, 3, e0001345.	0.5	1
401	The SARS-CoV-2 accessory protein Orf3a is not an ion channel, but does interact with trafficking proteins. ELife, 0, 12, .	2.8	20
402	Survival-based CRISPR genetic screens across a panel of permissive cell lines identify common and cell-specific SARS-CoV-2 host factors. Heliyon, 2023, 9, e12744.	1.4	5
404	Quinazolinone-Peptido-Nitrophenyl-Derivatives as Potential Inhibitors of SARS-CoV-2 Main Protease. Viruses, 2023, 15, 287.	1.5	1
405	Host-pathogen protein-protein interactions and interactomics in COVID-19. , 2023, , 101-109.		0
406	The SARS-CoV-2 UTR's Intrudes Host RBP's and Modulates Cellular Splicing. Advances in Virology, 2023, 2023, 1-11.	0.5	2
407	Antiviral PROTACs: Opportunity borne with challenge. , 2023, 2, 100092.		12
408	FDA approved drugs with antiviral activity against SARS-CoV-2: From structure-based repurposing to host-specific mechanisms. Biomedicine and Pharmacotherapy, 2023, 162, 114614.	2.5	5
409	Mitochondrial protein transport: Versatility of translocases and mechanisms. Molecular Cell, 2023, 83, 890-910.	4.5	24
410	LRRC15 mediates an accessory interaction with the SARS-CoV-2 spike protein. PLoS Biology, 2023, 21, e3001959.	2.6	8
411	Identification of SARS-CoV-2 Main Protease (Mpro) Cleavage Sites Using Two-Dimensional Electrophoresis and In Silico Cleavage Site Prediction. International Journal of Molecular Sciences, 2023–24–3236	1.8	2

#	Article	IF	CITATIONS
412	HuCoPIA: An Atlas of Human vs. SARS-CoV-2 Interactome and the Comparative Analysis with Other Coronaviridae Family Viruses. Viruses, 2023, 15, 492.	1.5	1
413	Selenoprotein S Interacts with the Replication and Transcription Complex of SARS-CoV-2 by Binding nsp7. Journal of Molecular Biology, 2023, 435, 168008.	2.0	2
414	Distinguishing features of foldâ \in switching proteins. Protein Science, 2023, 32, .	3.1	8
415	SARS-COV-2 viroporins activate the NLRP3-inflammasome by the mitochondrial permeability transition pore. Frontiers in Immunology, 0, 14, .	2.2	10
416	A computational map of the human-SARS-CoV-2 protein–RNA interactome predicted at single-nucleotide resolution. NAR Genomics and Bioinformatics, 2023, 5, .	1.5	3
418	Intragenomic rearrangements involving 5′-untranslated region segments in SARS-CoV-2, other betacoronaviruses, and alphacoronaviruses. Virology Journal, 2023, 20, .	1.4	4
419	Bioinformatics approaches for unveiling virus-host interactions. Computational and Structural Biotechnology Journal, 2023, 21, 1774-1784.	1.9	8
420	SARS-CoV-2 SUD2 and Nsp5 Conspire to Boost Apoptosis of Respiratory Epithelial Cells via an Augmented Interaction with the G-Quadruplex of BclII. MBio, 0, , .	1.8	Ο
422	Development of Fluorescent 4-[4-(3 <i>H</i> -Spiro[isobenzofuran-1,4′-piperidin]-1′-yl)butyl]indolyl Derivatives as High-Affinity Probes to Enable the Study of σ Receptors via Fluorescence-Based Techniques. Journal of Medicinal Chemistry, 2023, 66, 3798-3817.	2.9	1
423	Overview of the potential use of fluvoxamine for COVID-19 and long COVID. Discover Mental Health, 2023, 3, .	1.0	6
424	Sigmar1 ablation leads to lung pathological changes associated with pulmonary fibrosis, inflammation, and altered surfactant proteins levels. Frontiers in Physiology, 0, 14, .	1.3	0
425	Heat shock protein 90 facilitates SARS-CoV-2 structural protein-mediated virion assembly and promotes virus-induced pyroptosis. Journal of Biological Chemistry, 2023, 299, 104668.	1.6	8
427	Emerging roles of SARS-CoV-2 Spike-ACE2 in immune evasion and pathogenesis. Trends in Immunology, 2023, 44, 424-434.	2.9	5
428	SARS-CoV-2: Structure, Pathogenesis, and Diagnosis. , 2024, , 24-51.		0
429	The Envelope (E) Protein of SARS-CoV-2 as a Pharmacological Target. Viruses, 2023, 15, 1000.	1.5	7
430	SARS-CoV-2 main protease Nsp5 cleaves and inactivates human tRNA methyltransferase TRMT1. Journal of Molecular Cell Biology, 2023, 15, .	1.5	4
460	The role of cell death in SARS-CoV-2 infection. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	4