Destruction of Metal–Organic Frameworks: Positive a Lability

Chemical Reviews 120, 13087-13133

DOI: 10.1021/acs.chemrev.0c00722

Citation Report

#	Article	IF	CITATIONS
1	Indium metal–organic frameworks based on pyridylcarboxylate ligands and their potential applications. Dalton Transactions, 2021, 50, 5713-5723.	1.6	9
2	Modulating the stacking modes of nanosized metal–organic frameworks by morphology engineering for isomer separation. Chemical Science, 2021, 12, 4104-4110.	3.7	17
3	Design strategies for improving the crystallinity of covalent organic frameworks and conjugated polymers: a review. Materials Horizons, 2022, 9, 121-146.	6.4	51
4	Visualizing the Conversion of Metal–Organic Framework Nanoparticles into Hollow Layered Double Hydroxide Nanocages. Journal of the American Chemical Society, 2021, 143, 1854-1862.	6.6	111
5	HKUST-1 MOF in reline deep eutectic solvent: synthesis and phase transformation. Dalton Transactions, 2021, 50, 4145-4151.	1.6	21
6	Capture of toxic gases in MOFs: SO ₂ , H ₂ S, NH ₃ and NO _x . Chemical Science, 2021, 12, 6772-6799.	3.7	79
7	H2S Stability of Metal–Organic Frameworks: A Computational Assessment. ACS Applied Materials & lnterfaces, 2021, 13, 4813-4822.	4.0	6
8	Robust Heterometallic Co ^{II} La ^{III} ₂ –Organic Framework for the Highly Efficient Separation of Acetylene from Light Hydrocarbon Mixtures. Inorganic Chemistry, 2021, 60, 2878-2882.	1.9	23
9	Defective Hierarchical Pore Engineering of a Zn–Ni MOF by Labile Coordination Bonding Modulation. Inorganic Chemistry, 2021, 60, 5122-5130.	1.9	19
10	Molecularâ€Rotorâ€Driven Advanced Porous Materials. Angewandte Chemie - International Edition, 2021, 60, 16279-16292.	7.2	35
11	A Temporarily Pore-Openable Porous Coordination Polymer for Guest Adsorption/Desorption. Inorganic Chemistry, 2021, 60, 4531-4538.	1.9	10
12	Molecularâ€Rotorâ€Driven Advanced Porous Materials. Angewandte Chemie, 2021, 133, 16415-16428.	1.6	10
13	Controlled Metal Oxide and Porous Carbon Templation Using Metal-Organic Frameworks. Crystal Growth and Design, 2021, 21, 4249-4258.	1.4	3
14	Viologen-Based Cationic Metal–Organic Framework for Efficient Cr ₂ O ₇ ^{2–} Adsorption and Dye Separation. Inorganic Chemistry, 2021, 60, 5988-5995.	1.9	32
15	Evaluating the Robustness of Metal–Organic Frameworks for Synthetic Chemistry. ACS Applied Materials & Chemistry. ACS	4.0	35
16	Synthesis and crystal structures of Zn(II) and Cd(II) coordination polymers derived from the flexible N-(4-carboxyphenyl)iminodiacetic acid and auxiliary ligands. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2021, 76, 319-325.	0.3	1
17	Structural changes of a NiFe-based metal-organic framework during the oxygen-evolution reaction under alkaline conditions. International Journal of Hydrogen Energy, 2021, 46, 19245-19253.	3.8	44
18	HOFs under light: Relevance to photon-based science and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 47, 100418.	5.6	46

#	Article	IF	CITATIONS
19	Two nickel(II) complexes exhibiting "fused" 9-MC-3 and 12-MC-4 metallacrowns. Transition Metal Chemistry, 2021, 46, 503-508.	0.7	1
20	The Synthesis of Hexaazatrinaphthyleneâ€Based 2D Conjugated Copper Metalâ€Organic Framework for Highly Selective and Stable Electroreduction of CO ₂ to Methane. Angewandte Chemie, 2021, 133, 16545-16551.	1.6	13
21	Accelerating Fe(\hat{a} ¢)/Fe(\hat{a} \hat{i}) cycle via Fe(\hat{a} \hat{i}) substitution for enhancing Fenton-like performance of Fe-MOFs. Applied Catalysis B: Environmental, 2021, 286, 119859.	10.8	138
22	The Synthesis of Hexaazatrinaphthyleneâ€Based 2D Conjugated Copper Metalâ€Organic Framework for Highly Selective and Stable Electroreduction of CO ₂ to Methane. Angewandte Chemie - International Edition, 2021, 60, 16409-16415.	7.2	87
23	SO ₂ Capture Using Porous Organic Cages. Angewandte Chemie, 2021, 133, 17697-17704.	1.6	3
24	SO ₂ Capture Using Porous Organic Cages. Angewandte Chemie - International Edition, 2021, 60, 17556-17563.	7.2	85
25	Ammonia Capture via an Unconventional Reversible Guest-Induced Metal-Linker Bond Dynamics in a Highly Stable Metal–Organic Framework. Chemistry of Materials, 2021, 33, 6186-6192.	3.2	26
26	An ultrathin amino-acid based copper(II) coordination polymer nanosheet for efficient epoxidation of \hat{l}^2 -caryophyllene. Molecular Catalysis, 2021, 511, 111754.	1.0	0
27	Co-Heteroatom-Based MOFs for Bifunctional Electrocatalysts for Oxygen and Hydrogen Evolution Reactions. Inorganic Chemistry, 2021, 60, 13434-13439.	1.9	6
28	Water-Stable Two-Dimensional Metal–Organic Framework Nanostructures for Fe ³⁺ lons Detection. Crystal Growth and Design, 2021, 21, 5275-5282.	1.4	16
29	Emerging porous framework material-based nanofluidic membranes toward ultimate ion separation. Matter, 2021, 4, 2810-2830.	5.0	27
30	C2s/C1 hydrocarbon separation: The major step towards natural gas purification by metal-organic frameworks (MOFs). Coordination Chemistry Reviews, 2021, 442, 213998.	9.5	64
31	Inhibition by Water during Heterogeneous Brønsted Acid Catalysis by Three-Dimensional Crystalline Organic Salts. Crystal Growth and Design, 2021, 21, 6364-6372.	1.4	3
32	Anchoring Ag(I) into Nitro-Functionalized Metal–Organic Frameworks: Effectively Catalyzing Cycloaddition of CO ₂ with Propargylic Alcohols under Mild Conditions. ACS Applied Materials & Diterfaces, 2021, 13, 45558-45565.	4.0	29
33	Turning Flexibility into Rigidity: Stepwise Locking of Interpenetrating Networks in a MOF Crystal through Click Reaction. Chemistry of Materials, 2021, 33, 7509-7517.	3.2	13
34	Shining Light on Porous Liquids: From Fundamentals to Syntheses, Applications and Future Challenges. Advanced Functional Materials, 2022, 32, 2104162.	7.8	40
35	A metal-organic-framework incorporated vascular graft for sustained nitric oxide generation and long-term vascular patency. Chemical Engineering Journal, 2021, 421, 129577.	6.6	33
36	An updated status and trends in actinide metal-organic frameworks (An-MOFs): From synthesis to application. Coordination Chemistry Reviews, 2021, 446, 214011.	9.5	93

3

#	ARTICLE	IF	Citations
37	Iron-based metal-organic framework: Synthesis, structure and current technologies for water reclamation with deep insight into framework integrity. Chemosphere, 2021, 284, 131171.	4.2	83
38	Reversible switching of Cu-tetracarboxylic-based coordination polymers through in situ single-crystal-to-single-crystal structural transformation and their impact on carbon-based composite derivatives, fluorescence, and adsorption properties. Journal of Solid State Chemistry, 2021, 304, 122589.	1.4	1
39	Environmental decomposition and remodeled phytotoxicity of framework-based nanomaterials. Journal of Hazardous Materials, 2022, 422, 126846.	6.5	18
40	Crystal transformation in Mn(<scp>ii</scp>) metal–organic frameworks based on a one-dimensional chain precursor. Dalton Transactions, 2021, 50, 9540-9546.	1.6	6
41	A Triazole Functionalized <i>txt</i> -Type Metal–Organic Framework with High Performance for CH ₄ Uptake and Selective CO ₂ Adsorption. Inorganic Chemistry, 2021, 60, 15646-15652.	1.9	5
42	Unusual Metal–Organic Framework Topology and Radiation Resistance through Neptunyl Coordination Chemistry. Journal of the American Chemical Society, 2021, 143, 17354-17359.	6.6	16
43	The Synthesis and Properties of TIPA-Dominated Porous Metal-Organic Frameworks. Nanomaterials, 2021, 11, 2791.	1.9	3
44	Using Machine Learning and Data Mining to Leverage Community Knowledge for the Engineering of Stable Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 17535-17547.	6.6	71
45	Molecular Cleavage of Metalâ€Organic Frameworks and Application to Energy Storage and Conversion. Advanced Materials, 2021, 33, e2104341.	11.1	73
46	SBA15-supported nano-ruthenium catalyst for the oxidative cleavage of alkenes to aldehydes under flow conditions. Tetrahedron Letters, 2021, 86, 153509.	0.7	3
47	A two-dimensional manganese coordination polymer: Crystal structure, proton conductivity and catalytic property. Inorganica Chimica Acta, 2022, 529, 120658.	1.2	1
48	Sulfonic and phosphonic porous solids as proton conductors. Coordination Chemistry Reviews, 2022, 451, 214241.	9.5	63
49	Clipâ€off Chemistry: Synthesis by Programmed Disassembly of Reticular Materials**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
50	Clipâ€off Chemistry: Synthesis by Programmed Disassembly of Reticular Materials. Angewandte Chemie, 0, , .	1.6	0
51	Size-controlled, hollow and hierarchically porous Co2Ni2 alloy nanocubes for efficient oxygen reduction in microbial fuel cells. Reaction Chemistry and Engineering, 0, , .	1.9	3
52	Viologenâ∈Based Uranyl Coordination Polymers: Anionâ∈Induced Structural Diversity and the Potential as a Fluorescent Probe. European Journal of Inorganic Chemistry, 2021, 2021, 5077-5084.	1.0	8
53	Organophosphorus-Functionalized Zirconium-Based Metal–Organic Framework Nanostructures for Improved Mechanical and Flame Retardant Polymer Nanocomposites. ACS Applied Nano Materials, 2021, 4, 13027-13040.	2.4	21
54	Substituent Controlled Framework Transformation Based on Solvent-Assisted Linker Exchange. Crystal Growth and Design, 2022, 22, 37-42.	1.4	7

#	Article	IF	CITATIONS
55	Synthesis and Mechanical Properties of sub $5\hat{a}\in\hat{A}\mu m$ PolyUiO $\hat{a}\in 66$ Thin Films on Gold Surfaces. ChemPhysChem, 2021, , .	1.0	1
56	Effective flocculation of harmful algae Microcystis aeruginosa by nanoscale metal–organic framework NH2-MIL-101(Cr). Chemical Engineering Journal, 2022, 433, 134584.	6.6	17
57	Metal-hydrogen-pi-bonded organic frameworks. Dalton Transactions, 2022, 51, 1927-1935.	1.6	12
58	Metal–Organic Network-Forming Glasses. Chemical Reviews, 2022, 122, 4163-4203.	23.0	121
59	Avoiding Pyrolysis and Calcination: Advances in the Benign Routes Leading to MOFâ€Derived Electrocatalysts. ChemElectroChem, 2022, 9, .	1.7	12
60	Enhanced Biological Imaging via Aggregation-Induced Emission Active Porous Organic Cages. ACS Nano, 2022, 16, 2355-2368.	7. 3	21
61	An efficient glucose sensor thermally calcined from copper-organic coordination cages. Talanta, 2022, 241, 123263.	2.9	14
62	The bulky Pd-PEPPSI-embedded conjugated microporous polymer-catalyzed Suzuki–Miyaura cross-coupling of aryl chlorides and arylboronic acids. Polymer Chemistry, 2022, 13, 1547-1558.	1.9	8
63	Amorphous metalâ \in organic frameworks obtained from a crystalline precursor for the capture of iodine with high capacities. Chemical Communications, 2022, 58, 5013-5016.	2.2	22
64	Exchange of coordinated carboxylates with azolates as a route to obtain a microporous zinc–azolate framework. Chemical Communications, 2022, 58, 4028-4031.	2.2	2
65	Two bis-ligand-coordinated Zn(<scp>ii</scp>)-MOFs for luminescent sensing of ions, antibiotics and pesticides in aqueous solutions. RSC Advances, 2022, 12, 7780-7788.	1.7	15
66	Research Progresses of Metal-organic Framework HKUST-1-Based Membranes in Gas Separations [※] . Acta Chimica Sinica, 2022, 80, 340.	0.5	6
67	Exploration of Hierarchical Metal–Organic Framework as Ultralight, High-Strength Mechanical Metamaterials. Journal of the American Chemical Society, 2022, 144, 4393-4402.	6.6	21
68	Amorphous Chromium Oxide with Hollow Morphology for Nitrogen Electrochemical Reduction under Ambient Conditions. ACS Applied Materials & Samp; Interfaces, 2022, 14, 14474-14481.	4.0	8
69	Further Insight into the Conversion of a Ni–Fe Metal–Organic Framework during Water-Oxidation Reaction. Inorganic Chemistry, 2022, 61, 5112-5123.	1.9	17
70	Smart Tetraphenyletheneâ€Based Luminescent Metal–Organic Frameworks with Amideâ€Assisted Thermofluorochromics and Piezofluorochromics. Advanced Science, 2022, 9, e2200850.	5.6	31
71	From Hydrogen Bond to van der Waals Force: Molecular Scalpel Strategy to Exfoliate a Two-Dimensional Metal–Organic Nanosheet. Inorganic Chemistry, 2022, 61, 5465-5468.	1.9	0
72	Metalâ€Organic Frameworkâ€Based Nanoheater with Photoâ€Triggered Cascade Effects for Onâ€Demand Suppression of Cellular Thermoresistance and Synergistic Cancer Therapy. Advanced Healthcare Materials, 2022, 11, e2200004.	3.9	7

#	Article	IF	CITATIONS
73	Nanospace Engineering of Triazineâ^'Thiophene-Intertwined Porous-Organic-Polymers <i>via</i> Molecular Expansion in Tweaking CO ₂ Capture. ACS Applied Nano Materials, 2022, 5, 5302-5315.	2.4	22
74	COFâ€5/CoAlâ€LDH Nanocomposite Heterojunction for Enhanced Visibleâ€Lightâ€Driven CO ₂ Reduction. ChemSusChem, 2022, 15, .	3.6	10
75	Design of High-Humidity-Proof Hierarchical Porous P-ZIF-67(Co)-Polymer Composite Materials by Surface Modification for Highly Efficient Volatile Organic Compound Adsorption. Industrial & Engineering Chemistry Research, 2022, 61, 3591-3600.	1.8	6
76	MOFSimplify, machine learning models with extracted stability data of three thousand metal–organic frameworks. Scientific Data, 2022, 9, 74.	2.4	34
77	A novel cubic Znâ€citric acidâ€based MOF as a highly efficient and reusable catalyst for the synthesis of pyranopyrazoles and 5â€substituted 1Hâ€tetrazoles. Applied Organometallic Chemistry, 2022, 36, .	1.7	33
78	Modulation of Hierarchical Pores in Metal–Organic Frameworks for Improved Dye Adsorption and Electrocatalytic Performance. Inorganic Chemistry, 2022, 61, 5800-5812.	1.9	5
79	Bisligand-coordinated cadmium organic frameworks as fluorescent sensors to detect lons, antibiotics and pesticides in aqueous solutions. Polyhedron, 2022, 217, 115759.	1.0	16
80	A portable ascorbic acid in sweat analysis system based on highly crystalline conductive nickel-based metal-organic framework (Ni-MOF). Journal of Colloid and Interface Science, 2022, 616, 326-337.	5.0	24
81	Two new isotypic Co(II)/Ni(II)-coordination polymers based on 5-(6-Carboxypyridin-2-yl)isophthalic acid: Synthesis, structure analysis and magnetism properties. Journal of Molecular Structure, 2022, 1261, 132927.	1.8	1
82	Tuning three coordination polymers with dinuclear metal units via pH control: Syntheses, structures, and magnetic properties. Journal of Solid State Chemistry, 2022, , 123121.	1.4	0
83	Defects engineering simultaneously enhances activity and recyclability of MOFs in selective hydrogenation of biomass. Nature Communications, 2022, 13, 2068.	5.8	37
84	Photosensitized Peroxidase Mimicry at the Hierarchical OD/2D Heterojunctionâ€Like Quasi Metalâ€Organic Framework Interface for Boosting Biocatalytic Disinfection. Small, 2022, 18, e2200178.	5.2	62
85	SO2 capture in a chemical stable Al(III) MOF: DUT-4 as an effective adsorbent to clean CH4. Fuel, 2022, 322, 124213.	3.4	17
86	Toward real-world applications: promoting fast and efficient photoswitching in the solid state. Journal of Materials Chemistry C, 2022, 10, 13700-13716.	2.7	16
87	Low-temperature water-assisted crystallization approach to MOF@TiO ₂ core–shell nanostructures for efficient dye removal. Inorganic Chemistry Frontiers, 2022, 9, 2725-2733.	3.0	5
88	Insights into the Solid-State Synthesis of Defect-Rich Zr–UiO-66. Inorganic Chemistry, 2022, 61, 6829-6836.	1.9	3
89	Induction of Chirality in Boron Imidazolate Frameworks: The Structure-Directing Effects of Substituents. Inorganic Chemistry, 2022, 61, 6861-6868.	1.9	5
90	Computational Identification and Experimental Demonstration of Highâ€Performance Methane Sorbents. Angewandte Chemie - International Edition, 2022, 61, e202203575.	7.2	13

#	Article	IF	CITATIONS
91	Computational Identification and Experimental Demonstration of Highâ€Performance Methane Sorbents. Angewandte Chemie, 2022, 134, .	1.6	2
92	Stable Bimetallic Metal–Organic Framework with Dual-Functional Pyrazolate-Carboxylate Ligand: Rational Construction and C ₂ H ₂ /CO ₂ Separation., 2022, 4, 1032-1036.		15
93	Embedding [Mo3S13]2â^' clusters into the micropores of a covalent organic framework for enhanced stability and photocatalytic hydrogen evolution. Chemical Engineering Journal, 2022, 446, 136883.	6.6	14
94	MOF-derived nanocrystalline ZnO with controlled orientation and photocatalytic activity. Chemosphere, 2022, 303, 134932.	4.2	32
95	Copper-based metal–organic frameworks for biomedical applications. Advances in Colloid and Interface Science, 2022, 305, 102686.	7.0	79
96	Engineering of catalytically active sites in photoactive metal–organic frameworks. Coordination Chemistry Reviews, 2022, 465, 214561.	9.5	22
97	Atomically dispersed metal catalysts confined by covalent organic frameworks and their derivatives for electrochemical energy conversion and storage. Coordination Chemistry Reviews, 2022, 466, 214592.	9.5	16
98	In Situ Synthesis of MOFâ€74 Family for High Areal Energy Density of Aqueous Nickel–Zinc Batteries. Advanced Materials, 2022, 34, e2201779.	11.1	117
99	Rapid Fluorescent Determination of Hydrogen Peroxide in Serum by Europium-Metal Organic Framework Based Test Strips. Analytical Letters, 2022, 55, 2897-2911.	1.0	1
100	Light-driven molecular motors embedded in covalent organic frameworks. Chemical Science, 2022, 13, 8253-8264.	3.7	19
101	Fabricating defect-rich metal-organic frameworks via mixed-linker induced crystal transformation. Chemical Communications, 0 , , .	2.2	3
102	Novel Colorimetric Aptasensor Based on Mof-Derived Materials and its Applications for Organophosphorus Pesticides Determination. SSRN Electronic Journal, 0, , .	0.4	0
103	Metal-organic framework-derived Co nanoparticles and single atoms as efficient electrocatalyst for pH universal hydrogen evolution reaction. Nano Research, 2022, 15, 7917-7924.	5.8	12
104	A neutral zinc(II) metal-organic framework with nanoporous channels for efficient and selective absorption of anionic dyes. Journal of Molecular Structure, 2022, 1265, 133413.	1.8	2
105	Hydrogen sulfide capture and removal technologies: A comprehensive review of recent developments and emerging trends. Separation and Purification Technology, 2022, 298, 121448.	3.9	70
106	Understanding the Structural Collapse during Activation of Metal–Organic Frameworks with Copper Paddlewheels. Inorganic Chemistry, 2022, 61, 9702-9709.	1.9	2
107	Pd and Ni NPs@Eu-MOF, an economically advantageous nanocatalyst for C(sp2)-C(sp2) cross-coupling reactions. Key role of Ni and of the metal nanoparticles. Polyhedron, 2022, 223, 115950.	1.0	3
108	Preparation of an interpenetrating bimetal metal–organic framework ⟨i⟩via⟨/i⟩ metal metathesis used for promoting gas adsorption. Inorganic Chemistry Frontiers, 2022, 9, 5434-5443.	3.0	3

#	Article	IF	CITATIONS
109	Transformation of metal–organic frameworks with retained networks. Chemical Communications, 2022, 58, 8602-8613.	2.2	11
110	Fluorescence analysis for characterizing the alkali stability of metal–organic frameworks: an informative complement to X-ray diffraction. Inorganic Chemistry Frontiers, 2022, 9, 4394-4401.	3.0	2
111	Lanthanide Metal–Organic Frameworks with High Chemical Stability as Multifunctional Materials: Cryogenic Magnetic Cooler and Luminescent Probe. Crystal Growth and Design, 2022, 22, 4917-4925.	1.4	6
112	Tailored Inorganicâ€Organic Architectures via Metalloligands. Chemical Record, 0, , .	2.9	1
113	Tailoring Coordination Microenvironment of Cu(I) in Metal–Organic Frameworks for Enhancing Electroreduction of CO ₂ to CH ₄ . Advanced Functional Materials, 2022, 32, .	7.8	42
114	Low-dimensional assemblies of metal-organic framework particles and mutually coordinated anisotropy. Nature Communications, 2022, 13, .	5.8	36
115	Pentagonal 2D Transition Metal Dichalcogenides: PdSe ₂ and Beyond. Advanced Functional Materials, 2022, 32, .	7.8	16
116	Highly Efficient and Direct Ultralong Allâ€Phosphorescence from Metal–Organic Framework Photonic Glasses. Angewandte Chemie - International Edition, 2022, 61, .	7.2	66
117	Highly Efficient and Direct Ultralong Allâ€Phosphorescence from Metalâ^'Organic Framework Photonic Glasses. Angewandte Chemie, 0, , .	1.6	4
118	Construction of hierarchically porous metal-organic framework particle by a facile MOF-template strategy. Particuology, 2023, 74, 9-17.	2.0	5
119	The chemical stability of metal-organic frameworks in water treatments: Fundamentals, effect of water matrix and judging methods. Chemical Engineering Journal, 2022, 450, 138215.	6.6	39
120	A boric acid functional multi-emission metal organic frameworks-based fluorescence sensing platform for visualization of gallic acid. Chemical Engineering Journal, 2022, 450, 138283.	6.6	22
121	Metal–organic framework (MOF)-, covalent-organic framework (COF)-, and porous-organic polymers (POP)-catalyzed selective C–H bond activation and functionalization reactions. Chemical Society Reviews, 2022, 51, 7810-7882.	18.7	80
122	PO ₄ ^{3â€"} -Loaded ZIF-8-type Metalâ€"Organic Framework-Decorated Multiwalled Carbon Nanotube Synthesis and Application in Silane Coatings for Achieving a Smart Corrosion Protection Performance. Industrial & Description States (2022, 61, 11747-11765).	1.8	9
123	Metal–Organic Frameworks for CO ₂ Separation from Flue and Biogas Mixtures. Advanced Functional Materials, 2022, 32, .	7.8	46
124	Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly. Beilstein Journal of Nanotechnology, 0, 13, 763-777.	1.5	1
125	High selectivity of photocatalytic reduction of CO2 to CO based on terpyridine ligand supported CuI metal organic framework. Frontiers in Chemistry, $0,10,10$	1.8	3
126	Comparative Effect of Amino Functionality on the Performance of Isostructural Mixedâ€Ligand MOFs towards Multifunctional Catalytic Application. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	1

#	Article	IF	CITATIONS
127	Novel colorimetric aptasensor based on MOF-derived materials and its applications for organophosphorus pesticides determination. Journal of Hazardous Materials, 2022, 440, 129707.	6.5	45
128	Treatment Activity of Ho(III)-Based Coordination Polymer on Liver Cancer by the Inhibition of Vascular Endothelial Growth Factor Signaling Pathway Activity. Journal of Biomaterials and Tissue Engineering, 2022, 12, 1988-1993.	0.0	0
129	Enhanced Mechanical Stability and Proton Conductivity Performance from the Dense Mn(II)-Metal–Organic Framework to Porous Mn(II)–Fe(III)-Metal–Organic Framework. Inorganic Chemistry, 2022, 61, 15166-15174.	1.9	4
130	Controlling dynamics in extended molecular frameworks. Nature Reviews Chemistry, 2022, 6, 705-725.	13.8	24
131	A new nitrogen rich porous organic polymer for ultra-high CO2 uptake and as an excellent organocatalyst for CO2 fixation reactions. Journal of CO2 Utilization, 2022, 65, 102236.	3.3	25
132	The Role of NMR in Metal Organic Frameworks: Deep Insights into Dynamics, Structure and Mapping of Functional Groups. Materials Today Advances, 2022, 16, 100287.	2.5	5
133	Lanthanoid hydrogen-bonded organic frameworks: Enhancement of luminescence by the coordination-promoted antenna effect and applications in heavy-metal ion sensing and sterilization. Chemical Engineering Journal, 2023, 451, 138880.	6.6	19
134	In-Situ Etching Mof Nanoparticles for Constructing Defects-Free Interface in Hybrid Membranes for Gas Separation. SSRN Electronic Journal, 0, , .	0.4	O
135	Synthesis and structural characterization of metal azolate/carboxylate frameworks incorporating the 1-H-pyrazol-3,4,5-tricarboxylate ligand. Inorganica Chimica Acta, 2022, , 121236.	1,2	0
136	Mechano-thermochemical synthesis of rare-earth metal–organic frameworks with solvent-free coordination for visible and near-infrared emission. Materials Chemistry Frontiers, 2022, 6, 3504-3511.	3.2	2
137	Mapping short-range order at the nanoscale in metal–organic framework and inorganic glass composites. Nanoscale, 2022, 14, 16524-16535.	2.8	4
138	Thermally responsive morphological changes of layered coordination polymers induced by disordering/ordering of flexible alkyl chains. Dalton Transactions, 2022, 51, 17967-17972.	1.6	O
139	Two Co(II)-Metal Organic Frameworks (MOFs): Therapeutic Effect and Mechanism on Radiation Pneumonitis by Inhibiting the Excessive Inflammatory Response of Epithelial Cells. Science of Advanced Materials, 2022, 14, 934-942.	0.1	2
140	Switchable Ion Current Saturation Regimes Enabled via Heterostructured Nanofluidic Devices Based on Metal–Organic Frameworks. Advanced Materials, 2022, 34, .	11.1	13
141	Novel strategies to tailor the photocatalytic activity of metalâ€"organic frameworks for hydrogen generation: a mini-review. Frontiers in Energy, 2022, 16, 734-746.	1.2	3
142	Synthesis and catalytic performance of banana cellulose nanofibres grafted with poly($\hat{l}\mu$ -caprolactone) in a novel two-dimensional zinc(II) metal-organic framework. International Journal of Biological Macromolecules, 2023, 224, 568-577.	3.6	8
143	Regulating the Porosity and Iodine Adsorption Properties of Metal–Organic Framework Glass via an Ammonia-Immersion Approach. Inorganic Chemistry, 2022, 61, 16981-16985.	1.9	7
144	The Dynamic Formation from Metalâ€Organic Frameworks of Highâ€Density Platinum Singleâ€Atom Catalysts with Metalâ€Metal Interactions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	29

#	Article	IF	CITATIONS
145	A Multifunctional Cobalt(II) Metal-Organic Framework with Nanoporous Channels for Gas and Dye Absorption, and Magnetic Performance. Chemical Research in Chinese Universities, 0 , , .	1.3	1
146	The Dynamic Formation from Metalâ€Organic Frameworks of Highâ€Density Platinum Singleâ€Atom Catalysts with Metalâ€Metal Interactions. Angewandte Chemie, 2022, 134, .	1.6	8
147	Engineering Polymeric Nanofluidic Membranes for Efficient Ionic Transport: Biomimetic Design, Material Construction, and Advanced Functionalities. ACS Nano, 2022, 16, 17613-17640.	7.3	15
148	Superior Metalâ€Organic Framework Activation with Dimethyl Ether. Angewandte Chemie - International Edition, 2022, 61, .	7.2	3
149	Palladium Nanoparticles Entrapped In a Hydrogen Bonded Crystalline Organic Salt Matrix as a Selective Heterogeneous Reduction Catalyst. ChemistrySelect, 2022, 7, .	0.7	0
150	Superior Metalâ€Organic Framework Activation with Dimethyl Ether. Angewandte Chemie, 0, , .	1.6	0
151	Metal-organic frameworks for advanced aqueous ion batteries and supercapacitors. EnergyChem, 2022, 4, 100090.	10.1	22
152	Selective and moisture-sensitive degradation of bromocresol green for isostructural MOFs assembled with D-camphorate and bipyridine. Inorganic Chemistry Communication, 2022, 146, 110044.	1.8	0
153	Two bis-color excited luminescent sensors of two-dimensional Cd(II)-MOFs bearing mixed ligands for detection of ions and pesticides in aqueous solutions. Journal of Molecular Structure, 2023, 1273, 134310.	1.8	10
154	In-situ etching MOF nanoparticles for constructing enhanced interface in hybrid membranes for gas separation. Journal of Membrane Science, 2023, 666, 121146.	4.1	12
155	In-situ growth of ZIF-8 nanocrystals on biochar for boron adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 657, 130504.	2.3	9
156	Nanoporous Ethylenediamine-Functionalized Metal–Organic Framework MIL-101 for the Removal of Proteins and Antipsychotic Drugs from Serum Samples. ACS Applied Nano Materials, 2022, 5, 17325-17334.	2.4	4
157	In Situ Synthesis of Hierarchical Porous Zr-MOFs on Columnar Activated Carbon and Application in Toxic Gas Adsorption. Inorganic Chemistry, 2022, 61, 18355-18364.	1.9	1
158	Carbon Capture Beyond Amines: CO ₂ Sorption at Nucleophilic Oxygen Sites in Materials. ChemNanoMat, 2023, 9, .	1.5	1
159	Lanthanide(III)-Modified MIL-125(Ti-Ln) (Ln = Eu or Tb) for the Detection of Cu(II) and Fe(III) lons. Crystal Growth and Design, 2022, 22, 6960-6966.	1.4	3
160	Roadmap of amorphous metal-organic framework for electrochemical energy conversion and storage. Nano Research, 2023, 16, 4107-4118.	5.8	10
161	Advances in photocatalytic reduction of hexavalent chromium: From fundamental concepts to materials design and technology challenges. Journal of Water Process Engineering, 2022, 50, 103301.	2.6	20
162	Direct Visualization of Atomic Structure in Multivariate Metalâ€Organic Frameworks (MOFs) for Guiding Electrocatalysts Design. Angewandte Chemie - International Edition, 2023, 62, .	7.2	13

#	Article	IF	CITATIONS
163	Direct Visualization of Atomic Structure in Multivariate Metalâ€Organic Frameworks (MOFs) for Guiding Electrocatalysts Design. Angewandte Chemie, 2023, 135, .	1.6	7
164	Synthesis, crystal structure of four 1D to 3D coordination polymers as potential sensor for the detection of ions, antibiotics and pesticides in water media. Polyhedron, 2023, 230, 116242.	1.0	10
165	Equipping carbon dots in a defect-containing MOF $\langle i \rangle$ via $\langle i \rangle$ self-carbonization for explosive sensing. Journal of Materials Chemistry C, 2022, 11, 321-328.	2.7	8
166	The NH2-UiO-66/3,4,9,10-perylenetetracarboxylicdiimide for Cr(VI) reduction: DFT calculation, performance, and mechanism. Journal of Environmental Chemical Engineering, 2023, 11, 109205.	3.3	2
167	Synthesis of porphyrin porous organic polymers and their application of water pollution treatment: A review. Environmental Technology and Innovation, 2023, 29, 102972.	3.0	22
168	SYNTHESIS AND CRYSTAL STRUCTURE OF ONE-DIMENSIONAL COORDINATION POLYMERS BASED ON LANTHANIDE COMPLEXES AND CUCURBIT[6]URIL. Journal of Structural Chemistry, 2022, 63, 1770-1778.	0.3	2
169	A State-of-the-Art of Metal-Organic Frameworks for Chromium Photoreduction vs. Photocatalytic Water Remediation. Nanomaterials, 2022, 12, 4263.	1.9	4
170	Surface-Clean Au ₂₅ Nanoclusters in Modulated Microenvironment Enabled by Metal–Organic Frameworks for Enhanced Catalysis. Journal of the American Chemical Society, 2022, 144, 22008-22017.	6.6	50
171	Enhanced Activity of Enzyme Immobilized on Hydrophobic ZIFâ€8 Modified by Ni ²⁺ lons. Angewandte Chemie, 2023, 135, .	1.6	1
172	Optimizing Acetylene Sorption through Inducedâ€fit Transformations in a Chemically Stable Microporous Framework. Angewandte Chemie - International Edition, 2023, 62, .	7.2	12
173	Acid-Resistant Mesoporous Metal–Organic Frameworks as Carriers for Targeted Hypoglycemic Peptide Delivery: Peptide Encapsulation, Release, and Bioactivity. ACS Applied Materials & Encapsulation, Release, and Bioactivity. ACS Applied Materials & Encapsulation, Release, 2022, 14, 55447-55457.	4.0	2
174	Enhanced Activity of Enzyme Immobilized on Hydrophobic ZIFâ€8 Modified by Ni ²⁺ lons. Angewandte Chemie - International Edition, 2023, 62, .	7.2	28
175	Insights into the Effect of Catalytic Intratumoral Lactate Depletion on Metabolic Reprogramming and Immune Activation for Antitumoral Activity. Advanced Science, 2023, 10, .	5.6	17
176	Optimizing Acetylene Sorption through Inducedâ€fit Transformations in a Chemically Stable Microporous Framework. Angewandte Chemie, 0, , .	1.6	0
177	ZIF-8 integrated with polydopamine coating as a novel nano-platform for skin-specific drug delivery. Journal of Materials Chemistry B, 2023, 11, 1782-1797.	2.9	4
178	Metal Organic Polygons and Polyhedra: Instabilities and Remedies. Inorganics, 2023, 11, 36.	1.2	1
179	Principles of Design and Synthesis of Metal Derivatives from MOFs. Advanced Materials, 2023, 35, .	11.1	24
180	Unleashing the catalytic potency of nanoporous copper oxide particles derived from copper 5-nitroisophthalate MOF towards the multicomponent synthesis of 2,3-dihydroquinazolinones. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 661, 130847.	2.3	0

#	ARTICLE	IF	CITATIONS
181	Determination of trace bisphenols in milk based on Fe3O4@NH2-MIL-88(Fe)@TpPa magnetic solid-phase extraction coupled with HPLC. Talanta, 2023, 256, 124268.	2.9	20
182	Largely Entangled Diamondoid Framework with High-Density Urea and Divergent Metal Nodes for Selective Scavenging of CO ₂ and Molecular Dimension-Mediated Size-Exclusive H-Bond Donor Catalysis. Inorganic Chemistry, 2023, 62, 871-884.	1.9	9
183	An investigation on the influence of highly acidic media on the microstructural stability and dye adsorption performance of UiO-66. Applied Surface Science, 2023, 618, 156531.	3.1	32
184	Hybrid nanoarrays of Cu-MOFs@H-substituted graphdiyne with various levels of Lewis acidity for nitrate electroreduction. Chemical Communications, 2023, 59, 4348-4351.	2.2	3
185	Insight into the surface-reconstruction of metal–organic framework-based nanomaterials for the electrocatalytic oxygen evolution reaction. Coordination Chemistry Reviews, 2023, 484, 215117.	9.5	7
186	Recent advances in thermocatalytic hydrogenation of unsaturated organic compounds with Metal-Organic Frameworks-based materials: Construction strategies and related mechanisms. Coordination Chemistry Reviews, 2023, 487, 215159.	9.5	11
187	Carbon Dots Based Photoinduced Reactions: Advances and Perspective. Advanced Science, 2023, 10, .	5.6	20
188	Graphene oxide assisted assembly of superhydrophilic MOF-based membrane with 2D/3D hybrid nanochannels for enhanced water purification. Chemical Engineering Journal, 2023, 460, 141694.	6.6	14
189	A Wideâ€Temperature Adaptive Aqueous Zincâ€Air Batteryâ€Based on Cu–Co Dual Metal–Nitrogenâ€Carbon/Nanoparticle Electrocatalysts. Small Structures, 2023, 4, .	6.9	13
190	Evaluation of an Imine-Linked Polymer Organic Framework for Storage and Release of H2S and NO. Materials, 2023, 16, 1655.	1.3	3
191	A Robust Metalâ€Organic Framework with Scalable Synthesis and Optimal Adsorption and Desorption for Energyâ€Efficient Ethylene Purification. Angewandte Chemie, 2023, 135, .	1.6	0
192	A Robust Metalâ€Organic Framework with Scalable Synthesis and Optimal Adsorption and Desorption for Energyâ€Efficient Ethylene Purification. Angewandte Chemie - International Edition, 2023, 62, .	7.2	13
193	Pulmonary Delivery of Recombinant Human Bleomycin Hydrolase Using Mannose-Modified Hierarchically Porous UiO-66 for Preventing Bleomycin-Induced Pulmonary Fibrosis. ACS Applied Materials & Samp; Interfaces, 2023, 15, 11520-11535.	4.0	0
194	Ionothermal Synthesis of Metalâ€Organic Frameworks Using Lowâ€Melting Metal Salt Precursors**. Angewandte Chemie - International Edition, 2023, 62, .	7.2	5
195	Ionothermal Synthesis of Metalâ€Organic Frameworks Using Lowâ€Melting Metal Salt Precursors**. Angewandte Chemie, 2023, 135, .	1.6	2
196	Coupling Hydrazine Oxidation with Seawater Electrolysis for Energyâ€Saving Hydrogen Production over Bifunctional CoNC Nanoarray Electrocatalysts. Small, 2023, 19, .	5.2	20
197	Direct synthesis of amorphous coordination polymers and metal–organic frameworks. Nature Reviews Chemistry, 2023, 7, 273-286.	13.8	40
198	Sequential Assembly and Stabilization of Cu ₆ S ₆ Octahedral Clusters in NaCl-, NiAs-, and Cdl ₂ -Related Structures and Their Utility toward Thermochromism and Multicomponent Hantzsch Reaction. Inorganic Chemistry, 2023, 62, 4417-4434.	1.9	2

#	Article	IF	CITATIONS
199	Metal–Organic Frameworks as Sensors for Human Amyloid Diseases. ACS Sensors, 2023, 8, 1033-1053.	4.0	14
200	Controlled synthesis of MOF-derived hollow and yolk–shell nanocages for improved water oxidation and selective ethylene glycol reformation. EScience, 2023, 3, 100118.	25.0	18
201	Metal-Organic Frameworks Applications in Synergistic Cancer Photo-Immunotherapy. Polymers, 2023, 15, 1490.	2.0	7
202	Review on the Role of Nanomaterials in Membrane Fabrication via Additive Manufacturing for Gas Separation. Current Nanomaterials, 2024, 9, 41-54.	0.2	0
203	Multiple Strategies Enhance the ROS of Metalâ€"Organic Frameworks for Energy-Efficient Photocatalytic Water Purification and Sterilization. , 2023, 5, 1317-1331.		3
204	Metal-organic frameworks (MOFs) based luminescent and electrochemical sensors for food contaminant detection. Journal of Hazardous Materials, 2023, 453, 131324.	6.5	33
205	Introduction to Carbon Capture with Membranes. , 2023, , .		0
206	A Strongâ€Acidâ€Resistant [Th ₆] Clusterâ€Based Framework for Effectively and Sizeâ€Selectively Catalyzing Reductive Amination of Aldehydes with <i>N</i> , <i>N</i> ,êDimethylformamide. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
207	A Strongâ€Acidâ€Resistant [Th6] Clusterâ€Based Framework for Effectively and Sizeâ€Selectively Catalyzing Reductive Amination of Aldehydes with N,Nâ€Dimethylformamide. Angewandte Chemie, 0, , .	1.6	0
208	Efficient proton conduction in porous and crystalline covalent-organic frameworks (COFs). Journal of Energy Chemistry, 2023, 82, 198-218.	7.1	13
209	Fabrication of amorphous metal-organic framework in deep eutectic solvent for boosted organophosphorus pesticide adsorption. Journal of Environmental Chemical Engineering, 2023, 11, 109963.	3.3	2
224	MOFganic Chemistry: Challenges and Opportunities for Metal–Organic Frameworks in Synthetic Organic Chemistry. Chemistry of Materials, 2023, 35, 4883-4896.	3.2	4
226	Optimization Strategies of the Design and Preparation of Metal–Organic Framework Nanostructures for Water Sorption: A Review. ACS Applied Nano Materials, 2023, 6, 10903-10924.	2.4	4
228	Review and Perspectives of Monolithic Metal–Organic Frameworks: Toward Industrial Applications. Energy & Company Fuels, 2023, 37, 9938-9955.	2.5	5
237	Metal-Organic Frameworks on Versatile Substrates. Journal of Materials Chemistry A, 0, , .	5.2	1
242	Recent trends on MIL-Fe metal–organic frameworks: synthesis approaches, structural insights, and applications in organic pollutant adsorption and photocatalytic degradation. Environmental Science: Nano, 2023, 10, 2957-2988.	2.2	7
267	Metal–organic framework-derived metal oxides for resistive gas sensing: a review. Physical Chemistry Chemical Physics, 0, , .	1.3	0
269	Current Advances in the Synthesis of CD-MOFs and Their Water Stability. , 0, , .		0

#	Article	IF	CITATIONS
283	Mesopore and macropore engineering in metal–organic frameworks for energy environment-related	5.2	0