New horizons in adjuvants for vaccine development

Current Opinion in Immunology 65, 97-101 DOI: 10.1016/j.coi.2020.08.008

Citation Report

#	Article	IF	CITATIONS
1	Enhancement of Tumour-Specific Immune Responses In Vivo by â€~MHC Loading-Enhancer' (MLE). PLoS ONE, 2009, 4, e6811.	1.1	13
2	Detailed analysis for inducing specific CD8 T cells via a CpG-DNA adjuvant. Expert Review of Vaccines, 2009, 8, 699-703.	2.0	0
3	Protective immunity to influenza: lessons from the virus for successful vaccine design. Expert Review of Vaccines, 2009, 8, 689-693.	2.0	5
4	Novel Vaccines to Human Rabies. PLoS Neglected Tropical Diseases, 2009, 3, e515.	1.3	63
5	Plants as bioreactors for the production of vaccine antigens. Biotechnology Advances, 2009, 27, 449-467.	6.0	163
6	Adjuvants for malaria vaccines. Parasite Immunology, 2009, 31, 520-528.	0.7	61
7	Prospects for an influenza vaccine that induces crossâ€protective cytotoxic T lymphocytes. Immunology and Cell Biology, 2009, 87, 300-308.	1.0	91
8	Vaccines: the Fourth Century. Vaccine Journal, 2009, 16, 1709-1719.	3.2	205
9	Adjuvants and autoimmunity. Lupus, 2009, 18, 1217-1225.	0.8	228
10	ISCOMs and ISCOMATRIXâ,,¢. Vaccine, 2009, 27, 4388-4401.	1.7	205
11	Enhancement of in vivo and in vitro immune functions by a conformationally biased, response-selective agonist of human C5a: Implications for a novel adjuvant in vaccine design. Vaccine, 2009, 28, 463-469.	1.7	24
12	Chitosan-based systems for the delivery of vaccine antigens. Expert Review of Vaccines, 2009, 8, 937-953.	2.0	158
13	Immunological mechanisms underlying protection mediated by RTS,S: a review of the available data. Malaria Journal, 2009, 8, 312.	0.8	107
14	Novel adjuvants for B cell immune responses. Current Opinion in HIV and AIDS, 2009, 4, 441-446.	1.5	18
15	Pediatric Vaccines on the Horizon. American Journal of the Medical Sciences, 2010, 340, 226-231.	0.4	2
16	Synthetic and Natural TLR4 Agonists as Safe and Effective Vaccine Adjuvants. Sub-Cellular Biochemistry, 2010, 53, 303-321.	1.0	56
17	Archaeal lipid mucosal vaccine adjuvant and delivery system. Expert Review of Vaccines, 2010, 9, 431-440.	2.0	21
18	Future Vaccination Strategies against Tuberculosis: Thinking outside the Box. Immunity, 2010, 33, 567-577.	6.6	154

CITATION REDODI

#	ARTICLE	IF	CITATIONS
19	Comparison of BCG, MPL and cationic liposome adjuvant systems in leishmanial antigen vaccine formulations against murine visceral leishmaniasis. BMC Microbiology, 2010, 10, 181.	1.3	47
21	CD14â€independent responses induced by a synthetic lipid A mimetic. European Journal of Immunology, 2010, 40, 797-802.	1.6	16
22	Chemical Synthesis and Proinflammatory Responses of Monophosphoryl Lipid A Adjuvant Candidates. European Journal of Organic Chemistry, 2010, 2010, 80-91.	1.2	23
23	Intravital microscopy imaging of macrophage localization to immunogenic particles and co-localized tissue oxygen saturation. Acta Biomaterialia, 2010, 6, 3491-3498.	4.1	23
24	Adjuvants in tuberculosis vaccine development. FEMS Immunology and Medical Microbiology, 2010, 58, 75-84.	2.7	17
25	Enhancement of humoral and cellular immunity with an antiâ€glucocorticoidâ€induced tumour necrosis factor receptor monoclonal antibody. Immunology, 2010, 130, 231-242.	2.0	23
26	Immunomodulators as adjuvants for vaccines and antimicrobial therapy. Annals of the New York Academy of Sciences, 2010, 1213, 46-61.	1.8	89
27	Combination of Pneumococcal Surface Protein A (PspA) with Whole Cell Pertussis Vaccine Increases Protection Against Pneumococcal Challenge in Mice. PLoS ONE, 2010, 5, e10863.	1.1	40
28	A Novel Laser Vaccine Adjuvant Increases the Motility of Antigen Presenting Cells. PLoS ONE, 2010, 5, e13776.	1.1	65
29	The Protein Moiety of <i>Brucella abortus</i> Outer Membrane Protein 16 Is a New Bacterial Pathogen-Associated Molecular Pattern That Activates Dendritic Cells In Vivo, Induces a Th1 Immune Response, and Is a Promising Self-Adjuvanting Vaccine against Systemic and Oral Acquired Brucellosis. Journal of Immunology, 2010, 184, 5200-5212.	0.4	63
30	The M Cell-Targeting Ligand Promotes Antigen Delivery and Induces Antigen-Specific Immune Responses in Mucosal Vaccination. Journal of Immunology, 2010, 185, 5787-5795.	0.4	107
31	Role of adjuvants in modeling the immune response. Current Opinion in HIV and AIDS, 2010, 5, 409-413.	1.5	48
32	Adjuvant Activity on Murine and Human Macrophages. Methods in Molecular Biology, 2010, 626, 117-130.	0.4	1
33	Blood-stage malaria vaccines — recent progress and future challenges. Annals of Tropical Medicine and Parasitology, 2010, 104, 189-211.	1.6	75
35	Production of H5N1 (NIBRG-14) inactivated whole virus and split virion influenza vaccines and analysis of immunogenicity in mice using different adjuvant formulations. Vaccine, 2010, 28, 2505-2509.	1.7	24
36	Identification of T. gondii epitopes, adjuvants, and host genetic factors that influence protection of mice and humans. Vaccine, 2010, 28, 3977-3989.	1.7	66
37	Influenza antigen-sparing by immune stimulation with Gram-positive enhancer matrix (GEM) particles. Vaccine, 2010, 28, 7963-7969.	1.7	28
38	A review of adjuvants for Leishmania vaccine candidates. Journal of Biomedical Research, 2010, 24, 16-25.	0.7	43

#	Article	IF	Citations
39	Directing dendritic cell immunotherapy towards successful cancer treatment. Immunotherapy, 2010, 2, 37-56.	1.0	113
40	Is the choice of vaccine adjuvant critical for long-term memory development?. Expert Review of Vaccines, 2010, 9, 1357-1361.	2.0	6
41	Liposomes containing glucosyl ceramide specifically bind T4 bacteriophage: a self-assembling nanocarrier formulation. Journal of Liposome Research, 2011, 21, 279-285.	1.5	0
42	Tuberculosis vaccines in clinical trials. Expert Review of Vaccines, 2011, 10, 645-658.	2.0	90
43	Design of a shear-thinning recoverable peptide hydrogel from native sequences and application for influenza H1N1 vaccine adjuvant. Soft Matter, 2011, 7, 8905.	1.2	53
44	The long-term potential of biodegradable poly(lactideco-glycolide) microparticles as the next-generation vaccine adjuvant. Expert Review of Vaccines, 2011, 10, 1731-1742.	2.0	101
45	Inactivated Influenza Vaccines. Drugs and Aging, 2011, 28, 93-106.	1.3	43
46	Confronting the barriers to develop novel vaccines against brucellosis. Expert Review of Vaccines, 2011, 10, 1291-1305.	2.0	48
47	Collagen Type II and a Thermo-Responsive Polymer of N-Isopropylacrylamide Induce Arthritis Independent of Toll-Like Receptors. American Journal of Pathology, 2011, 179, 2490-2500.	1.9	11
48	Induction of antigen-specific immunity by pH-sensitive carbonate apatite as a potent vaccine carrier. Biochemical and Biophysical Research Communications, 2011, 415, 597-601.	1.0	7
49	Chitosan-Based Particulate Systems for Non-Invasive Vaccine Delivery. Advances in Polymer Science, 2011, , 111-137.	0.4	11
50	Naloxone and alum synergistically augment adjuvant activities of each other in a mouse vaccine model of Salmonella typhimurium infection. Immunobiology, 2011, 216, 744-751.	0.8	26
51	Application of the immunological disease continuum to study autoimmune and other inflammatory events after vaccination. Vaccine, 2011, 29, 913-919.	1.7	17
52	Highly effective generic adjuvant systems for orphan or poverty-related vaccines. Vaccine, 2011, 29, 873-877.	1.7	35
53	Carnauba wax nanoparticles enhance strong systemic and mucosal cellular and humoral immune responses to HIV-gp140 antigen. Vaccine, 2011, 29, 1258-1269.	1.7	37
54	Non-toxic derivatives of LT as potent adjuvants. Vaccine, 2011, 29, 1538-1544.	1.7	75
55	A novel non-toxic combined CTA1-DD and ISCOMS adjuvant vector for effective mucosal immunization against influenza virus. Vaccine, 2011, 29, 3951-3961.	1.7	49
56	Tumor-specific peptide-based vaccines containing the conformationally biased, response-selective C5a agonists EP54 and EP67 protect against aggressive large B cell lymphoma in a syngeneic murine model. Vaccine, 2011, 29, 5904-5910.	1.7	12

	CITATION	KEPORI	
#	Article	IF	CITATIONS
57	Flagellin produced in plants is a potent adjuvant for oral immunization. Vaccine, 2011, 29, 6695-6703.	1.7	18
58	Adjuvant Properties of Cytosine-Phosphate-Guanosine Oligodeoxynucleotide in Combination with Various Polycations in an Ovalbumin-Vaccine Model. Nucleic Acid Therapeutics, 2011, 21, 231-240.	2.0	12
59	An Oral Vaccine Based on U-Omp19 Induces Protection against B. abortus Mucosal Challenge by Inducing an Adaptive IL-17 Immune Response in Mice. PLoS ONE, 2011, 6, e16203.	1.1	94
60	Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nature Materials, 2011, 10, 243-251.	13.3	498
62	Delivery of a cocktail DNA vaccine encoding cysteine proteinases type I, II and III with solid lipid nanoparticles potentiate protective immunity against Leishmania major infection. Journal of Controlled Release, 2011, 153, 154-162.	4.8	63
63	Harnessing immune responses against Plasmodium for rational vaccine design. Trends in Parasitology, 2011, 27, 274-283.	1.5	32
64	Particulate vaccines: on the quest for optimal delivery and immune response. Drug Discovery Today, 2011, 16, 569-582.	3.2	265
65	Current adjuvants and new perspectives in vaccine formulation. Expert Review of Vaccines, 2011, 10, 1053-1061.	2.0	106
66	Conjugation of Lipid and CpG-Containing Oligonucleotide Yields an Efficient Method for Liposome Incorporation. Bioconjugate Chemistry, 2011, 22, 1279-1286.	1.8	12
67	Construction of an Escherichia coli mutant producing monophosphoryl lipid A. Biotechnology Letters, 2011, 33, 1013-1019.	1.1	13
68	In vivo efficacy of a chitosan/IL-12 adjuvant system for protein-based vaccines. Biomaterials, 2011, 32, 926-932.	5.7	51
69	Systems biology applied to vaccine and immunotherapy development. BMC Systems Biology, 2011, 5, 146.	3.0	26
70	Health effects of GnRH immunocontraception of wild whiteâ€ŧailed deer in New Jersey. Wildlife Society Bulletin, 2011, 35, 149-160.	1.6	24
71	Alumâ€ŧype Adjuvant Effect of Nonâ€haemolytic Saponins Purified from <i>llex</i> and <i>Passiflora</i> spp Phytotherapy Research, 2011, 25, 1783-1788.	2.8	9
72	M cells expressing the complement C5a receptor are efficient targets for mucosal vaccine delivery. European Journal of Immunology, 2011, 41, 3219-3229.	1.6	63
73	Humoral responses and immune protection in mice immunized with irradiated T. gondii tachyzoites and challenged with three genetically distinct strains of T. gondii. Immunology Letters, 2011, 138, 187-196.	1.1	30
74	Laser vaccine adjuvant for cutaneous immunization. Expert Review of Vaccines, 2011, 10, 1397-1403.	2.0	38
75	Role of AS04 in human papillomavirus vaccine: mode of action and clinical profile. Expert Opinion on Biological Therapy, 2011, 11, 667-677.	1.4	56

#	Article	IF	CITATIONS
76	Adjuvant properties of a biocompatible thermo-responsive polymer of <i>N</i> -isopropylacrylamide in autoimmunity and arthritis. Journal of the Royal Society Interface, 2011, 8, 1748-1759.	1.5	28
77	<i>Salmonella</i> Synthesizing 1-Monophosphorylated Lipopolysaccharide Exhibits Low Endotoxic Activity while Retaining Its Immunogenicity. Journal of Immunology, 2011, 187, 412-423.	0.4	66
78	The Requirement for Potent Adjuvants To Enhance the Immunogenicity and Protective Efficacy of Protein Vaccines Can Be Overcome by Prior Immunization with a Recombinant Adenovirus. Journal of Immunology, 2011, 187, 2602-2616.	0.4	55
79	C-Terminal Domain Deletion Enhances the Protective Activity of cpa/cpb Loaded Solid Lipid Nanoparticles against Leishmania major in BALB/c Mice. PLoS Neglected Tropical Diseases, 2011, 5, e1236.	1.3	20
80	CD83 increases MHC II and CD86 on dendritic cells by opposing IL-10–driven MARCH1-mediated ubiquitination and degradation. Journal of Experimental Medicine, 2011, 208, 149-165.	4.2	183
81	A history of hookworm vaccine development. Hum Vaccin, 2011, 7, 1234-1244.	2.4	39
82	Phase I Safety and Immunogenicity Trial of Plasmodium vivax CS Derived Long Synthetic Peptides Adjuvanted with Montanide ISA 720 or Montanide ISA 51. American Journal of Tropical Medicine and Hygiene, 2011, 84, 12-20.	0.6	65
83	Adjuvant Effect of Microencapsulated NOD Ligands Studied in a Human Phagocytic Cell Line. Journal of Applied Biomaterials and Functional Materials, 2012, 10, 229-236.	0.7	3
84	Glucopyranosyl Lipid Adjuvant (GLA), a Synthetic TLR4 Agonist, Promotes Potent Systemic and Mucosal Responses to Intranasal Immunization with HIVgp140. PLoS ONE, 2012, 7, e41144.	1.1	96
85	The pH-Sensitive Fusogenic 3-Methyl-Glutarylated Hyperbranched Poly(Glycidol)-Conjugated Liposome Induces Antigen-Specific Cellular and Humoral Immunity. Vaccine Journal, 2012, 19, 1492-1498.	3.2	18
86	Suppression of Vaccine Immunity by Inflammatory Monocytes. Journal of Immunology, 2012, 189, 5612-5621.	0.4	36
87	Prime-boost regimens with adjuvanted synthetic long peptides elicit T cells and antibodies to conserved regions of HIV-1 in macaques. Aids, 2012, 26, 275-284.	1.0	35
88	Nanovaccines : nanocarriers for antigen delivery. Biologie Aujourd'hui, 2012, 206, 249-261.	0.1	25
89	Polyclonal Antibody Production. , 2012, , 259-274.		19
90	Optimizing efficacy of mucosal vaccines. Expert Review of Vaccines, 2012, 11, 1139-1155.	2.0	44
91	Molecular Interactions of a Polyaromatic Surfactant C5Pe in Aqueous Solutions Studied by a Surface Forces Apparatus. Journal of Physical Chemistry B, 2012, 116, 11187-11196.	1.2	38
92	The cationic lipid, diC14 amidine, extends the adjuvant properties of aluminum salts through a TLR-4- and caspase-1-independent mechanism. Vaccine, 2012, 30, 414-424.	1.7	21
93	A TLR4 agonist synergizes with dendritic cell-directed lentiviral vectors for inducing antigen-specific immune responses. Vaccine, 2012, 30, 2570-2581.	1.7	13

#	Article	IF	CITATIONS
94	A novel adjuvant, mixture of alum and the beta-adrenergic receptor antagonist propranolol, elicits both humoral and cellular immune responses for heat-killed Salmonella typhimurium vaccine. Vaccine, 2012, 30, 2640-2646.	1.7	23
95	Adjuvant solution for pandemic influenza vaccine production. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17585-17590.	3.3	70
96	AF03, An Alternative Squalene Emulsionâ€Based Vaccine Adjuvant Prepared by a Phase Inversion Temperature Method. Journal of Pharmaceutical Sciences, 2012, 101, 4490-4500.	1.6	64
97	Recent developments in buccal and sublingual delivery systems. Expert Opinion on Drug Delivery, 2012, 9, 615-628.	2.4	57
98	Roadmap to developing a recombinant coronavirus S protein receptor-binding domain vaccine for severe acute respiratory syndrome. Expert Review of Vaccines, 2012, 11, 1405-1413.	2.0	126
99	Mucosal Vaccine Design and Delivery. Annual Review of Biomedical Engineering, 2012, 14, 17-46.	5.7	182
100	<i>Salmonella enterica</i> as a vaccine carrier. Future Microbiology, 2012, 7, 111-127.	1.0	59
101	ISCOMATRIX vaccines mediate CD8 ⁺ Tâ€cell crossâ€priming by a MyD88â€dependent signaling pathway. Immunology and Cell Biology, 2012, 90, 540-552.	1.0	92
102	Polymeric Multilayer Capsule-Mediated Vaccination Induces Protective Immunity Against Cancer and Viral Infection. ACS Nano, 2012, 6, 2136-2149.	7.3	116
103	Multiparameter Telemetry as a Sensitive Screening Method to Detect Vaccine Reactogenicity in Mice. PLoS ONE, 2012, 7, e29726.	1.1	5
104	Vault Nanocapsules as Adjuvants Favor Cell-Mediated over Antibody-Mediated Immune Responses following Immunization of Mice. PLoS ONE, 2012, 7, e38553.	1.1	35
105	Molecular and Cellular Response Profiles Induced by the TLR4 Agonist-Based Adjuvant Glucopyranosyl Lipid A. PLoS ONE, 2012, 7, e51618.	1.1	51
106	Robust Immunity and Heterologous Protection against Influenza in Mice Elicited by a Novel Recombinant NP-M2e Fusion Protein Expressed in E. coli. PLoS ONE, 2012, 7, e52488.	1.1	17
107	Human prophylactic vaccine adjuvants and their determinant role in new vaccine formulations. Brazilian Journal of Medical and Biological Research, 2012, 45, 681-692.	0.7	43
108	Enhancing and Tailoring the Immunogenicity of Vaccines with Novel Adjuvants. , 2012, , 45-72.		0
109	Distinct TLR adjuvants differentially stimulate systemic and local innate immune responses in nonhuman primates. Blood, 2012, 119, 2044-2055.	0.6	140
110	Selfâ€Assembled Peptide Amphiphile Micelles Containing a Cytotoxic Tâ€Cell Epitope Promote a Protective Immune Response In Vivo. Advanced Materials, 2012, 24, 3845-3849.	11.1	207
111	A new synthetic TLR4 agonist, GLA, allows dendritic cells targeted with antigen to elicit Th1 Tâ€cell immunity in vivo. European Journal of Immunology, 2012, 42, 101-109.	1.6	69

ARTICLE IF CITATIONS # Prophylactic and therapeutic implications of toll $\hat{a} \in \mathbb{R}$ is receptor ligands. Medicinal Research Reviews, 112 5.0 60 2012, 32, 294-325. Introduction to Vaccines and Adjuvants., 2013, , 213-224. Adjuvants containing natural and synthetic Toll-like receptor 4 ligands. Expert Review of Vaccines, 114 2.0 26 2013, 12, 793-807. Self-Adjuvanting Polymer–Peptide Conjugates As Therapeutic Vaccine Candidates against Cervical Cancer. Biomacromólecules, 2013, 14, 2798-2806. Carbon nanotubes as vaccine scaffolds. Advanced Drug Delivery Reviews, 2013, 65, 2016-2022. 116 6.6 62 Clinical vaccine development for H5N1 influenza. Expert Review of Vaccines, 2013, 12, 767-777. 24 Polymeric nanogels as vaccine delivery systems. Nanomedicine: Nanotechnology, Biology, and 118 1.7 104 Medicine, 2013, 9, 159-173. Immunization with a Chimera Consisting of the B Subunit of Shiga Toxin Type 2 and Brucella Lumazine Synthase Confers Total Protection against Shiga Toxins in Mice. Journal of Immunology, 2013, 191, 0.4 2403-2411. Formulation Approaches and Strategies for Vaccines and Adjuvants. AAPS Advances in the 120 0.2 1 Pharmaceutical Sciences Series, 2013, , 145-164. Optimizing manufacturing and composition of a TLR4 nanosuspension: physicochemical stability and 4.2 vaccine adjuvant activity. Journal of Nanobiotechnology, 2013, 11, 43. Future directions for the development of Chlamydomonas-based vaccines. Expert Review of Vaccines, 122 2.0 17 2013, 12, 1011-1019. Vaccine delivery carriers: Insights and future perspectives. International Journal of Pharmaceutics, 2.6 106 2013, 440, 27-38. Characterization of chemically defined poly-N-isopropylacrylamide based copolymeric adjuvants. 124 1.7 12 Vaccine, 2013, 31, 3519-3527. Oral delivery of bioencapsulated exendinâ€4 expressed in chloroplasts lowers blood glucose level in mice and stimulates insulin secretion in betaâ€<scp>TC</scp>6 cells. Plant Biotechnology Journal, 2013, 4.1 84 11, 77-86. Expression of Human Rotavirus Chimeric Fusion Proteins from Replicating but Non Disseminating 126 Adenovectors and Elicitation of Rotavirus-Specific Immune Responses in Mice. Molecular 1.3 4 Biotechnology, 2013, 54, 1010-1020. Micro/nanoparticle adjuvants for antileishmanial vaccines: Present and future trends. Vaccine, 2013, 127 70 31, 735-749. pH-Responsive Nanoparticle Vaccines for Dual-Delivery of Antigens and Immunostimulatory 128 7.3 280 Oligonucleotides. ACS Nano, 2013, 7, 3912-3925. New technologies in developing recombinant attenuated Salmonella vaccine vectors. Microbial 129 1.3 Pathogenesis, 2013, 58, 17-28.

#	Article		CITATIONS
130	Mesoporous silica nanoparticles as antigen carriers and adjuvants for vaccine delivery. Nanoscale, 2013, 5, 5167.		206
131	RNA: The new revolution in nucleic acid vaccines. Seminars in Immunology, 2013, 25, 152-159.	2.7	155
132	A human-derived protein SBP (HBsAg-binding protein) can bind to hepatitis B virus surface antigen (HBsAg) and enhance the immune response to hepatitis B virus (HBV) vaccine. Molecular Immunology, 2013, 53, 60-71.	1.0	10
133	Malaria Vaccine Adjuvants: Latest Update and Challenges in Preclinical and Clinical Research. BioMed Research International, 2013, 2013, 1-19.	0.9	35
134	Rationale, progress and development of vaccines utilizing STING-activating cyclic dinucleotide adjuvants. Therapeutic Advances in Vaccines, 2013, 1, 131-143.	2.7	155
135	Advances in the study of HLA-restricted epitope vaccines. Human Vaccines and Immunotherapeutics, 2013, 9, 2566-2577.	1.4	44
136	CCL19 and CCL28 Augment Mucosal and Systemic Immune Responses to HIV-1 gp140 by Mobilizing Responsive Immunocytes into Secondary Lymph Nodes and Mucosal Tissue. Journal of Immunology, 2013, 191, 1935-1947.	0.4	43
137	Unlipidated Outer Membrane Protein Omp16 (U-Omp16) from Brucella spp. as Nasal Adjuvant Induces a Th1 Immune Response and Modulates the Th2 Allergic Response to Cow's Milk Proteins. PLoS ONE, 2013, 8, e69438.	1.1	19
138	Construction of Monophosphoryl Lipid A Producing Escherichia coli Mutants and Comparison of Immuno-Stimulatory Activities of Their Lipopolysaccharides. Marine Drugs, 2013, 11, 363-376.	2.2	37
139	A "Prime-Pull―Vaccine Strategy Has a Modest Effect on Local and Systemic Antibody Responses to HIV gp140 in Mice. PLoS ONE, 2013, 8, e80559.	1.1	19
140	In Vivo and In Vitro Characterization of the Immune Stimulating Activity of the Neisserial Porin PorB. PLoS ONE, 2013, 8, e82171.	1.1	16
141	Bacillus subtilis Spores as Vaccine Adjuvants: Further Insights into the Mechanisms of Action. PLoS ONE, 2014, 9, e87454.	1.1	41
142	Current advancements and potential strategies in the development of MERS-CoV vaccines. Expert Review of Vaccines, 2014, 13, 761-774.	2.0	139
143	Chitosan. Human Vaccines and Immunotherapeutics, 2014, 10, 797-807.	1.4	118
144	Applications of immunochemistry in human health: advances in vaccinology and antibody design (IUPAC Technical Report). Pure and Applied Chemistry, 2014, 86, 1573-1617.	0.9	3
145	Structure, Size, and Solubility of Antigen Arrays Determines Efficacy in Experimental Autoimmune Encephalomyelitis. AAPS Journal, 2014, 16, 1185-1193.	2.2	26
146	Cellulose acetate phthalate microparticles containing <i>Vibrio cholerae</i> : steps toward an oral cholera vaccine. Journal of Drug Targeting, 2014, 22, 478-487.	2.1	17
147	Conserved immunogens in prime-boost strategies for the next-generation HIV-1 vaccines. Expert Opinion on Biological Therapy, 2014, 14, 601-616.	1.4	57

#	Article	IF	CITATIONS
148	Immune response in nasopharynx, lung, and blood elicited by experimental nasal pneumococcal vaccines containing live or heat-killed lactobacilli as mucosal adjuvants. Canadian Journal of Physiology and Pharmacology, 2014, 92, 124-131.	0.7	8
149	The basics and advances of immunomodulators and antigen presentation: a key to development of potent memory response against pathogens. Expert Opinion on Biological Therapy, 2014, 14, 1383-1397.	1.4	2
150	Functional and immunological evaluation of two novel proteins of Leptospira spp Microbiology (United Kingdom), 2014, 160, 149-164.	0.7	25
151	Laser vaccine adjuvants. Human Vaccines and Immunotherapeutics, 2014, 10, 1892-1907.	1.4	38
152	A novel adjuvant, the mixture of alum and naltrexone, augments vaccine-induced immunity againstPlasmodium berghei. Immunological Investigations, 2014, 43, 653-666.	1.0	11
153	Intranasal immunization with influenza antigens conjugated with cholera toxin subunit B stimulates broad spectrum immunity against influenza viruses. Human Vaccines and Immunotherapeutics, 2014, 10, 1211-1220.	1.4	18
154	Repeated dose toxicity study ofVibrio cholerae-loaded gastro-resistant microparticles. Journal of Microencapsulation, 2014, 31, 86-92.	1.2	9
155	Comparison of multiple adjuvants on the stability and immunogenicity of a clade C HIV-1 gp140 trimer. Vaccine, 2014, 32, 2109-2116.	1.7	27
156	The path of malaria vaccine development: challenges and perspectives. Journal of Internal Medicine, 2014, 275, 456-466.	2.7	88
157	Elimination of the cold-chain dependence of a nanoemulsion adjuvanted vaccine against tuberculosis by lyophilization. Journal of Controlled Release, 2014, 177, 20-26.	4.8	51
158	Nanoparticle Adjuvant Sensing by TLR7 Enhances CD8+ T Cell–Mediated Protection from <i>Listeria Monocytogenes</i> Infection. Journal of Immunology, 2014, 192, 1071-1078.	0.4	54
159	Biomaterials for Nanoparticle Vaccine Delivery Systems. Pharmaceutical Research, 2014, 31, 2563-2582.	1.7	258
161	Silica vesicles as nanocarriers and adjuvants for generating both antibody and T-cell mediated immune resposes to Bovine Viral Diarrhoea Virus E2 protein. Biomaterials, 2014, 35, 9972-9983.	5.7	37
162	Time course study of the antigen-specific immune response to a PLGA microparticle vaccine formulation. Biomaterials, 2014, 35, 8385-8393.	5.7	58
163	Discovering a vaccine against neosporosis using computers: is it feasible?. Trends in Parasitology, 2014, 30, 401-411.	1.5	28
164	Combining Viral Vectored and Protein-in-adjuvant Vaccines Against the Blood-stage Malaria Antigen AMA1: Report on a Phase 1a Clinical Trial. Molecular Therapy, 2014, 22, 2142-2154.	3.7	68
165	Platycodon grandiflorum polysaccharide induces dendritic cell maturation via TLR4 signaling. Food and Chemical Toxicology, 2014, 72, 212-220.	1.8	55
166	Dendritic cell-targeted vaccines — hope or hype?. Nature Reviews Immunology, 2014, 14, 705-711.	10.6	189

#	Article	IF	CITATIONS
167	Enhanced Humoral and Cell-Mediated Immune Responses Generated by Cationic Polymer-Coated PLA Microspheres with Adsorbed HBsAg. Molecular Pharmaceutics, 2014, 11, 1772-1784.	2.3	85
168	Immunoadjuvant Efficacy of <i>N</i> -Carboxymethyl Chitosan for Vaccination via Dendritic Cell Activation. Journal of Medicinal Food, 2014, 17, 268-277.	0.8	13
169	Maximal immune response and cross protection by influenza virus nucleoprotein derived from E. coli using an optimized formulation. Virology, 2014, 468-470, 265-273.	1.1	8
170	Enhanced in Vivo Targeting of Murine Nonparenchymal Liver Cells with Monophosphoryl Lipid A Functionalized Microcapsules. Biomacromolecules, 2014, 15, 2378-2388.	2.6	15
171	<i>In Vitro</i> Assembly of the Outer Core of the Lipopolysaccharide from <i>Escherichia coli</i> K-12 and <i>Salmonella typhimurium</i> . Biochemistry, 2014, 53, 1250-1262.	1.2	30
172	Immunological principles regulating immunomodulation with biomaterials. Acta Biomaterialia, 2014, 10, 1720-1727.	4.1	17
173	Adjuvant effect of polysaccharide from fruits of Physalis alkekengi L. in DNA vaccine against systemic candidiasis. Carbohydrate Polymers, 2014, 109, 77-84.	5.1	24
174	Development of a minimal saponin vaccine adjuvant based on QS-21. Nature Chemistry, 2014, 6, 635-643.	6.6	68
175	Enhanced dendritic cell maturation by the B-chain of Korean mistletoe lectin (KML-B), a novel TLR4 agonist. International Immunopharmacology, 2014, 21, 309-319.	1.7	34
176	Disintegration and cancer immunotherapy efficacy of a squalane-in-water delivery system emulsified by bioresorbable poly(ethylene glycol)-block-polylactide. Biomaterials, 2014, 35, 1686-1695.	5.7	27
178	Subcutaneous immunization with a novel immunogenic candidate (urease) confers protection against <i>Brucella abortus</i> and <i>Brucella melitensis</i> infections. Apmis, 2015, 123, 667-675.	0.9	17
179	Overall conceptual framework for studying the genetics of autoimmune diseases following vaccination: a regulatory perspective. Biomarkers in Medicine, 2015, 9, 1107-1120.	0.6	2
180	Induction of Potent Antitumor Immunity by Sustained Release of Cationic Antigen from a DNAâ€Based Hydrogel with Adjuvant Activity. Advanced Functional Materials, 2015, 25, 5758-5767.	7.8	79
181	Administration of naloxone in combination with recombinant <i>Plasmodium vivax </i> <scp>AMA</scp> â€1 in <scp>BALB</scp> /c mice induces mixed Th1/Th2 immune responses. Parasite Immunology, 2015, 37, 521-532.	0.7	6
182	Small Wonders—The Use of Nanoparticles for Delivering Antigen. Vaccines, 2015, 3, 638-661.	2.1	27
183	Recent Advances of Vaccine Adjuvants for Infectious Diseases. Immune Network, 2015, 15, 51.	1.6	312
184	The Adjuvant Activity of <i>Epimedium</i> Polysaccharide-Propolis Flavone Liposome on Enhancing Immune Responses to Inactivated Porcine Circovirus Vaccine in Mice. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-9.	0.5	14
185	Nanoengineering of vaccines using natural polysaccharides. Biotechnology Advances, 2015, 33, 1279-1293.	6.0	96

ARTICLE IF CITATIONS # Intranasal and oral vaccination with protein-based antigens: advantages, challenges and formulation 186 4.8 115 strategies. Protein and Cell, 2015, 6, 480-503. The mechanisms of action of vaccines containing aluminum adjuvants: an in vitro vs in vivo paradigm. 1.2 119 SpringerPlus, 2015, 4, 181. 188 Beyond adjuvants: Antagonizing inflammation to enhance vaccine immunity. Vaccine, 2015, 33, B55-B59. 1.7 35 Induction of Potent Adaptive Immunity by the Novel Polyion Complex Nanoparticles. Vaccine Journal, 2015, 22, 578-585. Herbal plantâ€derived compound, 1,2,3,4,6â€pentaâ€<scp>O</scp>â€galloylâ€Î²â€<scp>d</scp>â€glucose, increases 190 1 crossâ€presentation by dendritic cells. Traditional & Kampo Medicine, 2015, 2, 43-49. Chitosan-based mucosal adjuvants: Sunrise on the ocean. Vaccine, 2015, 33, 5997-6010. 1.7 Cationic micelle delivery of Trp2 peptide for efficient lymphatic draining and enhanced cytotoxic 192 4.8 84 T-lymphocyte responses. Journal of Controlled Release, 2015, 200, 1-12. Interleukin/chitosan (JY) adjuvant enhances the mucosal immunity of human papillomavirus 16 L1 1.1 virus-like particles in mice. Biotechnology Letters, 2015, 37, 773-777. Mimicking microbial strategies for the design of mucus-permeating nanoparticles for oral 194 2.0 30 immunization. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 96, 454-463. Efficacy of a trans-sialidase-ISCOMATRIX subunit vaccine candidate to protect against experimental 1.7 38 Chagas disease. Vaccine, 2015, 33, 1274-1283. Comparative analysis of the molecular adjuvants and their binding efficiency with CR1. 196 2.2 0 Interdisciplinary Sciences, Computational Life Sciences, 2015, 8, 35. Gold nanoparticles and vaccine development. Expert Review of Vaccines, 2015, 14, 1197-1211. 2.0 69 Functional analysis of bovine TLR5 and association with IgA responses of cattle following systemic 198 1.1 17 immunisation with H7 flagella. Veterinary Research, 2015, 46, 9. Oral administration of recombinant <i>Neisseria meningitidis </i>PorA genetically fused to <i>H. pylori </i> HpaA antigen increases antibody levels in mouse serum, suggesting that PorA behaves as a putative adjuvant. Human Vaccines and Immunotherapeutics, 2015, 11, 776-788. 199 1.4 A bacterial protease inhibitor protects antigens delivered in oral vaccines from digestion while 200 28 4.8 triggering specific mucosal immune responses. Journal of Controlled Release, 2015, 220, 18-28. Comparing Antibody Responses in Chickens AgainstPlasmodium falciparumLactate Dehydrogenase and Clyceraldehyde-3-phosphate Dehydrogenase with Freund's and Pheroid® Adjuvants. Immunological 1.0 Investigations, 2015, 44, 627-642. Umbilical cord blood-derived dendritic cells infected by adenovirus for SP17 expression induce 202 1.4 7 antigen-specific cytotoxic T cells against NSCLC cells. Cellular Immunology, 2015, 298, 18-24. Evaluation of the immunogenicity and protective efficacy of Killed Leishmania donovani antigen along with different adjuvants against experimental visceral leishmaniasis. Medical Microbiology and Immunology, 2015, 204, 539-550.

#	Article	IF	CITATIONS
204	Cancer vaccine adjuvants – recent clinical progress and future perspectives. Immunopharmacology and Immunotoxicology, 2015, 37, 1-11.	1.1	88
205	Is There an Optimal Formulation and Delivery Strategy for Subunit Vaccines?. Pharmaceutical Research, 2016, 33, 2078-2097.	1.7	58
206	Stimulation of In Vivo Antitumor Immunity with Hollow Mesoporous Silica Nanospheres. Angewandte Chemie - International Edition, 2016, 55, 1899-1903.	7.2	116
207	Conjugation with an Inulin–Chitosan Adjuvant Markedly Improves the Immunogenicity of <i>Mycobacterium tuberculosis</i> CFP10-TB10.4 Fusion Protein. Molecular Pharmaceutics, 2016, 13, 3626-3635.	2.3	23
208	In silico designing of some agonists of toll-like receptor 5 as a novel vaccine adjuvant candidates. Network Modeling Analysis in Health Informatics and Bioinformatics, 2016, 5, 1.	1.2	12
209	The genetic background influences the cellular and humoral immune responses to vaccines. Clinical and Experimental Immunology, 2016, 186, 190-204.	1.1	19
210	Chemical Synthesis, Versatile Structures and Functions of Tailorable Adjuvants for Optimizing Oral Vaccination. ACS Applied Materials & Interfaces, 2016, 8, 34933-34950.	4.0	11
211	A Lipid Based Antigen Delivery System Efficiently Facilitates MHC Class-I Antigen Presentation in Dendritic Cells to Stimulate CD8+ T Cells. Scientific Reports, 2016, 6, 27206.	1.6	46
212	Oral exposure to mineral oils: Is there an association with immune perturbation and autoimmunity?. Toxicology, 2016, 344-346, 19-25.	2.0	6
213	Combination of the toll like receptor agonist and α-Galactosylceramide as an efficient adjuvant for cancer vaccine. Journal of Biomedical Science, 2016, 23, 16.	2.6	37
214	Universal influenza vaccine design: directing the antibody repertoire. Future Virology, 2016, 11, 451-467.	0.9	2
215	Protection and Long-Lived Immunity Induced by the ID93/GLA-SE Vaccine Candidate against a Clinical Mycobacterium tuberculosis Isolate. Vaccine Journal, 2016, 23, 137-147.	3.2	41
216	Double conjugation strategy to incorporate lipid adjuvants into multiantigenic vaccines. Chemical Science, 2016, 7, 2308-2321.	3.7	24
217	Controlled and targeted release of antigens by intelligent shell for improving applicability of oral vaccines. Biomaterials, 2016, 77, 307-319.	5.7	51
218	Comparative Analysis of the Molecular Adjuvants and Their Binding Efficiency with CR1. Interdisciplinary Sciences, Computational Life Sciences, 2016, 8, 35-40.	2.2	3
219	Submicron-sized hydrogels incorporating cyclic dinucleotides for selective delivery and elevated cytokine release in macrophages. Acta Biomaterialia, 2016, 29, 271-281.	4.1	39
220	Stimulation of In Vivo Antitumor Immunity with Hollow Mesoporous Silica Nanospheres. Angewandte Chemie, 2016, 128, 1931-1935.	1.6	19
221	Recent advances in self-assembled peptides: Implications for targeted drug delivery and vaccine engineering. Advanced Drug Delivery Reviews, 2017, 110-111, 169-187.	6.6	281

# 222	ARTICLE Efficacy of Phase 3 Trial of RTS, S/ASO1 Malaria Vaccine in infants: a systematic review and	IF 1.4	CITATIONS
223	Enhancement of antigen-specific CD4+ and CD8+ T cell responses using a self-assembled biologic nanolipoprotein particle vaccine. Vaccine, 2017, 35, 1475-1481.	1.7	15
224	Alum adjuvanted rabies DNA vaccine confers 80% protection against lethal 50 LD50 rabies challenge virus standard strain. Molecular Immunology, 2017, 85, 166-173.	1.0	15
225	A Modular Antigen Presenting Peptide/Oligonucleotide Nanostructure Platform for Inducing Potent Immune Response. Advanced Biology, 2017, 1, e1700015.	3.0	5
226	Use of adjuvants for immunotherapy. Human Vaccines and Immunotherapeutics, 2017, 13, 1774-1777.	1.4	27
227	Gene transfection efficiency into dendritic cells is influenced by the size of cationic liposomes/DNA complexes. European Journal of Pharmaceutical Sciences, 2017, 102, 230-236.	1.9	34
228	Efficient induction of comprehensive immune responses to control pathogenic E. coli by clay nano-adjuvant with the moderate size and surface charge. Scientific Reports, 2017, 7, 13367.	1.6	23
229	Combining R-DOTAP and a particulate antigen delivery platform to trigger dendritic cell activation: Formulation development and in-vitro interaction studies. International Journal of Pharmaceutics, 2017, 532, 37-46.	2.6	10
230	Structure–function relationships of protein–lipopeptide complexes and influence on immunogenicity. Amino Acids, 2017, 49, 1691-1704.	1.2	9
231	Development and assessment of a new cage-like particle adjuvant. Journal of Pharmacy and Pharmacology, 2017, 69, 1293-1303.	1.2	22
232	Calcium phosphate nanoparticles as a new generation vaccine adjuvant. Expert Review of Vaccines, 2017, 16, 895-906.	2.0	59
233	Liposomal adjuvant development for leishmaniasis vaccines. Therapeutic Advances in Vaccines, 2017, 5, 85-101.	2.7	21
234	New perspectives for natural triterpene glycosides as potential adjuvants. Phytomedicine, 2017, 37, 49-57.	2.3	23
235	A Powerful CD8 ⁺ T ell Stimulating Dâ€Tetraâ€Peptide Hydrogel as a Very Promising Vaccine Adjuvant. Advanced Materials, 2017, 29, 1601776.	11.1	198
236	Syntheses and mucosal adjuvant activity of simplified oleanolic acid saponins possessing cinnamoyl ester. Bioorganic and Medicinal Chemistry, 2017, 25, 1747-1755.	1.4	14
237	Modular Peptide Amphiphile Micelles Improving an Antibody-Mediated Immune Response to Group A Streptococcus. ACS Biomaterials Science and Engineering, 2017, 3, 144-152.	2.6	34
238	U-Omp19 from Brucella abortus Is a Useful Adjuvant for Vaccine Formulations against Salmonella Infection in Mice. Frontiers in Immunology, 2017, 8, 171.	2.2	30
239	Nanomaterials in the Context of Type 2 Immune Responses—Fears and Potentials. Frontiers in Immunology, 2017, 8, 471.	2.2	19

		CITATION R	EPORT	
#	Article		IF	Citations
240	Technological Microbiology: Development and Applications. Frontiers in Microbiology,	2017, 8, 827.	1.5	68
241	Oral immunization of mice with Omp31-loaded N -trimethyl chito induces high protection against Brucella melitensis infection. Int Journal of Nanomedicine, 2017, Volume 12, 8769-8778.	osan nanoparticles ernational	3.3	43
242	Poly(I:C) adjuvant strongly enhances parasite-inhibitory antibodies and Th1 response a Plasmodium falciparum merozoite surface protein-1 (42-kDa fragment) in BALB/c mice. Microbiology and Immunology, 2018, 207, 151-166.	gainst . Medical	2.6	10
243	Development and physicochemical, toxicity and immunogenicity assessments of recom B surface antigen (rHBsAg) entrapped in chitosan and mannosylated chitosan nanopar vaccine delivery system and adjuvant. Artificial Cells, Nanomedicine and Biotechnology 230-240.	ibinant hepatitis ticles: as a novel , 2018, 46,	1.9	27
244	Squalene containing solid lipid nanoparticles, a promising adjuvant system for yeast va Vaccine, 2018, 36, 2314-2320.	ccines.	1.7	14
245	Adjuvants for Animal Vaccines. Viral Immunology, 2018, 31, 11-22.		0.6	67
246	Effective antigen delivery via dual entrapment in erythrocytes and autologous plasma b of Drug Targeting, 2018, 26, 162-171.	peads. Journal	2.1	3
247	Bacillus toyonensis improves immune response in the mice vaccinated with recombinate bovine herpesvirus type 5. Beneficial Microbes, 2018, 9, 133-142.	nt antigen of	1.0	15
248	3Mâ€052 as an adjuvant for a PLCA microparticleâ€based <i>Leishmania donovani</i> vaccine. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 1	recombinant protein 06, 1587-1594.	1.6	9
249	Clay Nanoparticles Elicit Longâ€Term Immune Responses by Forming Biodegradable De Antigen Stimulation. Small, 2018, 14, e1704465.	pots for Sustained	5.2	53
250	Comparison of immunogenical potency of <i>Leishmania major</i> (MRHO/IR/75/ER) an 3 different methods in conjunction with Alum-Naltrexone adjuvant in BALB/c mice. Alex of Medicine, 2018, 54, 503-510.	itigens prepared by andria Journal	0.4	9
251	The Mevalonate Pathway Is a Druggable Target for Vaccine Adjuvant Discovery. Cell, 20 1059-1073.e21.)18, 175,	13.5	148
252	Polyglutamic acid-trimethyl chitosan-based intranasal peptide nano-vaccine induces po responses against group A streptococcus. Acta Biomaterialia, 2018, 80, 278-287.	tent immune	4.1	75
253	Biomaterials for vaccine-based cancer immunotherapy. Journal of Controlled Release, 2 256-276.	018, 292,	4.8	146
254	Potential Hepatitis B Vaccine Formulation Prepared by Uniform-Sized Lipid Hybrid PLA I with Adsorbed Hepatitis B Surface Antigen. Molecular Pharmaceutics, 2018, 15, 5227-	Vicroparticles 5235.	2.3	10
255	Oral vaccine based on a surface immunogenic protein mixed with alum promotes a dec Streptococcus agalactiae vaginal colonization in a mouse model. Molecular Immunolog 63-70.	rease in yy, 2018, 103,	1.0	8
256	Antigen uptake and immunoadjuvant activity of pathogen-mimetic hollow silica particle with I²-glucan. Journal of Materials Chemistry B, 2018, 6, 6288-6301.	es conjugated	2.9	8
257	Understanding how combinatorial targeting of TLRs and TNFR family costimulatory me enhanced T cell responses. Expert Opinion on Biological Therapy, 2018, 18, 1073-1083	mbers promote	1.4	1

#	Article	IF	CITATIONS
258	Institutional shaping of research priorities: A case study on avian influenza. Research Policy, 2018, 47, 1975-1989.	3.3	31
259	Peptide-based vaccines. , 2018, , 327-358.		28
260	CD22-Binding Synthetic Sialosides Regulate B Lymphocyte Proliferation Through CD22 Ligand-Dependent and Independent Pathways, and Enhance Antibody Production in Mice. Frontiers in Immunology, 2018, 9, 820.	2.2	25
261	Bilayer polymeric nanocapsules: A formulation approach for a thermostable and adjuvanted E. coli antigen vaccine. Journal of Controlled Release, 2018, 286, 20-32.	4.8	30
262	Gamma irradiation of Toxoplasma gondii protein extract improve immune response and protection in mice models. Biomedicine and Pharmacotherapy, 2018, 106, 599-604.	2.5	13
263	Properties and applications of nanoparticle/microparticle conveyors with adjuvant characteristics suitable for oral vaccination. International Journal of Nanomedicine, 2018, Volume 13, 2973-2987.	3.3	24
264	Th1 immune response to <i>Plasmodium falciparum</i> recombinant thrombospondinâ€related adhesive protein (TRAP) antigen is enhanced by TLR3â€specific adjuvant, poly(I:C) in <scp>BALB</scp> /c mice. Parasite Immunology, 2018, 40, e12538.	0.7	8
265	Vaccine adjuvants CpG (oligodeoxynucleotides ODNs), MPL (3-O-deacylated monophosphoryl lipid A) and naloxone-enhanced Th1 immune response to the Plasmodium vivax recombinant thrombospondin-related adhesive protein (TRAP) in mice. Medical Microbiology and Immunology, 2018, 207. 271-286.	2.6	7
266	Nanohydrogels. , 2018, , 293-368.		13
267	Broad and systemic immune-modulating capacity of plant-derived dsRNA. International Immunology, 2019, 31, 811-821.	1.8	1
267 268	Broad and systemic immune-modulating capacity of plant-derived dsRNA. International Immunology, 2019, 31, 811-821. Development of Universal Influenza Vaccines Targeting Conserved Viral Proteins. Vaccines, 2019, 7, 169.	1.8 2.1	1 25
267 268 269	Broad and systemic immune-modulating capacity of plant-derived dsRNA. International Immunology, 2019, 31, 811-821. Development of Universal Influenza Vaccines Targeting Conserved Viral Proteins. Vaccines, 2019, 7, 169. Antigen-Specific Mucosal Immunity Regulates Development of Intestinal Bacteria-Mediated Diseases. Castroenterology, 2019, 157, 1530-1543.e4.	1.8 2.1 0.6	1 25 24
267 268 269 270	Broad and systemic immune-modulating capacity of plant-derived dsRNA. International Immunology, 2019, 31, 811-821. Development of Universal Influenza Vaccines Targeting Conserved Viral Proteins. Vaccines, 2019, 7, 169. Antigen-Specific Mucosal Immunity Regulates Development of Intestinal Bacteria-Mediated Diseases. Castroenterology, 2019, 157, 1530-1543.e4. Injectable Polypeptide Hydrogel Depot System for Assessment of the Immune Response–Inducing Efficacy of Sustained Antigen Release Alone. Macromolecular Bioscience, 2019, 19, 1900167.	1.8 2.1 0.6 2.1	1 25 24 10
267 268 269 270	Broad and systemic immune-modulating capacity of plant-derived dsRNA. International Immunology, 2019, 31, 811-821. Development of Universal Influenza Vaccines Targeting Conserved Viral Proteins. Vaccines, 2019, 7, 169. Antigen-Specific Mucosal Immunity Regulates Development of Intestinal Bacteria-Mediated Diseases. Gastroenterology, 2019, 157, 1530-1543.e4. Injectable Polypeptide Hydrogel Depot System for Assessment of the Immune Response–Inducing Efficacy of Sustained Antigen Release Alone. Macromolecular Bioscience, 2019, 19, 1900167. Nanoemulsions: Factory for Food, Pharmaceutical and Cosmetics. Processes, 2019, 7, 617.	1.8 2.1 0.6 2.1 1.3	1 25 24 10 129
267 268 269 270 271	Broad and systemic immune-modulating capacity of plant-derived dsRNA. International Immunology, 2019, 31, 811-821. Development of Universal Influenza Vaccines Targeting Conserved Viral Proteins. Vaccines, 2019, 7, 169. Antigen-Specific Mucosal Immunity Regulates Development of Intestinal Bacteria-Mediated Diseases. Gastroenterology, 2019, 157, 1530-1543.e4. Injectable Polypeptide Hydrogel Depot System for Assessment of the Immune Response–Inducing Efficacy of Sustained Antigen Release Alone. Macromolecular Bioscience, 2019, 19, 1900167. Nanoemulsions: Factory for Food, Pharmaceutical and Cosmetics. Processes, 2019, 7, 617. Up-to-date vaccine delivery systems: robust immunity elicited by multifarious nanomaterials upon administration through diverse routes. Biomaterials Science, 2019, 7, 822-835.	1.8 2.1 0.6 2.1 1.3 2.6	1 25 24 10 129 22
267 268 269 270 271 272	Broad and systemic immune-modulating capacity of plant-derived dsRNA. International Immunology, 2019, 31, 811-821. Development of Universal Influenza Vaccines Targeting Conserved Viral Proteins. Vaccines, 2019, 7, 169. Antigen-Specific Mucosal Immunity Regulates Development of Intestinal Bacteria-Mediated Diseases. Gastroenterology, 2019, 157, 1530-1543.e4. Injectable Polypeptide Hydrogel Depot System for Assessment of the Immune Response–Inducing Efficacy of Sustained Antigen Release Alone. Macromolecular Bioscience, 2019, 19, 1900167. Nanoemulsions: Factory for Food, Pharmaceutical and Cosmetics. Processes, 2019, 7, 617. Up-to-date vaccine delivery systems: robust immunity elicited by multifarious nanomaterials upon administration through diverse routes. Biomaterials Science, 2019, 7, 822-835. Adjuvant Allergen Fusion Proteins as Novel Tools for the Treatment of Type I Allergies. Archivum Immunologiae Et Therapiae Experimentalis, 2019, 67, 273-293.	1.8 2.1 0.6 2.1 1.3 2.6 1.0	1 25 24 10 129 22 6
267 268 269 270 271 272 273	Broad and systemic immune-modulating capacity of plant-derived dsRNA. International Immunology, 2019, 31, 811-821. Development of Universal Influenza Vaccines Targeting Conserved Viral Proteins. Vaccines, 2019, 7, 169. Antigen-Specific Mucosal Immunity Regulates Development of Intestinal Bacteria-Mediated Diseases. Gastroenterology, 2019, 157, 1530-1543.e4. Injectable Polypeptide Hydrogel Depot System for Assessment of the Immune Response&64 ^{ed} Inducing Efficacy of Sustained Antigen Release Alone. Macromolecular Bioscience, 2019, 19, 1900167. Nanoemulsions: Factory for Food, Pharmaceutical and Cosmetics. Processes, 2019, 7, 617. Up-to-date vaccine delivery systems: robust immunity elicited by multifarious nanomaterials upon administration through diverse routes. Biomaterials Science, 2019, 7, 822-835. Adjuvant Allergen Fusion Proteins as Novel Tools for the Treatment of Type I Allergies. Archivum Immunologiae Et Therapiae Experimentalis, 2019, 67, 273-293. Phosphorothioated antisense oligodeoxynucleotide suppressing interleukin-10 is a safe and potent vaccine adjuvant. Vaccine, 2019, 37, 4081-4088.	1.8 2.1 0.6 2.1 1.3 2.6 1.0 1.7	1 25 24 10 129 22 22 6

#	Article	IF	CITATIONS
276	Changing the Interface Between an Asphaltene Model Compound and Water by Addition of an EO–PO Demulsifier through Adsorption Competition or Adsorption Replacement. Energy & Fuels, 2019, 33, 5035-5042.	2.5	23
277	Biodegradable polymers for modern vaccine development. Journal of Industrial and Engineering Chemistry, 2019, 77, 12-24.	2.9	43
278	Chitosan-based nanoparticles: promising biomedical applications in specific drug delivery and targeting. , 2019, , 215-257.		2
279	Adjuvanticity of aqueous extracts of Artemisia rupestris L. for inactivated foot-and-mouth disease vaccine in mice. Research in Veterinary Science, 2019, 124, 191-199.	0.9	11
280	Chitosan Plus Compound 48/80: Formulation and Preliminary Evaluation as a Hepatitis B Vaccine Adjuvant. Pharmaceutics, 2019, 11, 72.	2.0	29
281	The Combination Vaccine Adjuvant System Alum/c-di-AMP Results in Quantitative and Qualitative Enhanced Immune Responses Post Immunization. Frontiers in Cellular and Infection Microbiology, 2019, 9, 31.	1.8	30
282	TLR9 agonist enhances radiofrequency ablation-induced CTL responses, leading to the potent inhibition of primary tumor growth and lung metastasisÂ. Cellular and Molecular Immunology, 2019, 16, 820-832.	4.8	37
283	Vaccines for leishmaniasis and the implications of their development for American tegumentary leishmaniasis. Human Vaccines and Immunotherapeutics, 2020, 16, 919-930.	1.4	22
284	Allopurinol therapy provides long term clinical improvement, but additional immunotherapy is required for sustained parasite clearance, in L. infantum-infected dogs. Vaccine: X, 2020, 4, 100048.	0.9	11
285	Immune-mediated approaches against COVID-19. Nature Nanotechnology, 2020, 15, 630-645.	15.6	260
286	Immune modulatory capacity of probiotic lactic acid bacteria and applications in vaccine development. Beneficial Microbes, 2020, 11, 213-226.	1.0	22
287	The Perspective on Bio-Nano Interface Technology for Covid-19. Frontiers in Nanotechnology, 2020, 2, .	2.4	12
288	Plant-based vaccines and antibodies to combat COVID-19: current status and prospects. Human Vaccines and Immunotherapeutics, 2020, 16, 2913-2920.	1.4	39
289	Rational Design of Antigen Incorporation Into Subunit Vaccine Biomaterials Can Enhance Antigen-Specific Immune Responses. Frontiers in Immunology, 2020, 11, 1547.	2.2	15
290	A New Cage-Like Particle Adjuvant Enhances Protection of Foot-and-Mouth Disease Vaccine. Frontiers in Veterinary Science, 2020, 7, 396.	0.9	8
291	Phototherapy as a Rational Antioxidant Treatment Modality in COVID-19 Management; New Concept and Strategic Approach: Critical Review. Antioxidants, 2020, 9, 875.	2.2	21
292	Association of Bacillus toyonensis spores with alum improves bovine herpesvirus 5 subunit vaccine immune response in mice. Vaccine, 2020, 38, 8216-8223.	1.7	2
293	MERS-CoV Spike Protein Vaccine and Inactivated Influenza Vaccine Formulated with Single Strand RNA Adjuvant Induce T-Cell Activation through Intranasal Immunization in Mice. Pharmaceutics, 2020, 12, 441.	2.0	10

#	Article	IF	CITATIONS
294	Comparative study of α-helical and β-sheet self-assembled peptide nanofiber vaccine platforms: influence of integrated T-cell epitopes. Biomaterials Science, 2020, 8, 3522-3535.	2.6	35
295	Bacillus subtilis spores as adjuvants against avian influenza H9N2 induce antigen-specific antibody and T cell responses in White Leghorn chickens. Veterinary Research, 2020, 51, 68.	1.1	20
296	Organic/inorganic nanocomposites for cancer immunotherapy. Materials Chemistry Frontiers, 2020, 4, 2571-2609.	3.2	38
297	Characterization of Bacillus anthracis Spore Proteins Using a Nanoscaffold Vaccine Platform. Frontiers in Immunology, 2020, 11, 1264.	2.2	4
298	An insight into the epitope-based peptide vaccine design strategy and studies against COVID-19. Turkish Journal of Biology, 2020, 44, 215-227.	2.1	24
299	Microfluidic-prepared DOTAP nanoparticles induce strong T-cell responses in mice. PLoS ONE, 2020, 15, e0227891.	1.1	12
300	Mechanisms of Mixed Th1/Th2 Responses in Mice Induced by Albizia julibrissin Saponin Active Fraction by in Silico Analysis. Vaccines, 2020, 8, 48.	2.1	7
301	SARS-CoV-2: an unknown agent and challenges in vaccine development. Journal of Bio-X Research, 2020, 3, 3-5.	0.3	1
302	SARS-CoV-2 vaccine research and development: Conventional vaccines and biomimetic nanotechnology strategies. Asian Journal of Pharmaceutical Sciences, 2021, 16, 136-146.	4.3	24
303	Bioengineering of nano metal-organic frameworks for cancer immunotherapy. Nano Research, 2021, 14, 1244-1259.	5.8	37
304	A DNA nanodevice-based vaccine for cancer immunotherapy. Nature Materials, 2021, 20, 421-430.	13.3	320
305	Vaccine as immunotherapy for leishmaniasis. , 2021, , 29-46.		0
306	Mining of Ebola virus genome for the construction of multi-epitope vaccine to combat its infection. Journal of Biomolecular Structure and Dynamics, 2022, 40, 4815-4831.	2.0	9
307	An Overview on Chitosan-Based Adjuvant/Vaccine Delivery Systems. Advances in Polymer Science, 2021, , 293-379.	0.4	4
308	Bacillus Toyonensis BCT-7112T Spores as Parenteral Adjuvant of BoHV-5 Vaccine in a Murine Model. Probiotics and Antimicrobial Proteins, 2021, 13, 655-663.	1.9	2
309	Staphylococcus aureus and Dairy Udder. , 0, , .		1
310	TLR4 Agonist Combined with Trivalent Protein JointS of Streptococcus suis Provides Immunological Protection in Animals. Vaccines, 2021, 9, 184.	2.1	7
311	Nanoemulsions for health, food, and cosmetics: a review. Environmental Chemistry Letters, 2021, 19, 3381-3395.	8.3	101

#	Article	IF	CITATIONS
312	Polyphosphazenes as Adjuvants for Animal Vaccines and Other Medical Applications. Frontiers in Bioengineering and Biotechnology, 2021, 9, 625482.	2.0	13
313	Hyaluronan is a natural and effective immunological adjuvant for protein-based vaccines. Cellular and Molecular Immunology, 2021, 18, 1197-1210.	4.8	14
314	Protective effect of a DNA vaccine cocktail encoding ROP13 and GRA14 with Alum nano-adjuvant against Toxoplasma gondii infection in mice. International Journal of Biochemistry and Cell Biology, 2021, 132, 105920.	1.2	8
315	A review of combination adjuvants for malaria vaccines: a promising approach for vaccine development. International Journal for Parasitology, 2021, 51, 699-717.	1.3	8
316	Saponin-adjuvanted recombinant vaccines containing rCP00660, rCP09720 or rCP01850 proteins against Corynebacterium pseudotuberculosis infection in mice. Vaccine, 2021, 39, 2568-2574.	1.7	4
317	Lipid-Based Nanoparticles in the Clinic and Clinical Trials: From Cancer Nanomedicine to COVID-19 Vaccines. Vaccines, 2021, 9, 359.	2.1	222
318	The Adjuvant Effects on Vaccine and the Immunomodulatory Mechanisms of Polysaccharides From Traditional Chinese Medicine. Frontiers in Molecular Biosciences, 2021, 8, 655570.	1.6	22
319	Intranasal administration of a recombinant RBD vaccine induced protective immunity against SARS-CoV-2 in mouse. Vaccine, 2021, 39, 2280-2287.	1.7	47
320	Involvement of Interleukin-1 Receptor-Associated Kinase 4 and Interferon Regulatory Factor 5 in the Immunopathogenesis of SARS-CoV-2 Infection: Implications for the Treatment of COVID-19. Frontiers in Immunology, 2021, 12, 638446.	2.2	9
322	Recent Progress in the Design and Medical Application of In Situ Self-Assembled Polypeptide Materials. Pharmaceutics, 2021, 13, 753.	2.0	17
323	FMD empty capsids combined with the Immunostant Particle Adjuvant -ISPA or ISA206 induce protective immunity against foot and mouth disease virus. Virus Research, 2021, 297, 198339.	1.1	12
325	Microparticle encapsulation of a tuberculosis subunit vaccine candidate containing a nanoemulsion adjuvant via spray drying. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 163, 23-37.	2.0	22
326	The Status and Prospects of Epstein–Barr Virus Prophylactic Vaccine Development. Frontiers in Immunology, 2021, 12, 677027.	2.2	23
327	In Vivo Sustained Release of Peptide Vaccine Mediated by Dendritic Mesoporous Silica Nanocarriers. Frontiers in Immunology, 2021, 12, 684612.	2.2	12
328	Nano and Microparticles as Potential Oral Vaccine Carriers and Adjuvants Against Infectious Diseases. Frontiers in Pharmacology, 2021, 12, 682286.	1.6	47
329	A Novel Recombinant Fcl ³ Receptor-Targeted Survivin Combines with Chemotherapy for Efficient Cancer Treatment. Biomedicines, 2021, 9, 806.	1.4	5
330	Adjuvants: friends in vaccine formulations against infectious diseases. Human Vaccines and Immunotherapeutics, 2021, 17, 3539-3550.	1.4	7
331	Development of PDA Nanoparticles for H9N2 Avian Influenza BPP-V/BP-IV Epitope Peptide Vaccines: Immunogenicity and Delivery Efficiency Improvement. Frontiers in Immunology, 2021, 12, 693972.	2.2	3

#	Article	IF	CITATIONS
332	Administration of Multivalent Influenza Virus Recombinant Hemagglutinin Vaccine in Combination-Adjuvant Elicits Broad Reactivity Beyond the Vaccine Components. Frontiers in Immunology, 2021, 12, 692151.	2.2	13
333	Immunostimulatory effect of chitosan and quaternary chitosan: A review of potential vaccine adjuvants. Carbohydrate Polymers, 2021, 264, 118050.	5.1	67
334	Pore-forming alpha-hemolysin efficiently improves the immunogenicity and protective efficacy of protein antigens. PLoS Pathogens, 2021, 17, e1009752.	2.1	2
335	To Be or Not To Be Vaccinated: That Is a Question in Myasthenia Gravis. Frontiers in Immunology, 2021, 12, 733418.	2.2	20
336	In silico approach to design a multi-epitopic vaccine candidate targeting the non-mutational immunogenic regions in envelope protein and surface glycoprotein of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 2021, , 1-16.	2.0	7
337	Combination of conserved recombinant proteins (NP & 3M2e) formulated with Alum protected BALB/c mice against influenza A/PR8/H1N1 virus challenge. Biotechnology Letters, 2021, 43, 2137-2147.	1.1	1
338	Monophosphoryl Lipid A and Poly I:C Combination Adjuvant Promoted Ovalbumin-Specific Cell Mediated Immunity in Mice Model. Biology, 2021, 10, 908.	1.3	5
339	Aqueous extracts from cultivated Cistanche deserticola Y.C. Ma as polysaccharide adjuvant promote immune responses via facilitating dendritic cell activation. Journal of Ethnopharmacology, 2021, 277, 114256.	2.0	9
340	The MAVS Immune Recognition Pathway in Viral Infection and Sepsis. Antioxidants and Redox Signaling, 2021, 35, 1376-1392.	2.5	24
341	Potential of nanoparticles encapsulated drugs for possible inhibition of the antimicrobial resistance development. Biomedicine and Pharmacotherapy, 2021, 141, 111943.	2.5	13
342	Distinct endocytosis and immune activation of poly(lactic-co-glycolic) acidÂnanoparticles prepared by single- and double-emulsion evaporation. Nanomedicine, 2021, 16, 2075-2094.	1.7	4
343	Immunoinformatics analysis of antigenic epitopes and designing of a multi-epitope peptide vaccine from putative nitro-reductases of Mycobacterium tuberculosis DosR. Infection, Genetics and Evolution, 2021, 94, 105017.	1.0	10
344	T helper type 1 biased immune responses by PPE17 loaded core-shell alginate-chitosan nanoparticles after subcutaneous and intranasal administration. Life Sciences, 2021, 282, 119806.	2.0	12
345	How can we develop an effective subunit vaccine to achieve successful malaria eradication?. Microbial Pathogenesis, 2021, 160, 105203.	1.3	6
346	Immunological perspectives on spatial and temporal vaccine delivery. Advanced Drug Delivery Reviews, 2021, 178, 113966.	6.6	14
347	Alum and metoclopramide synergistically enhance cellular and humoral immunity after immunization with heat-killed Salmonella typhimurium vaccine. International Immunopharmacology, 2021, 101, 108185.	1.7	1
348	Immune Signatures and Systems Biology of Vaccines. , 2011, , 141-167.		2
349	Saccharomyces boulardii improves humoral immune response to DNA vaccines against leptospirosis. Journal of Medical Microbiology, 2017, 66, 184-190	0.7	9

#	Article	IF	CITATIONS
350	Protective T cell immunity in mice following protein-TLR7/8 agonist-conjugate immunization requires aggregation, type I IFN, and multiple DC subsets. Journal of Clinical Investigation, 2011, 121, 1782-1796.	3.9	153
351	Clinical Adjuvant Combinations Stimulate Potent B-Cell Responses In Vitro by Activating Dermal Dendritic Cells. PLoS ONE, 2013, 8, e63785.	1.1	13
352	Evaluation of Microflow Digital Imaging Particle Analysis for Sub-Visible Particles Formulated with an Opaque Vaccine Adjuvant. PLoS ONE, 2016, 11, e0150229.	1.1	7
353	Adjuvants and the vaccine response to the DS-Cav1-stabilized fusion glycoprotein of respiratory syncytial virus. PLoS ONE, 2017, 12, e0186854.	1.1	42
354	Immunostimulatory activity of water-extractable polysaccharides from Cistanche deserticola as a plant adjuvant in vitro and in vivo. PLoS ONE, 2018, 13, e0191356.	1.1	29
355	Biopolymer Xanthan: A New Adjuvant for DNA Vaccines. Brazilian Archives of Biology and Technology, 0, 63, .	0.5	3
356	Adjuvant effect of liposome-encapsulated natural phosphodiester CpG-DNA. BMB Reports, 2011, 44, 758-763.	1.1	19
357	Identification of Molecular Signatures from Different Vaccine Adjuvants in Chicken by Integrative Analysis of Microarray Data. Asian-Australasian Journal of Animal Sciences, 2016, 29, 1044-1051.	2.4	1
358	Immune Responses of Mice Immunized with HBsAg Formulated in Naloxone/Alum Mixture: Comparison to Fendrix Vaccine. Hepatitis Monthly, 2017, 17, .	0.1	5
359	An Overview of History, Evolution, and Manufacturing of Various Generations of Vaccines. Journal of Archives in Military Medicine, 2017, In Press, .	0.0	16
360	Laser vaccine adjuvants: Light-augmented immune responses. Vaccine, 2021, 39, 6805-6812.	1.7	4
361	Nanoemulsions: Formulation, characterization, biological fate, and potential role against COVID-19 and other viral outbreaks. Colloids and Interface Science Communications, 2021, 45, 100533.	2.0	24
362	MMV-db: vaccinomics and RNA-based therapeutics database for infectious hemorrhagic fever-causing mammarenaviruses. Database: the Journal of Biological Databases and Curation, 2021, 2021, .	1.4	7
363	The Future of Vaccine Discovery and Development. , 2010, , 375-385.		0
364	Induction of innate immunity by nucleic acids: A potential adjuvant for cancer vaccines?. , 2011, , 232-249.		0
365	Improvements in Adjuvants for New-Generation Vaccines. , 2014, , 117-134.		1
366	Mucosal Immunology and Oral Vaccination. , 2014, , 15-42.		1
367	Expression of the Potentially Immunogenic Truncated Clycoprotein E2 (From Viral Bovine Diarrhoea) Tj ETQq1 1	0.784314	rgBT /Overlo

#	Article	IF	CITATIONS
368	Induction of innate immunity by nucleic acids: A potential adjuvant for cancer vaccines?. , 2015, , 248-265.		0
369	Aluminium Adjuvants – A Nanomaterial used as Adjuvants in Human Vaccines for Decades. Open Biotechnology Journal, 2018, 12, 140-153.	0.6	0
371	Aşı immünitesi ve yanıtını etkileyen faktörler. Osmangazİ Journal of Medicine, 0, , 1-5.	0.1	2
372	Crude polysaccharides from Cistanche deserticola Y.C. Ma as an immunoregulator and an adjuvant for foot-and-mouth disease vaccine. Journal of Functional Foods, 2021, 87, 104800.	1.6	5
373	Vaccine and vaccination as a part of human life: In view of Covidâ€19. Biotechnology Journal, 2021, 17, 2100188.	1.8	9
374	Development and optimisation of hepatitis B recombinant antigen loaded chitosan nanoparticles as an adjuvant using the response surface methodology. Micro and Nano Letters, 2020, 15, 736-741.	0.6	2
375	Role of immunobiotic lactic acid bacteria as vaccine adjuvants. , 2022, , 417-430.		0
376	A Combined Adjuvant TF–Al Consisting of TFPR1 and Aluminum Hydroxide Augments Strong Humoral and Cellular Immune Responses in Both C57BL/6 and BALB/c Mice. Vaccines, 2021, 9, 1408.	2.1	0
377	Breast cancer vaccines for treatment and prevention. Breast Cancer Research and Treatment, 2022, 191, 481-489.	1.1	13
378	Aliphatic Polyester Nanoparticles for Drug Delivery Systems. , 0, , .		0
379	Synergistic Action of Immunotherapy and Nanotherapy against Cancer Patients Infected with SARS-CoV-2 and the Use of Artificial Intelligence. Cancers, 2022, 14, 213.	1.7	0
380	Application of Nanoemulsions in the Vaccination Process. Advances in Chemical and Materials Engineering Book Series, 2022, , 494-516.	0.2	0
381	Attacking the Intruder at the Gate: Prospects of Mucosal Anti SARS-CoV-2 Vaccines. Pathogens, 2022, 11, 117.	1.2	9
382	An aluminum hydroxide:CpG adjuvant enhances protection elicited by a SARS-CoV-2 receptor binding domain vaccine in aged mice. Science Translational Medicine, 2022, 14, .	5.8	57
383	Integrating plant molecular farming and materials research for next-generation vaccines. Nature Reviews Materials, 2022, 7, 372-388.	23.3	65
384	An aluminum hydroxide:CpG adjuvant enhances protection elicited by a SARS-CoV-2 receptor-binding domain vaccine in aged mice. Science Translational Medicine, 2021, , eabj5305.	5.8	4
385	Anti-COVID-19 Nanomaterials: Directions to Improve Prevention, Diagnosis, and Treatment. Nanomaterials, 2022, 12, 783.	1.9	10
386	Malaria transmission-blocking conjugate vaccine in ALFQ adjuvant induces durable functional immune responses in rhesus macaques. Npj Vaccines, 2021, 6, 148.	2.9	14

		CITATION REPORT		
#	Article		IF	Citations
387	Nano toolbox in immune modulation and nanovaccines. Trends in Biotechnology, 2022, 40, 3	1195-1212.	4.9	31
388	Precision Vaccine Adjuvants for Older Adults: A Scoping Review. Clinical Infectious Diseases, S72-S80.	2022, 75,	2.9	12
389	Differential Dualâ€Release Bilayer Microneedles Loaded with Aluminum Adjuvants as a Safe a Vaccine Platform. Advanced Functional Materials, 2022, 32, .	Ind Effective	7.8	14
390	An Ultrahighâ€Density Microneedle Array for Skin Vaccination: Inducing Epidermal Cell Deat Increasing Microneedle Density Enhances Total IgG and IgG1 Immune Responses. Advanced I Research, 2022, 2, .	n by NanoBiomed	1.7	6
391	Improving adjuvanticity of crude polysaccharides from cultivated Artemisia rupestris L. for intraccine by promoting long-term immunity and TH1/TH2 response with dose-sparing effect. Jo Ethnopharmacology, 2022, 294, 115350.	fluenza ournal of	2.0	1
392	Immunization with a bicistronic DNA vaccine modulates systemic IFN- \hat{I}^3 and IL-10 expression Vibrio cholerae infection. Journal of Medical Microbiology, 2022, 71, .	against	0.7	1
393	Lipid based nanocarriers: Production techniques, concepts, and commercialization aspect. Jo Drug Delivery Science and Technology, 2022, 74, 103526.	urnal of	1.4	8
394	Lipid nanoparticles and nanoemulsions exploited in the diagnosis and treatment of infectious diseases. , 2022, , 229-273.	5		0
395	Nanotechnology-based approaches against COVID-19. , 2022, , 305-364.			0
396	Nanotechnology for the management of COVID-19 during the pandemic and in the post-pan National Science Review, 2022, 9, .	demic era.	4.6	11
397	Screening immune adjuvants for an inactivated vaccine against Erysipelothrix rhusiopathiae. Frontiers in Veterinary Science, 0, 9, .		0.9	6
398	Mycobacterium tuberculosis dormancy regulon proteins Rv2627c and Rv2628 as Toll like rec agonist and as potential adjuvant. International Immunopharmacology, 2022, 112, 109238.	eptor	1.7	5
399	Protective and vaccine dose-sparing efficacy of Poly I:C-functionalized calcium phosphate nanoparticle adjuvants in inactivated influenza vaccination. International Immunopharmacole 2022, 112, 109240.	ogy,	1.7	1
400	Applications of chitosan derivatives as adjuvant for nanoparticles based vaccines. Infectious Disorders - Drug Targets, 2022, 22, .		0.4	0
402	Induction of protein specific antibody by carbonated hydroxy apatite as a candidate for mucc vaccine adjuvant. Dental Materials Journal, 2022, 41, 710-723.	osal	0.8	2
403	Adjuvant effect of IRES-based single-stranded RNA on melanoma immunotherapy. BMC Canc	ier, 2022, 22, .	1.1	0
404	New vector and vaccine platforms: mRNA, DNA, viral vectors. Current Opinion in HIV and AID 338-344.	S, 2022, 17,	1.5	7
405	Nanoadjuvants Actively targeting lymph node conduits and blocking tumor invasion in lymph vessels. Journal of Controlled Release, 2022, 352, 497-506.	natic	4.8	4

#	Article	IF	CITATIONS
406	Selfâ€Assembly of Immune Signals to Program Innate Immunity through Rational Adjuvant Design. Advanced Science, 2023, 10, .	5.6	11
407	Microbial exopolysaccharides–î²-glucans–as promising postbiotic candidates in vaccine adjuvants. International Journal of Biological Macromolecules, 2022, 223, 346-361.	3.6	9
408	Nonclinical safety assessments of a novel synthetic toll-like receptor 4 agonist and saponin based adjuvant. Toxicology and Applied Pharmacology, 2022, , 116358.	1.3	0
409	Vaccines and Vaccine Adjuvants for Infectious Diseases and Autoimmune Diseases. Vaccines, 2023, 11, 202.	2.1	1
410	A Biodegradable Antigen Nanocapsule Promotes Antiâ€Tumor Immunity via the cGASâ€STING Pathway. Advanced Functional Materials, 2023, 33, .	7.8	3
411	Current Progress and Challenges in the Study of Adjuvants for Oral Vaccines. BioDrugs, 2023, 37, 143-180.	2.2	9
412	A Biomimetic, Silaffin R5-Based Antigen Delivery Platform. Pharmaceutics, 2023, 15, 121.	2.0	1
413	Polymer-based adjuvant requirements for vaccines. , 2022, , 177-204.		0
414	Molecular DNA dendron vaccines. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	4
415	Highlights into historical and current immune interventions for cancer. International Immunopharmacology, 2023, 117, 109882.	1.7	2
416	Pulmonary Application of Novel Antigen-Loaded Chitosan Nano-Particles Co-Administered with the Mucosal Adjuvant C-Di-AMP Resulted in Enhanced Immune Stimulation and Dose Sparing Capacity. Pharmaceutics, 2023, 15, 1238.	2.0	2
417	Silver nanoparticles combat Salmonella Typhimurium: Suppressing intracellular infection and activating dendritic cells. Colloids and Surfaces B: Biointerfaces, 2023, 226, 113307.	2.5	0
418	Emerging trends in vaccine delivery systems. , 2022, , 361-386.		0
419	Expression of FMD virus-like particles in yeast <i>Hansenula polymorpha</i> and immunogenicity of combine with CpG and aluminum adjuvant. Journal of Veterinary Science, 2023, 24, .	0.5	1
420	Tracing the recent updates on vaccination approaches and significant adjuvants being developed against HIV. Expert Review of Anti-Infective Therapy, 2023, 21, 431-446.	2.0	0
421	A Small Molecule RIG-I Agonist Serves as an Adjuvant to Induce Broad Multifaceted Influenza Virus Vaccine Immunity. Journal of Immunology, 2023, 210, 1247-1256.	0.4	2
422	Materials engineering strategies for cancer vaccine adjuvant development. Chemical Society Reviews, 2023, 52, 2886-2910.	18.7	19
423	SARS-CoV-2: Immunity, Challenges with Current Vaccines, and a Novel Perspective on Mucosal Vaccines. Vaccines, 2023, 11, 849.	2.1	12

	C	CITATION REPORT		
#	Article	IF	CITATIONS	
429	Worldwide Efforts for the Prevention of Visceral Leishmaniasis Using Vaccinations. , 2023, , 413-426		0	