In the fungus where it happens: History and future proparchetype of natural products research

Fungal Genetics and Biology 144, 103477 DOI: 10.1016/j.fgb.2020.103477

Citation Report

#	Article	IF	CITATIONS
1	Metabolomics and genomics in natural products research: complementary tools for targeting new chemical entities. Natural Product Reports, 2021, 38, 2041-2065.	5.2	59
2	Molecular methods unravel the biosynthetic potential of <i>Trichoderma</i> species. RSC Advances, 2021, 11, 3622-3635.	1.7	18
3	Advances in Genetic Engineering Technology and Its Application in the Industrial Fungus Aspergillus oryzae. Frontiers in Microbiology, 2021, 12, 644404.	1.5	41
4	Chemical signals driving <scp>bacterial–fungal</scp> interactions. Environmental Microbiology, 2021, 23, 1334-1347.	1.8	31
6	Genome Mining Discovery of a C ₄ -Alkylated Dihydroisocoumarin Pathway in Fungi. Organic Letters, 2021, 23, 2337-2341.	2.4	5
7	Transcription Factor Repurposing Offers Insights into Evolution of Biosynthetic Gene Cluster Regulation. MBio, 2021, 12, e0139921.	1.8	17
8	Presence, Mode of Action, and Application of Pathway Specific Transcription Factors in Aspergillus Biosynthetic Gene Clusters. International Journal of Molecular Sciences, 2021, 22, 8709.	1.8	12
10	Reconstitution of biosynthetic pathway for mushroom-derived cyathane diterpenes in yeast and generation of new "non-natural―analogues. Acta Pharmaceutica Sinica B, 2021, 11, 2945-2956.	5.7	11
11	A pilot study for fragment identification using 2D NMR and deep learning. Magnetic Resonance in Chemistry, 2022, 60, 1052-1060.	1.1	9
12	"Microbial Wars―in a Stirred Tank Bioreactor: Investigating the Co-Cultures of Streptomyces rimosus and Aspergillus terreus, Filamentous Microorganisms Equipped With a Rich Arsenal of Secondary Metabolites. Frontiers in Bioengineering and Biotechnology, 2021, 9, 713639.	2.0	12
13	Independent Evolution of a Lysergic Acid Amide in Aspergillus Species. Applied and Environmental Microbiology, 2021, 87, e0180121.	1.4	6
14	Crowdsourced analysis of fungal growth and branching on microfluidic platforms. PLoS ONE, 2021, 16, e0257823.	1.1	9
15	Secondary metabolites of Hülle cells mediate protection of fungal reproductive and overwintering structures against fungivorous animals. ELife, 2021, 10, .	2.8	7
16	An <i>Aspergillus nidulans</i> Platform for the Complete Cluster Refactoring and Total Biosynthesis of Fungal Natural Products. ACS Synthetic Biology, 2021, 10, 173-182.	1.9	14
17	Characterisation and heterologous biosynthesis of burnettiene A, a new polyene-decalin polyketide from <i>Aspergillus burnettii</i> . Organic and Biomolecular Chemistry, 2021, 19, 9506-9513.	1.5	8
18	Modular Synthetic Biology Toolkit for Filamentous Fungi. ACS Synthetic Biology, 2021, 10, 2850-2861.	1.9	35
19	Functional characterization of the GATA-type transcription factor PaNsdD in the filamentous fungus Podospora anserina and its interplay with the sterigmatocystin pathway. Applied and Environmental Microbiology, 2022, , aem0237821.	1.4	5
20	Cre/ <i>lox</i> -Mediated Chromosomal Integration of Biosynthetic Gene Clusters for Heterologous Expression in <i>Aspergillus nidulans</i> . ACS Synthetic Biology, 2022, 11, 1186-1195.	1.9	9

#	Article	IF	CITATIONS
21	Characterization of a silent azaphilone biosynthesis gene cluster in Aspergillus terreus NIH 2624. Fungal Genetics and Biology, 2022, 160, 103694.	0.9	2
22	Comprehensive Guide to Extracting and Expressing Fungal Secondary Metabolites with <i>Aspergillus fumigatus</i> as a Case Study. Current Protocols, 2021, 1, e321.	1.3	5
23	Heterologous Expression of Fungal Biosynthetic Pathways in Aspergillus nidulans Using Episomal Vectors. Methods in Molecular Biology, 2022, 2489, 75-92.	0.4	2
24	CRISPR/Cas9-Based Genome Editing and Its Application in Aspergillus Species. Journal of Fungi (Basel,) Tj ETQq1	1 0.78431 1.5	4 rgBT /Ove
25	Fungal Melanin Biosynthesis Pathway as Source for Fungal Toxins. MBio, 2022, 13, e0021922.	1.8	17
26	Fungal-fungal cocultivation leads to widespread secondary metabolite alteration requiring the partial loss-of-function VeA1 protein. Science Advances, 2022, 8, eabo6094.	4.7	27
27	Postâ€ŧranslational modifications drive secondary metabolite biosynthesis in <scp><i>Aspergillus</i></scp> : a review. Environmental Microbiology, 2022, 24, 2857-2881.	1.8	17
28	Transcriptional Activation of Biosynthetic Gene Clusters in Filamentous Fungi. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	14
29	Novel microbial transformation of Andrographis paniculata by Aspergillus oryzae K1A. Biodiversitas, 2021, 23, .	0.2	0
30	Aspergillus nidulans. Trends in Microbiology, 2022, , .	3.5	3
31	Multiplex Base-Editing Enables Combinatorial Epigenetic Regulation for Genome Mining of Fungal Natural Products. Journal of the American Chemical Society, 2023, 145, 413-421.	6.6	4
32	Complementary Strategies to Unlock Biosynthesis Gene Clusters Encoding Secondary Metabolites in the Filamentous Fungus Podospora anserina. Journal of Fungi (Basel, Switzerland), 2023, 9, 9.	1.5	0
34	Asperidulins A and B, two new prenylxanthone derivatives from an apple-derived fungus <i>Aspergillus nidulans</i> KIB-HACM-01. Natural Product Research, 0, , 1-7.	1.0	0
35	Aspergillus nidulans—Natural Metabolites Powerhouse: Structures, Biosynthesis, Bioactivities, and Biotechnological Potential. Fermentation, 2023, 9, 325.	1.4	4
42	Activation of Secondary Metabolite Production in Fungi. , 2023, , 241-273.		0

CITATION REPORT