Single-Atom Catalysts across the Periodic Table

Chemical Reviews 120, 11703-11809 DOI: 10.1021/acs.chemrev.0c00576

Citation Report

#	Article	IF	CITATIONS
1	FeS ₂ -anchored transition metal single atoms for highly efficient overall water splitting: a DFT computational screening study. Journal of Materials Chemistry A, 2021, 9, 2438-2447.	5.2	73
2	Polymeric carbon nitride-based photocatalysts for photoreforming of biomass derivatives. Green Chemistry, 2021, 23, 7435-7457.	4.6	39
3	Recent advances in understanding oxygen evolution reaction mechanisms over iridium oxide. Inorganic Chemistry Frontiers, 2021, 8, 2900-2917.	3.0	75
4	Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chemical Society Reviews, 2021, 50, 7745-7778.	18.7	385
5	Protein powder derived nitrogen-doped carbon supported atomically dispersed iron sites for selective oxidation of ethylbenzene. Dalton Transactions, 2021, 50, 11711-11715.	1.6	8
6	Cooperativity in supported metal single atom catalysis. Nanoscale, 2021, 13, 5985-6004.	2.8	29
7	Photoredox catalysis over semiconductors for light-driven hydrogen peroxide production. Green Chemistry, 2021, 23, 1466-1494.	4.6	166
8	Recent advances in metal-free heteroatom-doped carbon heterogonous catalysts. RSC Advances, 2021, 11, 23725-23778.	1.7	28
9	Structure Sensitivity in Single-Atom Catalysis toward CO ₂ Electroreduction. ACS Energy Letters, 2021, 6, 713-727.	8.8	149
10	First-principles investigation of two-dimensional covalent–organic framework electrocatalysts for oxygen evolution/reduction and hydrogen evolution reactions. Sustainable Energy and Fuels, 2021, 5, 5615-5626.	2.5	13
11	Single Nb or W Atom-Embedded BP Monolayers as Highly Selective and Stable Electrocatalysts for Nitrogen Fixation with Low-Onset Potentials. ACS Applied Materials & Interfaces, 2021, 13, 10026-10036.	4.0	74
12	Catalytic Nanomaterials toward Atomic Levels for Biomedical Applications: From Metal Clusters to Single-Atom Catalysts. ACS Nano, 2021, 15, 2005-2037.	7.3	148
13	Regulation of CO oxidation with Pd additives on Nb2CO2 MXene. International Journal of Hydrogen Energy, 2021, 46, 8477-8485.	3.8	16
14	Catalysts with single metal atoms for the hydrogen production from formic acid. Catalysis Reviews - Science and Engineering, 2022, 64, 835-874.	5.7	33
15	Selfâ€Validated Machine Learning Study of Graphdiyneâ€Based Dual Atomic Catalyst. Advanced Energy Materials, 2021, 11, 2003796.	10.2	57
16	Singleâ€Atom Catalysts: A Sustainable Pathway for the Advanced Catalytic Applications. Small, 2021, 17, e2006473.	5.2	135
17	Tuning the Spin Density of Cobalt Single-Atom Catalysts for Efficient Oxygen Evolution. ACS Nano, 2021, 15, 7105-7113.	7.3	90
18	Comparative study of single-atom gold and iridium on CeO2{111}. Journal of Chemical Physics, 2021, 154, 164703.	1.2	2

#	Article	IF	CITATIONS
19	Theoretical Exploration of Electrochemical Nitrate Reduction Reaction Activities on Transition-Metal-Doped <i>h</i> -BP. Journal of Physical Chemistry Letters, 2021, 12, 3968-3975.	2.1	68
20	Singleâ€Atom Pd Nanozyme for Ferroptosisâ€Boosted Mildâ€Temperature Photothermal Therapy. Angewandte Chemie - International Edition, 2021, 60, 12971-12979.	7.2	375
21	Singleâ€Atom Pd Nanozyme for Ferroptosisâ€Boosted Mildâ€Temperature Photothermal Therapy. Angewandte Chemie, 2021, 133, 13081-13089.	1.6	33
22	Concepts, models, and methods in computational heterogeneous catalysis illustrated through <scp>CO₂</scp> conversion. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1530.	6.2	24
23	Electrocatalysis for the Oxygen Evolution Reaction in Acidic Media: Progress and Challenges. Applied Sciences (Switzerland), 2021, 11, 4320.	1.3	41
24	Roomâ€Temperature Synthesis of a Hollow Microporous Organic Polymer Bearing Activated Alkyne IR Probes for Nonradical Thiolâ€yne Clickâ€Based Postâ€Functionalization. Chemistry - an Asian Journal, 2021, 16, 1398-1402.	1.7	8
25	A Supported Pd ₂ Dualâ€Atom Site Catalyst for Efficient Electrochemical CO ₂ Reduction. Angewandte Chemie, 2021, 133, 13500-13505.	1.6	29
26	Turning metal-organic frameworks into efficient single-atom catalysts via pyrolysis with a focus on oxygen reduction reaction catalysts. EnergyChem, 2021, 3, 100056.	10.1	51
27	Precursor Nuclearity and Ligand Effects in Atomicallyâ€Dispersed Heterogeneous Iron Catalysts for Alkyne Semiâ€Hydrogenation. ChemCatChem, 2021, 13, 3247-3256.	1.8	11
28	Single Mn Atom Anchored on Nitrogenâ€Doped Graphene as a Highly Efficient Electrocatalyst for Oxygen Reduction Reaction. Chemistry - A European Journal, 2021, 27, 9686-9693.	1.7	15
29	A Supported Pd ₂ Dualâ€Atom Site Catalyst for Efficient Electrochemical CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 13388-13393.	7.2	201
30	Applications of single-atom catalysts. Nano Research, 2022, 15, 38-70.	5.8	115
31	Ligand–Metal Charge Transfer Induced <i>via</i> Adjustment of Textural Properties Controls the Performance of Single-Atom Catalysts during Photocatalytic Degradation. ACS Applied Materials & Interfaces, 2021, 13, 25858-25867.	4.0	51
32	An Earthâ€Abundant Niâ€Based Singleâ€Atom Catalyst for Selective Photodegradation of Pollutants. Solar Rrl, 2021, 5, 2100176.	3.1	39
33	Microenvironment and Nanoreactor Engineering of Single-Site Metal Catalysts for Electrochemical CO ₂ Reduction. Energy & amp; Fuels, 2021, 35, 9795-9808.	2.5	19
34	Room-Temperature Methane Activation Mediated by Free Tantalum Cluster Cations: Size-by-Size Reactivity. Journal of Physical Chemistry A, 2021, 125, 5289-5302.	1.1	9
35	Stepping Out of Transition Metals: Activating the Dual Atomic Catalyst through Main Group Elements. Advanced Energy Materials, 2021, 11, 2101404.	10.2	33
36	Design of carbon supports for metal-catalyzed acetylene hydrochlorination. Nature Communications, 2021, 12, 4016.	5.8	35

#	Article	IF	CITATIONS
37	Direct Observation of Metal Oxide Nanoparticles Being Transformed into Metal Single Atoms with Oxygen oordinated Structure and High‣oadings. Angewandte Chemie - International Edition, 2021, 60, 15248-15253.	7.2	38
38	Direct Observation of Metal Oxide Nanoparticles Being Transformed into Metal Single Atoms with Oxygenâ€Coordinated Structure and Highâ€Loadings. Angewandte Chemie, 2021, 133, 15376-15381.	1.6	24
39	Low-Temperature Synthesis of Single Palladium Atoms Supported on Defective Hexagonal Boron Nitride Nanosheet for Chemoselective Hydrogenation of Cinnamaldehyde. ACS Nano, 2021, 15, 10175-10184.	7.3	77
40	Structural Changes of Intermetallic Catalysts under Reaction Conditions. Small Structures, 2021, 2, 2100011.	6.9	21
41	Engineering the atomic interface of porous ceria nanorod with single palladium atoms for hydrodehalogenation reaction. Nano Research, 2022, 15, 1338-1346.	5.8	15
42	Surface organometallic chemistry: A sustainable approach in modern catalysis. Journal of Organometallic Chemistry, 2021, 945, 121864.	0.8	10
43	Insights into the Mechanism of Methanol Steam Reforming Tandem Reaction over CeO ₂ Supported Single-Site Catalysts. Journal of the American Chemical Society, 2021, 143, 12074-12081.	6.6	70
44	An Open Gate for High-Density Metal Ions in N-Doped Carbon Networks: Powering Fe–N–C Catalyst Efficiency in the Oxygen Reduction Reaction. ACS Catalysis, 2021, 11, 8915-8928.	5.5	20
45	Research progress on methane conversion coupling photocatalysis and thermocatalysis. , 2021, 3, 519-540.		67
46	Zeroâ€Valent Palladium Singleâ€Atoms Catalysts Confined in Black Phosphorus for Efficient Semiâ€Hydrogenation. Advanced Materials, 2021, 33, e2008471.	11.1	55
47	A Feasible Strategy for Identifying Singleâ€Atom Catalysts Toward Electrochemical NOâ€toâ€NH ₃ Conversion. Small, 2021, 17, e2102396.	5.2	89
48	Atomically confined calcium in nitrogen-doped graphene as an efficient heterogeneous catalyst for hydrogen evolution. IScience, 2021, 24, 102728.	1.9	19
49	Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nature Catalysis, 2021, 4, 615-622.	16.1	336
50	On the Catalytic Activity of Sn Monomers and Dimers at Graphene Edges and the Synchronized Edge Dependence of Diffusing Atoms in Sn Dimers. Advanced Functional Materials, 2021, 31, 2104340.	7.8	4
51	Strategic Defect Engineering of Metal–Organic Frameworks for Optimizing the Fabrication of Singleâ€Atom Catalysts. Advanced Functional Materials, 2021, 31, 2103597.	7.8	68
52	Ionic-liquid-assisted synthesis of metal single-atom catalysts for benzene oxidation to phenol. Science China Materials, 2022, 65, 163-169.	3.5	13
53	Rational Design of Singleâ€Atom Site Electrocatalysts: From Theoretical Understandings to Practical Applications. Advanced Materials, 2021, 33, e2008151.	11.1	175
54	Recent Advances in Electrode Design for Rechargeable Zinc–Air Batteries. Small Science, 2021, 1, 2100044.	5.8	47

#	Article	IF	CITATIONS
55	Electrocatalytic acidic oxygen evolution reaction: From nanocrystals to single atoms. Aggregate, 2021, 2, e106.	5.2	27
56	Construction of a Singleâ€Atom Nanozyme for Enhanced Chemodynamic Therapy and Chemotherapy. Chemistry - A European Journal, 2021, 27, 13418-13425.	1.7	19
57	Design of Aligned Porous Carbon Films with Singleâ€Atom Co–N–C Sites for High urrentâ€Đensity Hydrogen Generation. Advanced Materials, 2021, 33, e2103533.	11.1	76
58	Controllable Synthesis of Vacancy-Defect Cu Site and Its Catalysis for the Manufacture of Vinyl Chloride Monomer. ACS Catalysis, 2021, 11, 11016-11028.	5.5	25
59	Well-defined coordination environment breaks the bottleneck of organic synthesis: Single-atom palladium catalyzed hydrosilylation of internal alkynes. Nano Research, 2022, 15, 1500-1508.	5.8	51
60	Recent Developments of Microenvironment Engineering of Singleâ€Atom Catalysts for Oxygen Reduction toward Desired Activity and Selectivity. Advanced Functional Materials, 2021, 31, 2103857.	7.8	77
61	Synergistic Catalysis by Singleâ€Atom Catalysts and Redox Mediator to Improve Lithium–Oxygen Batteries Performance. Small, 2021, 17, e2101620.	5.2	16
62	Theoretical design of ruthenium single-atom catalysts with different substrates for acetylene hydrochlorination. Molecular Catalysis, 2021, 513, 111826.	1.0	3
63	First-Principles Study on the Mechanism of Nitrobenzene Reduction to Aniline Catalyzed by a N-Doped Carbon-Supported Cobalt Single-Atom Catalyst. Journal of Physical Chemistry C, 2021, 125, 19171-19182.	1.5	15
64	Multicapacitor Approach to Interfacial Proton-Coupled Electron Transfer Thermodynamics at Constant Potential. Journal of Physical Chemistry C, 2021, 125, 21891-21901.	1.5	14
65	Direct conversion of methane to oxygenates on porous organic polymers supported Rh mononuclear complex catalyst under mild conditions. Applied Catalysis B: Environmental, 2021, 293, 120208.	10.8	15
66	Rational design of palladium single-atoms and clusters supported on silicoaluminophosphate-31 by a photochemical route for chemoselective hydrodeoxygenation of vanillin. Nano Research, 2021, 14, 4347-4355.	5.8	43
67	Atomically precise control in the design of low-nuclearity supported metal catalysts. Nature Reviews Materials, 2021, 6, 969-985.	23.3	78
68	Catalytic Materials: Concepts to Understand the Pathway to Implementation. Industrial & Engineering Chemistry Research, 2021, 60, 18545-18559.	1.8	25
69	Construction of Cu nanoparticles embedded nitrogen–doped carbon derived from biomass for highly boosting the nitrobenzene reduction: An experimental and theoretical understanding. Chemical Engineering Journal, 2021, 419, 129640.	6.6	25
70	Fe-based single-atom catalysis for oxidizing contaminants of emerging concern by activating peroxides. Journal of Hazardous Materials, 2021, 418, 126294.	6.5	34
71	Multifunctional Electrocatalysis on Single-Site Metal Catalysts: A Computational Perspective. Catalysts, 2021, 11, 1165.	1.6	11
72	Anchoring Sites Engineering in Singleâ€Atom Catalysts for Highly Efficient Electrochemical Energy Conversion Reactions. Advanced Materials, 2021, 33, e2102801.	11.1	64

#	Article	IF	CITATIONS
73	Nitrogen Vacancy Induced Coordinative Reconstruction of Singleâ€Atom Ni Catalyst for Efficient Electrochemical CO ₂ Reduction. Advanced Functional Materials, 2021, 31, 2107072.	7.8	89
74	Electron-Rich Ruthenium Single-Atom Alloy for Aqueous Levulinic Acid Hydrogenation. ACS Catalysis, 2021, 11, 12146-12158.	5.5	50
75	Singleâ€Atom Catalystsâ€Enabled Reductive Upgrading of CO ₂ . ChemCatChem, 2021, 13, 4859-4877.	1.8	10
76	Boosting the Electrocatalytic Activity of Feâ^'Co Dualâ€Atom Catalysts for Oxygen Reduction Reaction by Ligandâ€Modification Engineering. ChemCatChem, 2021, 13, 4645-4651.	1.8	11
77	Effect of coordination surroundings of isolated metal sites on electrocatalytic performances. Journal of Power Sources, 2021, 506, 230143.	4.0	15
78	Single sites in heterogeneous catalysts: separating myth from reality. Trends in Chemistry, 2021, 3, 850-862.	4.4	23
79	Singlet-to-Triplet Spin Transitions Facilitate Selective 1-Butene Formation during Ethylene Dimerization in Ni(II)-MFU-4 <i>l</i> . Journal of Physical Chemistry C, 2021, 125, 22036-22043.	1.5	5
80	Covalent organic framework-supported Zn single atom catalyst for highly efficient N-formylation of amines with CO2 under mild conditions. Applied Catalysis B: Environmental, 2021, 294, 120238.	10.8	43
81	Two-dimensional pyrite supported transition metal for highly-efficient electrochemical CO2 reduction: A theoretical screening study. Chemical Engineering Journal, 2021, 424, 130541.	6.6	31
82	One-step synthesis of single palladium atoms in WO2.72 with high efficiency in chemoselective hydrodeoxygenation of vanillin. Applied Catalysis B: Environmental, 2021, 298, 120535.	10.8	61
83	Photoinduction of palladium single atoms supported on defect-containing γ-AlOOH nanoleaf for efficient trans-stilbene epoxidation. Chemical Engineering Journal, 2022, 429, 132149.	6.6	8
84	Advanced electrocatalysts with Dual-metal doped carbon Materials: Achievements and challenges. Chemical Engineering Journal, 2022, 428, 132558.	6.6	28
85	1 T-MoSe2 monolayer supported single Pd atom as a highly-efficient bifunctional catalyst for ORR/OER. Journal of Colloid and Interface Science, 2022, 605, 155-162.	5.0	55
86	Palladium-based single atom catalysts for high-performance electrochemical production of hydrogen peroxide. Chemical Engineering Journal, 2022, 428, 131112.	6.6	29
87	Catalytic enhancement of small sizes of CeO2 additives on Ir/Al2O3 for toluene oxidation. Applied Surface Science, 2022, 571, 151200.	3.1	23
88	Single-atom catalysts for CO oxidation, CO2 reduction, and O2 electrochemistry. Journal of Energy Chemistry, 2022, 65, 254-279.	7.1	56
89	Ultrahigh surface density of Co-N2C single-atom-sites for boosting photocatalytic CO2 reduction to methanol. Applied Catalysis B: Environmental, 2022, 300, 120695.	10.8	80
90	An oxygen-coordinated molybdenum single atom catalyst for efficient electrosynthesis of ammonia. Chemical Communications, 2021, 57, 5410-5413.	2.2	24

#	Article	IF	CITATIONS
91	A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy and Environmental Science, 2021, 14, 3522-3531.	15.6	243
92	Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy and Environmental Science, 2021, 14, 2809-2858.	15.6	198
93	Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis. Energy and Environmental Science, 2021, 14, 2954-3009.	15.6	188
94	Isolated Palladium Atoms Dispersed on Silicoaluminophosphate-31 (SAPO-31) for the Semihydrogenation of Alkynes. ACS Applied Nano Materials, 2021, 4, 861-868.	2.4	11
95	Acid-Stable and Active M–N–C Catalysts for the Oxygen Reduction Reaction: The Role of Local Structure. ACS Catalysis, 2021, 11, 13102-13118.	5.5	59
96	Single-Atom (Iron-Based) Catalysts: Synthesis and Applications. Chemical Reviews, 2021, 121, 13620-13697.	23.0	136
97	Facile Synthesis of Graphene-like Porous Carbon with Densely Populated Co-N _{<i>x</i>} Sites as Efficient Bifunctional Electrocatalysts for Rechargeable Zinc–Air Batteries. ACS Applied Energy Materials, 2021, 4, 11545-11554.	2.5	8
98	How can the Dualâ€∎tom Catalyst FeCo–NC Surpass Singleâ€∎tom Catalysts Fe–NC/Co–NC in CO ₂ RR? – CO Intermediate Assisted Promotion via a Synergistic Effect. Energy and Environmental Materials, 2023, 6, .	7.3	24
99	Water Splitting by a C60 Supported Single Vanadium Atom. Angewandte Chemie, 0, , .	1.6	0
100	Water Splitting by C ₆₀ â€Supported Vanadium Single Atoms. Angewandte Chemie - International Edition, 2021, 60, 27095-27101.	7.2	25
101	Structure sensitivity of nitrogen–doped carbon–supported metal catalysts in dihalomethane hydrodehalogenation. Journal of Catalysis, 2021, 404, 291-305.	3.1	5
102	Synergistic Effect of Graphdiyne-based Electrocatalysts. Chemical Research in Chinese Universities, 2021, 37, 1242-1256.	1.3	7
103	Dynamic evolution of nitrogen and oxygen dual-coordinated single atomic copper catalyst during partial oxidation of benzene to phenol. Nano Research, 2022, 15, 3017-3025.	5.8	29
104	Ammonia electrosynthesis on single-atom catalysts: Mechanistic understanding and recent progress. Chemical Physics Reviews, 2021, 2, .	2.6	17
105	Zeolite-encapsulated single-atom catalysts for efficient CO2 conversion. Journal of CO2 Utilization, 2021, 54, 101777.	3.3	11
106	Single Non-Noble Metal Atom Doped C2N Catalyst for Chemoselective Hydrogenation of 3-Nitrostyrene. Physical Chemistry Chemical Physics, 2021, 23, 25761-25768.	1.3	1
107	Thermal Atomization of Platinum Nanoparticles into Single Atoms: An Effective Strategy for Engineering High-Performance Nanozymes. Journal of the American Chemical Society, 2021, 143, 18643-18651.	6.6	174
108	Emerging Singleâ€Atom Catalysts/Nanozymes for Catalytic Biomedical Applications. Advanced Healthcare Materials, 2022, 11, e2101682	3.9	26

#	Article	IF	CITATIONS
109	Advances of single-atom catalysts for applications in persulfate-based advanced oxidation technologies. Current Opinion in Chemical Engineering, 2021, 34, 100757.	3.8	20
110	Single-atom-based catalysts for photoelectrocatalysis: challenges and opportunities. Journal of Materials Chemistry A, 2022, 10, 5878-5888.	5.2	17
111	Reduction of N ₂ to NH ₃ catalyzed by a Keggin-type polyoxometalate-supported dual-atom catalyst. Inorganic Chemistry Frontiers, 2022, 9, 845-858.	3.0	7
112	A Theory-Guided X-ray Absorption Spectroscopy Approach for Identifying Active Sites in Atomically Dispersed Transition-Metal Catalysts. Journal of the American Chemical Society, 2021, 143, 20144-20156.	6.6	28
113	Understanding Single-Atom Catalysis in View of Theory. Jacs Au, 2021, 1, 2130-2145.	3.6	86
114	Optimizing Microenvironment of Asymmetric N,Sâ€Coordinated Singleâ€Atom Fe via Axial Fifth Coordination toward Efficient Oxygen Electroreduction. Small, 2022, 18, e2105387.	5.2	72
115	Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. Nature Nanotechnology, 2022, 17, 174-181.	15.6	279
116	Singleâ€Atomic Ruthenium Active Sites on Ti ₃ C ₂ MXene with Oxygenâ€Terminated Surface Synchronize Enhanced Activity and Selectivity for Electrocatalytic Nitrogen Reduction to Ammonia. ChemSusChem, 2022, 15, e202102352.	3.6	17
117	Fully exposed cobalt nanoclusters anchored on nitrogen-doped carbon synthesized by a host-guest strategy for semi-hydrogenation of phenylacetylene. Journal of Catalysis, 2022, 405, 499-507.	3.1	16
118	Sustainable oxidation catalysis supported by light: Fe-poly (heptazine imide) as a heterogeneous single-atom photocatalyst. Applied Catalysis B: Environmental, 2022, 304, 120965.	10.8	46
119	Carbonâ€Supported Bimetallic Rutheniumâ€Iridium Catalysts for Selective and Stable Hydrodebromination of Dibromomethane. ChemCatChem, 0, , .	1.8	5
120	Oneâ€step Preparation of Fe/N/C Singleâ€atom Catalysts Containing Feâ^'N4 Sites from an Iron Complex Precursor with 5,6,7,8â€Tetraphenylâ€1,12â€diazatriphenylene Ligands. Chemistry - A European Journal, 2021, , .	1.7	2
121	Single-atom catalyst cathodes for lithium–oxygen batteries: a review. Nano Futures, 2022, 6, 012002.	1.0	4
122	A general strategy for preparing pyrrolic-N4 type single-atom catalysts via pre-located isolated atoms. Nature Communications, 2021, 12, 6806.	5.8	81
123	Metal–organic framework with atomically dispersed Ni–N4 sites for greatly-raised visible-light photocatalytic H2 production. Chemical Engineering Journal, 2022, 431, 133944.	6.6	20
124	Atomically dispersed catalysts for small molecule electrooxidation in direct liquid fuel cells. Journal of Energy Chemistry, 2022, 68, 439-453.	7.1	18
125	Autonomous Reaction Network Exploration in Homogeneous and Heterogeneous Catalysis. Topics in Catalysis, 2022, 65, 6-39.	1.3	27
126	Double-atom catalysts for energy-related electrocatalysis applications: a theoretical perspective. Journal Physics D: Applied Physics, 2022, 55, 203001.	1.3	57

#	ARTICLE	IF	Citations
127	An organometal halide perovskite supported Pt single-atom photocatalyst for H ₂ evolution. Energy and Environmental Science, 2022, 15, 1271-1281.	15.6	97
128	Biomass-assisted approach for large-scale construction of multi-functional isolated single-atom site catalysts. Nano Research, 2022, 15, 3980-3990.	5.8	20
129	Singleâ€Atom Reversible Lithiophilic Sites toward Stable Lithium Anodes. Advanced Energy Materials, 2022, 12, .	10.2	49
130	Inducing atomically dispersed Cl–FeN ₄ sites for ORRs in the SiO ₂ -mediated synthesis of highly mesoporous N-enriched C-networks. Journal of Materials Chemistry A, 2022, 10, 6153-6164.	5.2	7
131	Noble-metal based single-atom catalysts for the water-gas shift reaction. Chemical Communications, 2021, 58, 208-222.	2.2	13
132	Single-atom catalysts for photocatalytic energy conversion. Joule, 2022, 6, 92-133.	11.7	229
133	Au single atom-anchored WO ₃ /TiO ₂ nanotubes for the photocatalytic degradation of volatile organic compounds. Journal of Materials Chemistry A, 2022, 10, 6078-6085.	5.2	36
134	Modulating the Local Coordination Environment of Singleâ€Atom Catalysts for Enhanced Catalytic Performance in Hydrogen/Oxygen Evolution Reaction. Small, 2022, 18, e2105680.	5.2	56
135	Copper and palladium bimetallic sub-nanoparticles were stabilized on modified polyaniline materials as an efficient catalyst to promote C–C coupling reactions in aqueous solution. Nanoscale, 2022, 14, 2256-2265.	2.8	17
136	Multifunctional Catalytic Properties of Pd/CNT Catalysts for 4â€Nitrophenol Reduction. ChemCatChem, 2022, 14, .	1.8	11
137	CO oxidation on MgAl ₂ O ₄ supported lr _{<i>n</i>} : activation of lattice oxygen in the subnanometer regime and emergence of nuclearity-activity volcano. Journal of Materials Chemistry A, 2022, 10, 4266-4278.	5.2	4
138	Coordination modulation of iridium single-atom catalyst maximizing water oxidation activity. Nature Communications, 2022, 13, 24.	5.8	99
139	Atomically Defined Undercoordinated Copper Active Sites over Nitrogenâ€Doped Carbon for Aerobic Oxidation of Alcohols. Small, 2022, 18, e2106614.	5.2	15
140	Regulating the coordination environment of Ru single-atom catalysts and unravelling the reaction path of acetylene hydrochlorination. Green Energy and Environment, 2023, 8, 1141-1153.	4.7	13
141	Dualâ€metal singleâ€atomic catalyst: The challenge in synthesis, characterization, and mechanistic investigation for electrocatalysis. SmartMat, 2022, 3, 533-564.	6.4	35
142	TMN4 complex embedded graphene as efficient and selective electrocatalysts for chlorine evolution reactions. Journal of Electroanalytical Chemistry, 2022, 907, 116071.	1.9	16
143	Atomic ruthenium stabilized on vacancy-rich boron nitride for selective hydrogenation of esters. Journal of Catalysis, 2022, 406, 115-125.	3.1	16
144	A Universal Singleâ€Atom Coating Strategy Based on Tannic Acid Chemistry for Multifunctional Heterogeneous Catalysis. Angewandte Chemie, 2022, 134, .	1.6	9

#	Article	IF	CITATIONS
145	A Universal Singleâ€Atom Coating Strategy Based on Tannic Acid Chemistry for Multifunctional Heterogeneous Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	34
146	Bimetal single atom on defect-tailoring carbon nitride that boosts photocatalytic hydrogen evolution and superfast contaminant degradation. Separation and Purification Technology, 2022, 287, 120556.	3.9	10
147	Single-atom Pt-anchored Zn0.5Cd0.5S boosted photoelectrochemical immunoassay of prostate-specific antigen. Biosensors and Bioelectronics, 2022, 202, 114006.	5.3	28
148	A fully-conjugated covalent organic framework-derived carbon supporting ultra-close single atom sites for ORR. Applied Catalysis B: Environmental, 2022, 307, 121147.	10.8	42
149	Metal coordination in C ₂ N-like materials towards dual atom catalysts for oxygen reduction. Journal of Materials Chemistry A, 2022, 10, 6023-6030.	5.2	21
150	Exploring Highly Efficient Dual-Metal-Site Electrocatalysts for Oxygen Reduction Reaction by First Principles Screening. Journal of the Electrochemical Society, 2022, 169, 026524.	1.3	9
151	Surface science approach to the heterogeneous cycloaddition of CO2 to epoxides catalyzed by site-isolated metal complexes and single atoms: a review. Green Chemical Engineering, 2022, 3, 210-227.	3.3	26
152	Intrinsic Activity and Selectivity Enhancement of Single-Atom Rh in Syngas-to-C2 Oxygenates by Engineering the Local Coordination Atom. SSRN Electronic Journal, 0, , .	0.4	0
153	Computational screening of single-atom catalysts supported by VS ₂ monolayers for electrocatalytic oxygen reduction/evolution reactions. Nanoscale, 2022, 14, 6902-6911.	2.8	30
154	Robust Ru-N Metal-Support Interaction to Promote Self-Powered H2 Production Assisted by Hydrazine Oxidation. SSRN Electronic Journal, 0, , .	0.4	0
155	Unique catalytic properties of Ni–Ir alloy for the hydrogenation of <i>N</i> -heteroaromatics. Catalysis Science and Technology, 2022, 12, 2420-2425.	2.1	4
156	Higher loadings of Pt single atoms and clusters over reducible metal oxides: application to C–O bond activation. Catalysis Science and Technology, 2022, 12, 2920-2928.	2.1	7
157	Single-atom catalysts for the upgrading of biomass-derived molecules: an overview of their preparation, properties and applications. Green Chemistry, 2022, 24, 2722-2751.	4.6	17
158	Dual-metal atom incorporated N-doped graphenes as oxygen evolution reaction electrocatalysts: high activities achieved by site synergies. Journal of Materials Chemistry A, 2022, 10, 8309-8323.	5.2	18
159	Conversion of biomass-derived feedstocks into value-added chemicals over single-atom catalysts. Green Chemistry, 2022, 24, 2267-2286.	4.6	45
160	Tuning Single Metal Atoms Anchored on Graphidyne for Highly Efficient and Selective Nitrate Electroreduction to Ammonia: A Computational Study. SSRN Electronic Journal, 0, , .	0.4	0
161	A review on the synthesis and applications of sustainable copper-based nanomaterials. Green Chemistry, 2022, 24, 3502-3573.	4.6	23
162	Strategies for boosting the activity of single-atom catalysts for future energy applications. Journal of Materials Chemistry A, 2022, 10, 10297-10325.	5.2	14

#	Article	IF	CITATIONS
163	Single metal atoms catalysts—Promising candidates for next generation energy storage and conversion devices. EcoMat, 2022, 4, .	6.8	28
164	Synthesis of cobalt single atom catalyst by a solid-state transformation strategy for direct C-C cross-coupling of primary and secondary alcohols. Nano Research, 2022, 15, 4023-4031.	5.8	16
165	Controlled Formation of Dimers and Spatially Isolated Atoms in Bimetallic Auâ€Ru Catalysts via Carbonâ€Host Functionalization. Small, 2022, 18, e2200224.	5.2	9
166	A General Strategy for Engineering Single-Metal Sites on 3D Porous N, P Co-Doped Ti ₃ C ₂ T _X MXene. ACS Nano, 2022, 16, 4116-4125.	7.3	63
170	Graphene oxide-derived single-atom catalysts for electrochemical energy conversion. Rare Metals, 2022, 41, 1703-1726.	3.6	37
172	Automated Image Analysis for Single-Atom Detection in Catalytic Materials by Transmission Electron Microscopy. Journal of the American Chemical Society, 2022, 144, 8018-8029.	6.6	33
173	Experimental and Theoretical Investigation of Metal–Support Interactions in Metal-Oxide-Supported Rhenium Materials. Journal of Physical Chemistry C, 2022, 126, 4472-4482.	1.5	5
174	Constructing atomic Co1–N4 sites in 2D polymeric carbon nitride for boosting photocatalytic hydrogen harvesting under visible light. International Journal of Hydrogen Energy, 2022, 47, 12592-12604.	3.8	8
175	Challenges and Opportunities for Renewable Ammonia Production via Plasmonâ€Assisted Photocatalysis. Advanced Energy Materials, 2022, 12, .	10.2	18
176	Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts?. Chemical Reviews, 2022, 122, 8594-8757.	23.0	118
177	Alkali ion-promoted palladium subnanoclusters stabilized on porous alumina nanosheets with enhanced catalytic activity for benzene oxidation. Nano Research, 2022, 15, 5912-5921.	5.8	13
178	Top-down synthetic strategies toward single atoms on the rise. Matter, 2022, 5, 788-807.	5.0	28
179	Atom-by-Atom Synthesis of Multiatom-Supported Catalytic Clusters by Liquid-Phase Atomic Layer Deposition. ACS Sustainable Chemistry and Engineering, 2022, 10, 3455-3465.	3.2	3
180	Adsorption of Transition-Metal Clusters on Graphene and N-Doped Graphene: A DFT Study. Langmuir, 2022, 38, 3694-3710.	1.6	23
181	Size-Dependent Pt Nanoparticle/Carbon-Catalyzed Hydrogenation of 6-Chloroquinoline. ACS Applied Nano Materials, 2022, 5, 4252-4259.	2.4	4
182	Revealing the Origin of Nitrogen Electroreduction Activity of Molybdenum Disulfide Supported Iron Atoms. Journal of Physical Chemistry C, 2022, 126, 5180-5188.	1.5	22
183	Slow Synthesis Methodologyâ€Directed Immiscible Octahedral Pd _{<i>x</i>} Rh _{1â~'<i>x</i>} Dualâ€Atomâ€5ite Catalysts for Superior Threeâ€Way Catalytic Activities over Rh. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
184	Single-atom heterogeneous catalysts for sustainable organic synthesis. Trends in Chemistry, 2022, 4, 264-276.	4.4	27

#	Article	IF	CITATIONS
185	Singleâ€Atom Tailored Hierarchical Transition Metal Oxide Nanocages for Efficient Lithium Storage. Small, 2022, 18, e2200367.	5.2	6
186	Rapid synthesis of Pd single-atom/cluster as highly active catalysts for Suzuki coupling reactions. Chinese Journal of Catalysis, 2022, 43, 1058-1065.	6.9	16
187	Unique catalytic mechanisms of methanol dehydrogenation at Pd-doped ceria: A DFT+U study. Journal of Chemical Physics, 2022, 156, 134701.	1.2	2
188	Recent advances in single-atom catalysts for thermally driven reactions. Chemical Engineering Science, 2022, 255, 117654.	1.9	2
189	Slow Synthesis Methodologyâ€Directed Immiscible Octahedral Pd _{<i>x</i>} Rh _{1â`'<i>x</i>} Dualâ€Atomâ€Site Catalysts for Superior Threeâ€Way Catalytic Activities over Rh. Angewandte Chemie, 2022, 134, .	1.6	4
190	How computations accelerate electrocatalyst discovery. CheM, 2022, 8, 1575-1610.	5.8	23
191	Single Nickel sites - easy separation and high-performance catalyst for the production of β-Nitro alcohols. Separation and Purification Technology, 2022, 289, 120769.	3.9	5
192	Data-driven methods to predict the stability metrics of catalytic nanoparticles. Current Opinion in Chemical Engineering, 2022, 36, 100797.	3.8	5
193	Transition metal-based single-atom catalysts (TM-SACs); rising materials for electrochemical CO2 reduction. Journal of Energy Chemistry, 2022, 70, 444-471.	7.1	44
194	Tuning single metal atoms anchored on graphdiyne for highly efficient and selective nitrate electroreduction to ammonia under aqueous environments: A computational study. Applied Surface Science, 2022, 592, 153213.	3.1	27
195	Cu clusters immobilized on Cd-defective cadmium sulfide nano-rods towards photocatalytic CO2 reduction. Journal of Materials Science and Technology, 2022, 118, 54-63.	5.6	44
196	Redox-Driven Reversible Structural Evolution of Isolated Silver Atoms Anchored to Specific Sites on γ-Al ₂ O ₃ . ACS Catalysis, 2022, 12, 544-559.	5.5	16
197	Cyclized Polyacrylonitrile as a Promising Support for Single Atom Metal Catalyst with Synergistic Active Site. Small, 2022, 18, e2104142.	5.2	8
198	Mechanistic and Electronic Insights into a Working NiAu Single-Atom Alloy Ethanol Dehydrogenation Catalyst. Journal of the American Chemical Society, 2021, 143, 21567-21579.	6.6	28
199	Metalâ€Free Boron/Phosphorus Coâ€Doped Nanoporous Carbon for Highly Efficient Benzyl Alcohol Oxidation. Advanced Science, 2022, 9, e2200518.	5.6	16
200	Facile Synthesis of Single Iron Atoms over MoS ₂ Nanosheets via Spontaneous Reduction for Highly Efficient Selective Oxidation of Alcohols. Small, 2022, 18, e2201092.	5.2	23
201	Boosting Electrochemical Styrene Transformation via Tandem Water Oxidation over a Singleâ€Atom Cr ₁ /CoSe ₂ Catalyst. Advanced Materials, 2022, 34, e2200302.	11.1	22
202	High Pt-mass activity of PtIV1/β-MnO ₂ surface for low-temperature oxidation of CO under O ₂ -rich conditions. Catalysis Science and Technology, 2022, 12, 2749-2754.	2.1	1

#	Article	IF	CITATIONS
203	Catalysis research in rechargeable lithium-sulfur batteries. Chinese Science Bulletin, 2022, 67, 2906-2920.	0.4	2
204	Performance descriptors of nanostructured metal catalysts for acetylene hydrochlorination. Nature Nanotechnology, 2022, 17, 606-612.	15.6	39
205	Calcined Co(II)-Chelated Polyazomethine as Cathode Catalyst of Anion Exchange Membrane Fuel Cells. Polymers, 2022, 14, 1784.	2.0	8
206	Experimental and Theoretical Advances on Single Atom and Atomic Clusterâ€Decorated Lowâ€Dimensional Platforms towards Superior Electrocatalysts. Advanced Energy Materials, 2022, 12, .	10.2	25
207	Effect of support hydrophobicity of halloysiteâ€based catalysts on the polyalphaolefin hydrofinishing performance. Applied Organometallic Chemistry, 2022, 36, .	1.7	16
208	PdFe Singleâ€Atom Alloy Metallene for N ₂ Electroreduction. Angewandte Chemie, 2022, 134, .	1.6	69
209	PdFe Singleâ€Atom Alloy Metallene for N ₂ Electroreduction. Angewandte Chemie - International Edition, 2022, 61, e202205923.	7.2	97
210	Cooperative catalytic nanokinetics. Chemical Engineering Science, 2022, 256, 117684.	1.9	1
211	Efficient and cost-effective ORR electrocatalysts based on low content transition metals highly dispersed on C3N4/super-activated carbon composites. Carbon, 2022, 196, 378-390.	5.4	19
212	Engineering the morphology and electronic structure of atomic cobalt-nitrogen-carbon catalyst with highly accessible active sites for enhanced oxygen reduction. Journal of Energy Chemistry, 2022, 73, 469-477.	7.1	26
213	Atomistic Understanding of Two-dimensional Electrocatalysts from First Principles. Chemical Reviews, 2022, 122, 10675-10709.	23.0	60
214	Iron Single-Atom nanocatalysts in response to tumor microenvironment for highly efficient Chemo-chemodynamic therapy. Journal of Industrial and Engineering Chemistry, 2022, 112, 210-217.	2.9	6
215	Revealing the Structure of Single Cobalt Sites in Carbon Nitride for Photocatalytic CO ₂ Reduction. Journal of Physical Chemistry C, 2022, 126, 8596-8604.	1.5	11
216	Design principles of hydrogen-evolution-suppressing single-atom catalysts for aqueous electrosynthesis. Chem Catalysis, 2022, 2, 1277-1287.	2.9	19
217	Isolating Single and Few Atoms for Enhanced Catalysis. Advanced Materials, 2022, 34, e2201796.	11.1	84
218	Heterogeneous carbon metal-free catalysts. , 2022, , 195-212.		0
219	Synergy between homogeneous and heterogeneous catalysis. Catalysis Science and Technology, 2022, 12, 6623-6649.	2.1	29
220	Engineering ultrafine Ir nanocrystals for electrochemical hydrogen evolution with highly superior mass activity. Catalysis Today, 2023, 410, 295-301.	2.2	4

#	Article	IF	CITATIONS
221	Dispersed single-atom Co and Pd nanoparticles forming a PdCo bimetallic catalyst for CO oxidation. Molecular Catalysis, 2022, 526, 112377.	1.0	3
222	Charge transfer and orbital reconstruction of non-noble transition metal single-atoms anchored on Ti2CT -MXenes for highly selective CO2 electrochemical reduction. Chinese Journal of Catalysis, 2022, 43, 1906-1917.	6.9	29
223	Intrinsic activity and selectivity enhancement of single-atom Rh in syngas-to-C2 oxygenates by engineering the local coordination atom. Applied Surface Science, 2022, 597, 153755.	3.1	3
224	Evaluating acid and metallic site proximity in Pt/l³-Al ₂ O ₃ –Cl bifunctional catalysts through an atomic scale geometrical model. Nanoscale, 2022, 14, 8753-8765.	2.8	6
225	Single Atom Catalysts for Selective Methane Oxidation to Oxygenates. ACS Nano, 2022, 16, 8557-8618.	7.3	48
226	Impact of Coordination Environment on Single-Atom-Embedded C ₃ N for Oxygen Electrocatalysis. ACS Sustainable Chemistry and Engineering, 2022, 10, 7692-7701.	3.2	14
227	Recent Progress in Thermal Conversion of CO ₂ via Singleâ€Atom Site Catalysis. Small Structures, 2022, 3, .	6.9	44
228	Recent strategies for activating the basal planes of transition metal dichalcogenides towards hydrogen production. Journal of Materials Chemistry A, 2022, 10, 19067-19089.	5.2	27
229	Using Coordination Chemistry Concepts to Unravel Electronic Properties of SACs in Bidimensional Materials. Journal of Physical Chemistry C, 2022, 126, 9615-9622.	1.5	5
231	Two-Dimensional Ultrathin Silica Films. Chemical Reviews, 0, , .	23.0	9
231 232	Two-Dimensional Ultrathin Silica Films. Chemical Reviews, 0, , . Support Amorphization Engineering Regulates Single-Atom Ru as an Electron Pump for Nitrogen Photofixation. ACS Catalysis, 2022, 12, 8139-8146.	23.0 5.5	9 20
231 232 233	Two-Dimensional Ultrathin Silica Films. Chemical Reviews, 0, , . Support Amorphization Engineering Regulates Single-Atom Ru as an Electron Pump for Nitrogen Photofixation. ACS Catalysis, 2022, 12, 8139-8146. Orbital Dependence in Single-Atom Electrocatalytic Reactions. Journal of Physical Chemistry Letters, 2022, 13, 5969-5976.	23.0 5.5 2.1	9 20 18
231 232 233 233	Two-Dimensional Ultrathin Silica Films. Chemical Reviews, 0, , . Support Amorphization Engineering Regulates Single-Atom Ru as an Electron Pump for Nitrogen Photofixation. ACS Catalysis, 2022, 12, 8139-8146. Orbital Dependence in Single-Atom Electrocatalytic Reactions. Journal of Physical Chemistry Letters, 2022, 13, 5969-5976. N-Heterocyclic Carbene-Stabilized Gold Nanoclusters with Organometallic Motifs for Promoting Catalysis. Journal of the American Chemical Society, 2022, 144, 10844-10853.	23.0 5.5 2.1 6.6	9 20 18 51
231 232 233 234	Two-Dimensional Ultrathin Silica Films. Chemical Reviews, 0, , .Support Amorphization Engineering Regulates Single-Atom Ru as an Electron Pump for Nitrogen Photofixation. ACS Catalysis, 2022, 12, 8139-8146.Orbital Dependence in Single-Atom Electrocatalytic Reactions. Journal of Physical Chemistry Letters, 2022, 13, 5969-5976.N-Heterocyclic Carbene-Stabilized Gold Nanoclusters with Organometallic Motifs for Promoting Catalysis. Journal of the American Chemical Society, 2022, 144, 10844-10853.Mechanism of Catalytic Transfer Hydrogenation for Furfural Using Single Ni Atom Catalysts Anchored to Nitrogen-Doped Graphene Sheets. Inorganic Chemistry, 2022, 61, 9138-9146.	23.0 5.5 2.1 6.6 1.9	9 20 18 51
 231 232 233 234 235 236 	Two-Dimensional Ultrathin Silica Films. Chemical Reviews, 0, , . Support Amorphization Engineering Regulates Single-Atom Ru as an Electron Pump for Nitrogen Photofixation. ACS Catalysis, 2022, 12, 8139-8146. Orbital Dependence in Single-Atom Electrocatalytic Reactions. Journal of Physical Chemistry Letters, 2022, 13, 5969-5976. N-Heterocyclic Carbene-Stabilized Gold Nanoclusters with Organometallic Motifs for Promoting Catalysis. Journal of the American Chemical Society, 2022, 144, 10844-10853. Mechanism of Catalytic Transfer Hydrogenation for Furfural Using Single Ni Atom Catalysts Anchored to Nitrogen-Doped Graphene Sheets. Inorganic Chemistry, 2022, 61, 9138-9146. Elucidation of Metal Local Environments in Singleâ€Atom Catalysts Based on Carbon Nitrides. Small, 2022, 18, .	23.0 5.5 2.1 6.6 1.9 5.2	 9 20 18 51 10 15
231 232 233 234 235 236	Two-Dimensional Ultrathin Silica Films. Chemical Reviews, 0, , . Support Amorphization Engineering Regulates Single-Atom Ru as an Electron Pump for Nitrogen Photofixation. ACS Catalysis, 2022, 12, 8139-8146. Orbital Dependence in Single-Atom Electrocatalytic Reactions. Journal of Physical Chemistry Letters, 2022, 13, 5969-5976. N-Heterocyclic Carbene-Stabilized Gold Nanoclusters with Organometallic Motifs for Promoting Catalysis. Journal of the American Chemical Society, 2022, 144, 10844-10853. Mechanism of Catalytic Transfer Hydrogenation for Furfural Using Single Ni Atom Catalysts Anchored to Nitrogen-Doped Graphene Sheets. Inorganic Chemistry, 2022, 61, 9138-9146. Elucidation of Metal Local Environments in Singleâ€Atom Catalysts Based on Carbon Nitrides. Small, 2022, 18, . Robust Ru-N metal-support interaction to promote self-powered H2 production assisted by hydrazine oxidation. Nano Energy, 2022, 100, 107467.	23.0 5.5 2.1 6.6 1.9 5.2 8.2	 9 20 18 51 10 15 35
 231 232 233 234 235 236 237 238 	Two-Dimensional Ultrathin Silica Films. Chemical Reviews, O, , . Support Amorphization Engineering Regulates Single-Atom Ru as an Electron Pump for Nitrogen Photofixation. ACS Catalysis, 2022, 12, 8139-8146. Orbital Dependence in Single-Atom Electrocatalytic Reactions. Journal of Physical Chemistry Letters, 2022, 13, 5969-5976. N-Heterocyclic Carbene-Stabilized Gold Nanoclusters with Organometallic Motifs for Promoting Catalysis. Journal of the American Chemical Society, 2022, 144, 10844-10853. Mechanism of Catalytic Transfer Hydrogenation for Furfural Using Single Ni Atom Catalysts Anchored to Nitrogen-Doped Graphene Sheets. Inorganic Chemistry, 2022, 61, 9138-9146. Elucidation of Metal Local Environments in Singleâ€Atom Catalysts Based on Carbon Nitrides. Small, 2022, 18, . Robust Ru-N metal-support interaction to promote self-powered H2 production assisted by hydrazine oxidation. Nano Energy, 2022, 100, 107467. Ultra-efficient N2 electroreduction achieved over a rhodium single-atom catalyst (Rh1/MnO2) in water-in-salt electrolyte. Applied Catalysis B: Environmental, 2022, 316, 121651.	23.0 5.5 2.1 6.6 1.9 5.2 8.2 8.2	 9 20 18 51 10 15 35 56

#	Article	IF	CITATIONS
240	Assessing the environmental benefit of palladium-based single-atom heterogeneous catalysts for Sonogashira coupling. Green Chemistry, 2022, 24, 6879-6888.	4.6	10
241	Tuning the electronic, magnetic, and sensing properties of a single atom embedded microporous C ₃ N ₆ monolayer towards XO ₂ (X = C, N, S) gases. New Journal of Chemistry, 2022, 46, 13752-13765.	1.4	5
242	Emerging ruthenium single-atom catalysts for the electrocatalytic hydrogen evolution reaction. Journal of Materials Chemistry A, 2022, 10, 15370-15389.	5.2	19
243	Rareâ€Earth Singleâ€Atom Catalysts: A New Frontier in Photo/Electrocatalysis. Small Methods, 2022, 6, .	4.6	63
244	Homogeneity of Supported Singleâ€Atom Active Sites Boosting the Selective Catalytic Transformations. Advanced Science, 2022, 9, .	5.6	47
245	Ir single atoms modified Ni(OH)2 nanosheets on hierarchical porous nickel foam for efficient oxygen evolution. Nano Research, 2022, 15, 10014-10020.	5.8	17
246	Cobalt-Based Cathode Catalysts for Oxygen-Reduction Reaction in an Anion Exchange Membrane Fuel Cell. Membranes, 2022, 12, 699.	1.4	8
247	Theoretical understanding on all-solid frustrated Lewis pair sites of C ₂ N anchored by single metal atom. Journal of Chemical Physics, 0, , .	1.2	2
248	Calculation screening of Janus WSSe monolayer modified with single platinum group metal atom as efficient bifunctional oxygen electrocatalysts. Applied Catalysis A: General, 2022, 643, 118777.	2.2	6
249	Kinetics of two-step catalytic sequence on nanoclusters with limited cluster occupancy. Chemical Engineering Journal, 2022, 450, 138178.	6.6	1
250	2D Single-Atom Fe–N–C Catalyst Derived from a Layered Complex as an Oxygen Reduction Catalyst for PEMFCs. ACS Applied Energy Materials, 2022, 5, 8791-8799.	2.5	8
251	Density Functional Theory Studies on Boron-Modified Graphene Edges for Electroreduction of Nitrogen. ACS Applied Nano Materials, 2022, 5, 11270-11279.	2.4	7
252	Macro/Microâ€Environment RegulatingÂCarbonâ€Supported Singleâ€Atom Catalysts for Hydrogen/Oxygen Conversion Reactions. Small, 2022, 18, .	5.2	37
253	Modulating the strong metal-support interaction of single-atom catalysts via vicinal structure decoration. Nature Communications, 2022, 13, .	5.8	36
254	Presentation of gas-phase-reactant-accessible single-rhodium-atom catalysts for CO oxidation, <i>via</i> MOF confinement of an Anderson polyoxometalate. Journal of Materials Chemistry A, 2022, 10, 18226-18234.	5.2	9
255	Tuning the hybridization and charge polarization in metal nanoparticles dispersed over Schiff base functionalized SBA-15 enhances CO ₂ capture and conversion to formic acid. Journal of Materials Chemistry A, 2022, 10, 18354-18362.	5.2	3
256	Demonstration of no catalytical activity of Feâ€Nâ€C and Nbâ€Nâ€C electrocatalysts toward nitrogen reduction using inâ€line quantification. SusMat, 2022, 2, 476-486.	7.8	6
257	Lubricant hydrogenation over a functionalized clayâ€based Pd catalyst: A combined computational and experimental study. Applied Organometallic Chemistry, 2022, 36, .	1.7	7

#	Article	IF	CITATIONS
258	Spin State as a Participator for Demetalation Durability and Activity of Fe–N–C Electrocatalysts. Journal of Physical Chemistry C, 2022, 126, 13168-13181.	1.5	15
259	Crystalline Latticeâ€Confined Atomic Pt in Metal Carbides to Match Electronic Structures and Hydrogen Evolution Behaviors of Platinum. Advanced Materials, 2022, 34, .	11.1	67
260	Dehydrogenation of Ammonia Borane by Platinumâ€Nickel Dimers: Regulation of Heteroatom Interspace Boosts Bifunctional Synergetic Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	29
261	Rational highly dispersed ruthenium for reductive catalytic fractionation of lignocellulose. Nature Communications, 2022, 13, .	5.8	52
262	Single-Atom Pd Catalysts Supported on Covalent Triazine Frameworks for Hydrogen Production from Formic Acid. ACS Applied Nano Materials, 2022, 5, 12887-12896.	2.4	13
263	Preparation and Characterization of Model Homotopic Catalysts: Rh Adatoms, Nanoparticles, and Mixed Oxide Surfaces on Fe ₃ O ₄ (001). Journal of Physical Chemistry C, 2022, 126, 14448-14459.	1.5	1
264	Dehydrogenation of Ammonia Borane by Platinumâ€Nickel Dimers: Regulation of Heteroatom Interspace Boosts Bifunctional Synergetic Catalysis. Angewandte Chemie, 2022, 134, .	1.6	6
265	A general synthesis of single atom catalysts with controllable atomic and mesoporous structures. , 2022, 1, 658-667.		62
266	Main-group metal elements as promising active centers for single-atom catalyst toward nitric oxide reduction reaction. Npj 2D Materials and Applications, 2022, 6, .	3.9	12
267	Recent Progress in Fabrication and Application of BN Nanostructures and BN-Based Nanohybrids. Nanomaterials, 2022, 12, 2810.	1.9	24
268	Single-atom catalysts for thermochemical gas-phase reactions. Molecular Catalysis, 2022, 529, 112535.	1.0	1
269	Heterogeneous hydroformylation of alkenes by Rh-based catalysts. CheM, 2022, 8, 2630-2658.	5.8	35
270	Recent advances and perspectives in cobalt-based heterogeneous catalysts for photocatalytic water splitting, CO2 reduction, and N2 fixation. Chinese Journal of Catalysis, 2022, 43, 2273-2300.	6.9	45
271	Single Ni atom embedded Janus WSSe monolayer as a cost-effective electrocatalyst for oxygen evolution reaction. Molecular Catalysis, 2022, 530, 112625.	1.0	3
272	Coordinating single-atom catalysts on two-dimensional nanomaterials: A paradigm towards bolstered photocatalytic energy conversion. Coordination Chemistry Reviews, 2022, 471, 214743.	9.5	25
273	C2H2 hydrochlorination over the diatomic RuM catalysts anchored over the N-doped graphene: Influences of metal M type and coordination environment. Applied Surface Science, 2022, 604, 154583.	3.1	2
274	Use of Carbon Nitrides as Photoactive Supports in Singleâ€Atom Heterogeneous Catalysis for Synthetic Purposes. European Journal of Organic Chemistry, 2022, 2022, .	1.2	11
275	Rational design and structural engineering of heterogeneous single-atom nanozyme for biosensing. Biosensors and Bioelectronics, 2022, 216, 114662.	5.3	19

#	Article	IF	CITATIONS
276	Single-atom Zn on bipyridine-functionalized porous organic polymers towards highly efficient N-formylation of amines with CO2 under mild conditions. Journal of CO2 Utilization, 2022, 65, 102214.	3.3	2
277	Recent developments in electrode materials for the selective upgrade of biomass-derived platform molecules into high-value-added chemicals and fuels. Green Chemistry, 2022, 24, 7818-7868.	4.6	29
278	Rational design of 2D ferroelectric heterogeneous catalysts for controllable hydrogen evolution reaction. Journal of Materials Chemistry A, 2022, 10, 22228-22235.	5.2	7
279	p–d hybridization in CoFe LDH nanoflowers for efficient oxygen evolution electrocatalysis. Inorganic Chemistry Frontiers, 2022, 9, 5296-5304.	3.0	20
280	Single–atom catalysts based on Fenton-like/peroxymonosulfate system for water purification: design and synthesis principle, performance regulation and catalytic mechanism. Nanoscale, 2022, 14, 13861-13889.	2.8	18
281	Imaging of single atom catalysts. , 2022, , .		0
282	Single Atom Cobalt Catalyst Derived from Co-Pyrolysis of Vitamin B12 and Graphitic Carbon Nitride for Pms Activation to Degrade Emerging Pollutants. SSRN Electronic Journal, 0, , .	0.4	0
283	Unveiling the HER and ORR activity origin of isolated Co sites supported on N-doped carbon. MATEC Web of Conferences, 2022, 363, 01001.	0.1	0
284	Methane assisted catalyst synthesis and catalytic conversion of oleic acid. Journal of Materials Chemistry A, 2022, 10, 18671-18678.	5.2	5
285	Single-atom photocatalysts for CO2 reduction: Charge transfer and adsorption-activation mechanism. , 2022, 1, 127-138.		0
286	Axial O-ligand induced high ORR activity over Mo and N codoped graphene: A computational mechanism study. Surface Science, 2023, 727, 122193.	0.8	1
287	Progress in metal-organic-framework-based single-atom catalysts for environmental remediation. Coordination Chemistry Reviews, 2023, 474, 214855.	9.5	35
288	An Overview of Catalytic CO ₂ Conversion. ACS Symposium Series, 0, , 411-468.	0.5	1
289	Singleâ€Atom Catalysts on Covalent Triazine Frameworks: at the Crossroad between Homogenous and Heterogeneous Catalysis. Angewandte Chemie, 0, , .	1.6	0
290	Effects of Graphitic and Pyridinic Nitrogen Defects on Transition Metal Nucleation and Nanoparticle Formation on N-Doped Carbon Supports: Implications for Catalysis. ACS Applied Nano Materials, 2022, 5, 14922-14933.	2.4	3
291	Rational Design of Nanozymes Enables Advanced Biochemical Sensing. Chemosensors, 2022, 10, 386.	1.8	12
292	Theoretical Study on Nitrobenzene Hydrogenation by N-Doped Carbon-Supported Late Transition Metal Single-Atom Catalysts. ACS Catalysis, 2022, 12, 11518-11529.	5.5	18
293	The Progress and Outlook of Metal Single-Atom-Site Catalysis. Journal of the American Chemical Society, 2022, 144, 18155-18174.	6.6	151

#	Article	IF	CITATIONS
294	Advanced TEM Characterization for Single-atom Catalysts: from Ex-situ Towards In-situ. Chemical Research in Chinese Universities, 2022, 38, 1172-1184.	1.3	11
295	Advanced Strategies for Stabilizing Single-Atom Catalysts for Energy Storage and Conversion. Electrochemical Energy Reviews, 2022, 5, .	13.1	43
296	Single-Atom Iridium-Catalyst-Embedded Zeolitic Imidazolate Frameworks for CO ₂ and Glycerol Transformations. Chemistry of Materials, 2022, 34, 8153-8162.	3.2	6
297	Development of Crystalline Covalent Triazine Frameworks to Enable <i>In Situ</i> Preparation of Single-Atom Ni–N ₃ –C for Efficient Electrochemical CO ₂ Reduction. , 2022, 4, 2143-2150.		8
298	Highâ€Areal Density Singleâ€Atoms/Metal Oxide Nanosheets: A Microâ€Gas Blasting Synthesis and Superior Catalytic Properties. Angewandte Chemie, 2022, 134, .	1.6	3
299	Singleâ€Atom Materials as Electrochemical Sensors: Sensitivity, Selectivity, and Stability. Analysis & Sensing, 2023, 3, .	1.1	0
300	Surface-Modified Ultrathin Metal–Organic Framework Nanosheets as a Single-Site Iron Electrocatalyst for Oxygen Evolution Reaction. ACS Applied Nano Materials, 2022, 5, 15021-15029.	2.4	3
301	Singleâ€Atom Catalysts on Covalent Triazine Frameworks: at the Crossroad between Homogeneous and Heterogeneous Catalysis. Angewandte Chemie - International Edition, 2023, 62, .	7.2	23
302	Highâ€Areal Density Singleâ€Atoms/Metal Oxide Nanosheets: A Microâ€Gas Blasting Synthesis and Superior Catalytic Properties. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
303	Metal–Metal Bond <i>Umpolung</i> in Heterometallic Extended Metal Atom Chains. Inorganic Chemistry, 2022, 61, 15058-15069.	1.9	1
304	Environment Molecules Boost the Chemoselective Hydrogenation of Nitroarenes on Cobalt Single-Atom Catalysts. ACS Catalysis, 2022, 12, 11960-11973.	5.5	22
305	Unifying views on catalyst deactivation. Nature Catalysis, 2022, 5, 854-866.	16.1	99
306	Single-Atom Catalysis: Insights from Model Systems. Chemical Reviews, 2022, 122, 14911-14939.	23.0	26
308	Longâ€Range Interactions in Diatomic Catalysts Boosting Electrocatalysis. Angewandte Chemie, 2022, 134, .	1.6	18
309	An enzyme-mimic single Fe-N ₃ atom catalyst for the oxidative synthesis of nitriles via C─C bond cleavage strategy. Science Advances, 2022, 8, .	4.7	28
310	Heterogeneous M-N-C Catalysts for Aerobic Oxidation Reactions: Lessons from Oxygen Reduction Electrocatalysts. Chemical Reviews, 2023, 123, 6233-6256.	23.0	31
311	Ultrathin Cageâ€based Covalent Organic Framework Nanosheets as Precursor for Pyrolysisâ€Free Oxygen Evolution Reaction Electrocatalyst. ChemNanoMat, 2022, 8, .	1.5	4
312	Longâ€Range Interactions in Diatomic Catalysts Boosting Electrocatalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	142

#	Article	IF	CITATIONS
313	Tiâ€doped CeO ₂ Stabilized Singleâ€Atom Rhodium Catalyst for Selective and Stable CO ₂ Hydrogenation to Ethanol. Angewandte Chemie - International Edition, 2022, 61, .	7.2	57
314	Emerging carbon-supported single-atom catalysts for biomedical applications. Matter, 2022, 5, 3341-3374.	5.0	32
315	Tiâ€doped CeO ₂ Stabilized Singleâ€Atom Rhodium Catalyst for Selective and Stable CO ₂ Hydrogenation to Ethanol. Angewandte Chemie, 2022, 134, .	1.6	0
317	Discerning the Contributions of Gold Species in Butadiene Hydrogenation: From Single Atoms to Nanoparticles. Angewandte Chemie - International Edition, 2022, 61, .	7.2	7
318	Toward Unifying the Mechanistic Concepts in Electrochemical CO ₂ Reduction from an Integrated Material Design and Catalytic Perspective. Advanced Functional Materials, 2022, 32, .	7.8	15
319	Molecular Catalyst Synthesis Strategies to Prepare Atomically Dispersed Fe-N-C Heterogeneous Catalysts. Journal of the American Chemical Society, 2022, 144, 18797-18802.	6.6	12
320	Discerning the Contributions of Gold Species in Butadiene Hydrogenation: From Single Atoms to Nanoparticles. Angewandte Chemie, 0, , .	1.6	0
321	<i>In-Situ</i> Grafting of Single-Atomic Titanium–Nitrogen Moiety onto Carbon Nanostructures for Efficient Photovoltaic Devices. ACS Applied Materials & Interfaces, 2022, 14, 50849-50857.	4.0	3
322	Palladium Nanoparticles Entrapped In a Hydrogen Bonded Crystalline Organic Salt Matrix as a Selective Heterogeneous Reduction Catalyst. ChemistrySelect, 2022, 7, .	0.7	0
323	A universal approach for predicting electrolyte decomposition in carbon materials: On the basis of thermodynamics. Energy Storage Materials, 2022, 53, 946-957.	9.5	1
324	Local coordination atom and metal types of single-atom catalysts to regulate catalytic performance of C2H2 selective hydrogenation. Chemical Engineering Science, 2023, 265, 118242.	1.9	5
325	Iodine-doped single-atom cobalt catalysts with boosted antioxidant enzyme-like activity for colitis therapy. Chemical Engineering Journal, 2023, 453, 139870.	6.6	10
326	Single atom cobalt catalyst derived from co-pyrolysis of vitamin B12 and graphitic carbon nitride for PMS activation to degrade emerging pollutants. Applied Catalysis B: Environmental, 2023, 321, 122051.	10.8	43
327	Pd single atom stabilized on multiscale porous hollow carbon fibers for phenylacetylene semi-hydrogenation reaction. Chemical Engineering Journal, 2023, 454, 140031.	6.6	2
328	Anion-exchange membrane water electrolyzers and fuel cells. Chemical Society Reviews, 2022, 51, 9620-9693.	18.7	93
329	Mechanism insights on single-atom catalysts for CO ₂ conversion. Journal of Materials Chemistry A, 2023, 11, 4876-4906.	5.2	7
330	Two-dimensional heterostructures for photocatalytic CO2 reduction. Environmental Research, 2023, 216, 114699.	3.7	7
331	Hetero-site cobalt catalysts for higher alcohols synthesis by CO2 hydrogenation: A review. Journal of CO2 Utilization, 2023, 67, 102322.	3.3	21

#	Article	IF	CITATIONS
332	Lightâ€Induced Agglomeration of Singleâ€Atom Platinum in Photocatalysis. Advanced Materials, 2023, 35, .	11.1	23
333	Ultrahigh Mass Activity for the Hydrogen Evolution Reaction by Anchoring Platinum Single Atoms on Active {100} Facets of TiC via Cation Defect Engineering. Advanced Functional Materials, 2023, 33, .	7.8	11
334	Isolated Electronâ€Rich Ruthenium Atoms in Intermetallic Compounds for Boosting Electrochemical Nitric Oxide Reduction to Ammonia. Angewandte Chemie - International Edition, 2023, 62, .	7.2	19
335	Catalytically stable potassium singleâ€atom solid superbases. Angewandte Chemie, 0, , .	1.6	0
336	Atomically dispersed Co catalyst for electrocatalytic NO reduction to NH3. Chemical Engineering Journal, 2023, 454, 140333.	6.6	57
337	Isolated Electronâ€Rich Ruthenium Atoms in Intermetallic Compounds for Boosting Electrochemical Nitric Oxide Reduction to Ammonia. Angewandte Chemie, 0, , .	1.6	0
338	Catalytically Stable Potassium Singleâ€Atom Solid Superbases. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
339	Fine-tuned local coordination environment of Pt single atoms on ceria controls catalytic reactivity. Nature Communications, 2022, 13, .	5.8	47
340	Understanding the transformations of nanoplastic onto phospholipid bilayers: Mechanism, microscopic interaction and cytotoxicity assessment. Science of the Total Environment, 2023, 859, 160388.	3.9	7
341	Metal–organic framework-derived advanced oxygen electrocatalysts as air-cathodes for Zn–air batteries: recent trends and future perspectives. Materials Horizons, 2023, 10, 745-787.	6.4	24
342	Role of lattice strain in bifunctional catalysts for tandem furfural hydrogenation–esterification. Catalysis Science and Technology, 2023, 13, 774-787.	2.1	3
343	A macro library for monatomic catalysts. Chinese Journal of Catalysis, 2023, 44, 1-3.	6.9	8
344	Coordination effects on the binding of late 3d single metal species to cyanographene. Physical Chemistry Chemical Physics, 2022, 25, 286-296.	1.3	1
345	Tailored Pd/C bifunctional catalysts for styrene production under an ethylbenzene oxidative dehydrogenation assisted direct dehydrogenation scheme. Applied Catalysis B: Environmental, 2023, 324, 122205.	10.8	6
346	Single Metal Atoms on Oxide Surfaces: Assessing the Chemical Bond through ¹⁷ 0 Electron Paramagnetic Resonance. Accounts of Chemical Research, 2022, 55, 3706-3715.	7.6	3
347	Creation of Well-Defined Pd Surface Sites on Single Crystal Pd ₃₃ Ag ₆₇ : From Ensembles to Single Atoms. Journal of Physical Chemistry C, 2022, 126, 20332-20342.	1.5	1
348	Recent progress on single-atom catalysts in advanced oxidation processes for water treatment. , 2022, 1, 219-229.		2
349	Advances in Spin Catalysts for Oxygen Evolution and Reduction Reactions. Small, 2023, 19, .	5.2	18

#	Article	IF	CITATIONS
350	Unprecedented Relay Catalysis of Curved Fe ₁ –N ₄ Single-Atom Site for Remarkably Efficient ¹ O ₂ Generation. ACS Catalysis, 2023, 13, 681-691.	5.5	24
351	Kinetics of Heterogeneous Single‧ite Catalysis. ChemCatChem, 2023, 15, .	1.8	4
352	Efficient electrocatalysts refined from metal-dimer-anchored PC6 monolayers for NO reduction to ammonia. International Journal of Hydrogen Energy, 2023, 48, 5961-5975.	3.8	16
353	Modulating the Site Density of Mo Single Atoms to Catch Adventitious O Atoms for Efficient H ₂ O ₂ Oxidation with Light. Advanced Materials, 2023, 35, .	11.1	5
354	Fluorine Aided Stabilization of Pt Single Atoms on TiO ₂ Nanosheets and Strongly Enhanced Photocatalytic H ₂ Evolution. ACS Catalysis, 2023, 13, 33-41.	5.5	20
355	Tuning the CO ₂ Hydrogenation Selectivity of Rhodium Singleâ€Atom Catalysts on Zirconium Dioxide with Alkali Ions. Angewandte Chemie, 2023, 135, .	1.6	2
356	Co and Ni single sites on the (111) _{<i>n</i>} surface of γ-Al ₂ O ₃ – a periodic boundary DFT study. , 2023, 1, 117-128.		2
357	Synthesis and Characterization of a Highly Reactive and Robust Chlorineâ€Bound Ni Singleâ€Atomâ€Catalyst for the Continuous Flow Ringâ€Opening Reaction of Epoxides. ChemCatChem, 2023, 15, .	1.8	4
358	Defect and Electronic Structure Engineering Graphitic Carbon Nitride with Dual-Gas-Phase Reaction for Visible-Light-Driven Hydrogen Evolution. ACS Applied Energy Materials, 2023, 6, 997-1007.	2.5	5
359	Computational Study on the Catalytic Performance of Single-Atom Catalysts Anchored on g-CN for Electrochemical Oxidation of Formic Acid. Catalysts, 2023, 13, 187.	1.6	1
360	Tuning the CO ₂ Hydrogenation Selectivity of Rhodium Singleâ€Atom Catalysts on Zirconium Dioxide with Alkali Ions. Angewandte Chemie - International Edition, 2023, 62, .	7.2	22
361	An Atomistic View of Platinum Cluster Growth on Pristine and Defective Graphene Supports. Small, 0, , 2207484.	5.2	3
362	Screening out the Transition Metal Single Atom Supported on Onion-like Carbon (OLC) for the Hydrogen Evolution Reaction. Inorganic Chemistry, 2023, 62, 1001-1006.	1.9	4
363	Surface immobilization of nitrogen-coordinated iron atoms: a facile and efficient strategy toward MNC sites with superior catalytic activities. Inorganic Chemistry Frontiers, 2023, 10, 1143-1152.	3.0	3
364	Cotton fiber-anchored Nb single-site catalyst for selective oxidation of anilines to azoxybenzenes. Applied Catalysis A: General, 2023, 652, 119026.	2.2	1
365	Sulfur-poisoning on Rh NP but sulfur-promotion on single-Rh1-site for methanol carbonylation. Applied Catalysis B: Environmental, 2023, 325, 122318.	10.8	5
366	In-situ reconstruction of single-atom Pt on Co3O4 for hydrogenation. Nano Research, 2023, 16, 6507-6511.	5.8	5
367	Theoretical Study on Electroreduction of CO2 to C3+ Catalyzed by Polymetallic Phthalocyanine Covalent Organic Frameworks (COFs) in Tandem, Catalysis Letters, 2023, 153, 3270-3283	1.4	3

#	Article	IF	CITATIONS
368	Dropletâ€Based Microfluidics Platform for the Synthesis of Singleâ€Atom Heterogeneous Catalysts. Small Structures, 2023, 4, .	6.9	6
369	Surface and Interface Coordination Chemistry Learned from Model Heterogeneous Metal Nanocatalysts: From Atomically Dispersed Catalysts to Atomically Precise Clusters. Chemical Reviews, 2023, 123, 5948-6002.	23.0	50
370	Computational and Experimental Characterization of the Ligand Environment of a Ni-Oxo Catalyst Supported in the Metal–Organic Framework NU-1000. Journal of the American Chemical Society, 2023, 145, 2852-2859.	6.6	5
371	Highly Dispersed Ni on Nitrogen-Doped Carbon for Stable and Selective Hydrogen Generation from Gaseous Formic Acid. Nanomaterials, 2023, 13, 545.	1.9	1
372	Nest-Type ZNCâŠ,PtZn _δ /C as a Highly Efficient Catalyst for Methanol Electro-Oxidation. ACS Applied Energy Materials, 2023, 6, 1176-1184.	2.5	5
373	Pushing the Performance Limit of Cu/CeO ₂ Catalyst in CO ₂ Electroreduction: A Cluster Model Study for Loading Single Atoms. ACS Nano, 2023, 17, 2620-2628.	7.3	11
374	Understanding the Density-Dependent Activity of Cu Single-Atom Catalyst in the Benzene Hydroxylation Reaction. ACS Catalysis, 2023, 13, 1316-1325.	5.5	32
375	Mechanistic Insights into Molecular Crystalline Organometallic Heterogeneous Catalysis through Parahydrogen-Based Nuclear Magnetic Resonance Studies. Journal of the American Chemical Society, 2023, 145, 2619-2629.	6.6	1
376	Local chemical environment effect in single-atom catalysis. Chem Catalysis, 2023, 3, 100492.	2.9	8
377	Atomic Cuâ€Nâ€Pâ€C Active Complex with Integrated Oxidation and Chlorination for Improved Ethylene Oxychlorination. Advanced Science, 2023, 10, .	5.6	6
378	Densityâ€Controlled Metal Nanocluster with Modulated Surface for pHâ€Universal and Robust Water Splitting. Advanced Functional Materials, 2023, 33, .	7.8	11
379	p-Block Antimony Single-Atom Catalysts for Nitric Oxide Electroreduction to Ammonia. ACS Energy Letters, 2023, 8, 1281-1288.	8.8	60
380	Theoretical exploration of the origin of selectivity for the oxidative carbonylation reaction catalyzed by a single Pd atom embedded on graphene. Catalysis Science and Technology, 2023, 13, 2421-2431.	2.1	1
381	Multi-enzyme mimics – cracking the code of subcellular cascade reactions and their potential biological applications. Materials Chemistry Frontiers, 2023, 7, 3037-3072.	3.2	1
382	Achieving highly efficient electrochemical sensing over single-atom-site catalysts. Chem Catalysis, 2023, 3, 100528.	2.9	1
383	FeNC Oxygen Reduction Electrocatalyst with High Utilization Pentaâ€Coordinated Sites. Advanced Materials, 2023, 35,	11.1	22
384	Effect of a Single Platinum Atom within a Small Metal Oxide Cluster: Reaction of DMMP with Size-Selected Pt ₁ Zr ₂ O ₇ Supported on HOPG. Journal of Physical Chemistry A, 2023, 127, 2895-2901.	1.1	1
385	Synthesis of core/shell nanocrystals with ordered intermetallic single-atom alloy layers for nitrate electroreduction to ammonia. , 2023, 2, 624-634.		37

#	Article	IF	CITATIONS
386	MXene-based single atom catalysts for efficient CO2RR towards CO: A novel strategy for high-throughput catalyst design and screening. Chemical Engineering Journal, 2023, 461, 141936.	6.6	9
387	Polymeric multi-composites with a tailored nickel microenvironment as catalytic flow-through membrane reactors for efficient p-nitrophenol degradation. Chemical Engineering Journal, 2023, 463, 142437.	6.6	6
388	Tuning lattice strain in Quasi-2D Au-rGO nanohybrid catalysts for dimethylphenylsilane solid state silylation to disiloxane. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 291, 116395.	1.7	0
389	Dynamics of palladium single-atoms on graphitic carbon nitride during ethylene hydrogenation. Journal of Catalysis, 2023, 421, 134-144.	3.1	0
390	Metal-organic frameworks based single-atom catalysts for advanced fuel cells and rechargeable batteries. Journal of Energy Chemistry, 2023, 80, 501-534.	7.1	17
391	lon-exchange synthesis Ag@Bi2WO6/FeWO4 nanosheet with white-LED-light-driven for efficient activation of peroxymonosulfate: Synthesis, characterization, and mechanism. Separation and Purification Technology, 2023, 315, 123481.	3.9	6
392	Regulating the charge density of Cu(I) single sites enriched on the surface of N3c Vacancies-engineered g-C3N4 for efficient Fenton-like reactions. Separation and Purification Technology, 2023, 314, 123525.	3.9	7
393	Regulating spin state of Fe active sites by the P-doping strategy for enhancing peroxymonosulfate activation. Applied Catalysis B: Environmental, 2023, 330, 122618.	10.8	9
394	Modulating photogenerated electron density of Pr single-atom sites by coordination environment engineering for boosting photoreduction of CO2 to CH3OH. Applied Catalysis B: Environmental, 2023, 330, 122626.	10.8	11
395	N, O trans-coordinating silver single-atom catalyst for robust and efficient ammonia electrosynthesis from nitrate. Applied Catalysis B: Environmental, 2023, 331, 122687.	10.8	12
396	Mixed-valence palladium single-atom catalyst induced by hybrid TiO2-graphene through a photochemical strategy. Applied Surface Science, 2023, 625, 157115.	3.1	1
397	Single-atom photocatalysts for various applications in energy conversion and environmental remediation: A review. Inorganica Chimica Acta, 2023, 553, 121517.	1.2	2
398	A novel peroxymonosulfate activation process by single-atom iron catalyst from waste biomass for efficient singlet oxygen-mediated degradation of organic pollutants. Journal of Hazardous Materials, 2023, 453, 131333.	6.5	10
399	170 hyperfine spectroscopy in surface chemistry and catalysis. Journal of Magnetic Resonance Open, 2023, 16-17, 100101.	0.5	0
400	Single-Atom Iridium-Based Catalysts: Synthesis Strategies and Electro(Photo)-Catalytic Applications for Renewable Energy Conversion and Storage. Coordination Chemistry Reviews, 2023, 486, 215143.	9.5	8
401	Single Atoms in Photocatalysis: Low Loading Is Good Enough!. ACS Energy Letters, 2023, 8, 1209-1214.	8.8	17
402	Ni Ingress and Egress in SrTiO ₃ Single Crystals of Different Facets. Journal of Physical Chemistry C, 2023, 127, 2875-2884.	1.5	2
403	Carbon-Conjugated Co Complexes as Model Electrocatalysts for Oxygen Reduction Reaction. Catalysts, 2023, 13, 330.	1.6	1

#	Article	IF	CITATIONS
404	Cobalt-doped CsPbBr3 perovskite quantum dots for photoelectrocatalytic hydrogen production via efficient charge transport. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 663, 131083.	2.3	8
405	Hydroformylation over polyoxometalates supported single-atom Rh catalysts. , 2023, 2, 20220064.		3
406	A review on catalyst development for conventional thermal dry reforming of methane at low temperature. Canadian Journal of Chemical Engineering, 2023, 101, 3180-3212.	0.9	6
407	X-ray Absorption Spectroscopy Studies of a Molecular CO ₂ -Reduction Catalyst Deposited on Graphitic Carbon Nitride. Journal of Physical Chemistry C, 2023, 127, 3626-3633.	1.5	1
408	Tuning Local Coordination Environments of Manganese Singleâ€Atom Nanozymes with Multiâ€Enzyme Properties for Selective Colorimetric Biosensing. Angewandte Chemie - International Edition, 2023, 62,	7.2	20
409	Recent advances in the use of nitrogen-doped carbon materials for the design of noble metal catalysts. Coordination Chemistry Reviews, 2023, 481, 215053.	9.5	23
410	Tuning Local Coordination Environments of Manganese Singleâ€Atom Nanozymes with Multiâ€Enzyme Properties for Selective Colorimetric Biosensing. Angewandte Chemie, 2023, 135, .	1.6	4
411	Challenges and Opportunities in Engineering the Electronic Structure of Single-Atom Catalysts. ACS Catalysis, 2023, 13, 2981-2997.	5.5	46
412	Approaching Molecular Definition on Oxide-Supported Single-Atom Catalysts. Accounts of Chemical Research, 2023, 56, 561-572.	7.6	8
413	Interlayer Charge Transfer Regulates Single-Atom Catalytic Activity on Electride/Graphene 2D Heterojunctions. Journal of the American Chemical Society, 2023, 145, 4774-4783.	6.6	34
414	Interaction between Single Metal Atoms and UiO-66 Framework Revealed by Low-Dose Imaging. Nano Letters, 2023, 23, 1787-1793.	4.5	5
415	Single-atom electrocatalyst and gel polymer electrolyte boost the energy density and life of aluminum-sulfur batteries. Journal of Materials Science and Technology, 2023, 152, 86-93.	5.6	3
416	Cobalt–platinum intermetallic composite loaded on pyridinic N-enriched carbon for acidic hydrogen evolution catalysis with ultralow overpotential. Materials Chemistry Frontiers, 2023, 7, 1607-1616.	3.2	3
417	Lowâ€Valent Manganese Atoms Stabilized on Ceria for Nitrous Oxide Synthesis. Advanced Materials, 2023, 35, .	11.1	4
418	Main-group indium single-atom catalysts for electrocatalytic NO reduction to NH ₃ . Journal of Materials Chemistry A, 2023, 11, 6814-6819.	5.2	31
419	Single-atom materials for food safety. Materials Today, 2023, 64, 121-137.	8.3	10
420	Glutathione-responsive and -exhausting metal nanomedicines for robust synergistic cancer therapy. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	2
421	Atomic dispersion of bulk/nano metals to atomic-sites catalysts and their application in thermal catalysis. Nano Research, 2023, 16, 6380-6401.	5.8	5

ARTICLE IF CITATIONS Singleâ€Atom Catalysis in Organic Synthesis. Angewandte Chemie, 0, , . 422 1.6 1 Singleâ€Atom Catalysis in Organic Synthesis. Angewandte Chemie - International Edition, 2023, 62, . 423 7.2 Trends and Prospects of Bulk and Singleâ€Atom Catalysts for the Oxygen Evolution Reaction. Advanced 424 10.2 25 Energy Materials, 2023, 13, . Theoretical study of the catalytic performance of Fe and Cu single-atom catalysts supported on Mo2C 425 1.8 toward the reverse water–gas shift reaction. Frontiers in Chemistry, 0, 11, . Genesis of Active Pt/CeO₂ Catalyst for Dry Reforming of Methane by Reduction and 426 5.2 6 Aggregation of Isolated Platinum Atoms into Clusters. Small, 2023, 19, . Precise electronic structure modulation on MXene-based single atom catalysts for high-performance electrocatalytic CO2 reduction reaction: A first-principle study. Journal of Colloid and Interface 5.0 Science, 2023, 642, 273-282. Reactionâ€Induced Formation of Stable Mononuclear Cu(I)Cl Species on Carbon for Lowâ€Footprint Vinyl 428 11.1 9 Chloride Production. Advanced Materials, 2023, 35, . Atomically Dispersed NiN_{<i>x</i>} Site with High Oxygen Electrocatalysis Performance Facilely Produced via a Surface Immobilization Strategy. ACS Applied Materials & amp; Interfaces, 2023, 429 15, 16809-16817. Pushing the limit of atomically dispersed Au catalysts for electrochemical H2O2 production by 430 2.9 3 precise electronic perturbation of the active site. Chem Catalysis, 2023, 3, 100583. Atomically isolated and unsaturated Sb sites created on Sb₂S₃for highly selective NO electroreduction to NH₃. Inorganic Chemistry Frontiers, 2023, 10, 2708-2715. Epitaxially grown silicon-based single-atom catalyst for visible-light-driven syngas production. 432 5.89 Nature Communications, 2023, 14, . Controllable Conversion of Platinum Nanoparticles to Single Atoms in Pt/CeO₂ by Laser 6.6 Ablation for Efficient CO Oxidation. Journal of the American Chemical Society, 2023, 145, 9540-9547. Preparation and Characterization of a Coordination Polymer Based on Iron (III)-Cyamelurate as a 434 1.6 3 Superior Catalyst for Heterogeneous Fenton-Like Processes. Langmuir, 2023, 39, 5002-5011. Iridium single-atom catalyst for highly efficient NO electroreduction to NH3. Nano Research, 2023, 16, 5.8 8737-8742. Asymmetrically Coordinated Cu–N₁C₂ Singleâ€Atom Catalyst Immobilized on Ti₃C₂T<i>_x</i>MXene as Separator Coating for Lithium–Sulfur 436 10.2 19 Batteries. Advanced Energy Materials, 2023, 13, . In Situ High-Temperature Reaction-Induced Local Structural Dynamic Evolution of Single-Atom Pt on Oxide Support. , 2023, 1, 299-308. Time-Resolved Formation and Operation Maps of Pd Catalysts Suggest a Key Role of Single Atom 438 6.6 13 Centers in Cross-Coupling. Journal of the American Chemical Society, 2023, 145, 9092-9103. Spectroscopic fingerprints of iron-coordinated cobalt and iron porphyrin layers on graphene. Cell 439 2.8 Reports Physical Science, 2023, 4, 101378.

#	Article	IF	CITATIONS
440	Multifunctional design of single-atom catalysts for multistep reactions. Science China Chemistry, 2023, 66, 1241-1260.	4.2	5
441	Electronic perturbation of atomically dispersed Au for optimal H2O2 production. Chem Catalysis, 2023, 3, 100617.	2.9	0
442	Multi-functionality of rhodium-loaded MOR zeolite: production of H ₂ <i>via</i> the water gas shift reaction and its use in the formation of NH ₃ . Catalysis Science and Technology, 2023, 13, 2994-3000.	2.1	2
443	Promoting Oxygen Reduction Reaction on Carbonâ€based Materials by Selective Hydrogen Bonding. ChemSusChem, 0, , .	3.6	1
455	Catalysts: Platinum-free. , 2023, , .		0
474	Electrocatalysts for the oxygen evolution reaction: mechanism, innovative strategies, and beyond. Materials Chemistry Frontiers, 2023, 7, 4833-4864.	3.2	9
502	Carbon nitride based materials: more than just a support for single-atom catalysis. Chemical Society Reviews, 2023, 52, 4878-4932.	18.7	31
528	Advancements in computational approaches for rapid metal site discovery in carbon-based materials for electrocatalysis. Energy Advances, 2023, 2, 1781-1799.	1.4	1
536	The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Research, 0, , .	5.8	16
538	Multifunctional carbon nitride nanoarchitectures for catalysis. Chemical Society Reviews, 2023, 52, 7602-7664.	18.7	9
548	Recent progress in high-loading single-atom catalysts and their applications. , 2023, 1, 486-500.		2
549	Single atom catalyst-mediated generation of reactive species in water treatment. Chemical Society Reviews, 2023, 52, 7673-7686.	18.7	4
577	Recent Advances of Group 10 Transition Metal Hydrosilylation Catalysts. Topics in Organometallic Chemistry, 2023, , 13-93.	0.7	0
588	Exploring the Roles of Single Atom in Hydrogen Peroxide Photosynthesis. Nano-Micro Letters, 2024, 16,	14.4	2
610	A review on the photochemical synthesis of atomically dispersed catalysts. Materials Chemistry Frontiers, 2024, 8, 1334-1348.	3.2	0
654	Introduction to single-atom catalysts. , 2024, , 1-33.		0
672	Naturally Inspired Heme-Like Chemistries for the Oxygen Reduction Reaction: Going Beyond Platinum Group Metals in Proton Exchange Membrane Fuel Cell Catalysis. , 2024, , 325-351.		0
674	Single-Atom Catalyst for Electrochemical Water Splitting. Materials Horizons, 2024, , 217-242.	0.3	0

ARTICLE

IF CITATIONS