<i>Penicillium expansum:</i> biology, omics, and mana postharvest pathogen causing blue mould of pome fruit

Molecular Plant Pathology 21, 1391-1404 DOI: 10.1111/mpp.12990

Citation Report

#	Article	IF	CITATIONS
1	<i>Penicillium expansum:</i> biology, omics, and management tools for a global postharvest pathogen causing blue mould of pome fruit. Molecular Plant Pathology, 2020, 21, 1391-1404.	2.0	71
2	Cinnamon Oil Inhibits Penicillium expansum Growth by Disturbing the Carbohydrate Metabolic Process. Journal of Fungi (Basel, Switzerland), 2021, 7, 123.	1.5	14
3	Molecular Characterization of Penicillium expansum Isolated from Grapes and its Management by Leaf Extract of Chenopodium murale. International Journal of Phytopathology, 2021, 10, 29-35.	0.1	6
4	Increased Organic Fertilizer and Reduced Chemical Fertilizer Increased Fungal Diversity and the Abundance of Beneficial Fungi on the Grape Berry Surface in Arid Areas. Frontiers in Microbiology, 2021, 12, 628503.	1.5	11
5	Eco-friendly management of postharvest fungal decays in kiwifruit. Critical Reviews in Food Science and Nutrition, 2022, 62, 8307-8318.	5.4	24
6	First Speleomycological Study on the Occurrence of Psychrophilic and Psychrotolerant Aeromycota in the Brestovská Cave (Western Tatras Mts., Slovakia) and First Reports for Some Species at Underground Sites. Biology, 2021, 10, 497.	1.3	2
7	Effectors of Plant Necrotrophic Fungi. Frontiers in Plant Science, 2021, 12, 687713.	1.7	53
8	Improving the simultaneous target and non-target analysis LC-amenable pesticide residues using high speed Orbitrap mass spectrometry with combined multiple acquisition modes. Talanta, 2021, 228, 122241.	2.9	20
9	<scp>PeMetR</scp> â€mediated sulfur assimilation is essential for virulence and patulin biosynthesis in <i>Penicillium expansum</i> . Environmental Microbiology, 2021, 23, 5555-5568.	1.8	10
10	Dynamic Microbiome Changes Reveal the Effect of 1-Methylcyclopropene Treatment on Reducing Post-harvest Fruit Decay in "Doyenne du Comice―Pear. Frontiers in Microbiology, 2021, 12, 729014.	1.5	10
11	Genomic Analyses of Penicillium Species Have Revealed Patulin and Citrinin Gene Clusters and Novel Loci Involved in Oxylipin Production. Journal of Fungi (Basel, Switzerland), 2021, 7, 743.	1.5	6
12	Game-changing alternatives to conventional fungicides: small RNAs and short peptides. Trends in Biotechnology, 2022, 40, 320-337.	4.9	14
13	l â€glutamate inhibits blue mould caused by Penicillium expansum in apple fruits by altering the primary nitrogen and carbon metabolisms. International Journal of Food Science and Technology, 2021, 56, 6591.	1.3	4
14	Arginine Methyltransferase PeRmtC Regulates Development and Pathogenicity of Penicillium expansum via Mediating Key Genes in Conidiation and Secondary Metabolism. Journal of Fungi (Basel,) Tj ETQq1 1 0.78431	4 rg₿T /Ov	ver la ck 10 Tf
15	Bacterial Quorum-Quenching Lactonase Hydrolyzes Fungal Mycotoxin and Reduces Pathogenicity of Penicillium expansum—Suggesting a Mechanism of Bacterial Antagonism. Journal of Fungi (Basel,) Tj ETQq0 0 (О r gЉ Т /О∨	erlæak 10 Tf
16	Recent advances in postharvest technology of Asia pears fungi disease control: A review. Physiological and Molecular Plant Pathology, 2022, 117, 101771.	1.3	14
17	Incidence, Speciation, and Morpho-Genetic Diversity of Penicillium spp. Causing Blue Mold of Stored Pome Fruits in Serbia. Journal of Fungi (Basel, Switzerland), 2021, 7, 1019.	1.5	2
18	Exploring the transcriptome signature associated with tolerance to <i>Penicillium expansum</i> in apple through feature selection algorithms and differential gene expression analysis. New Zealand Journal of Crop and Horticultural Science, 2023, 51, 547-565.	0.7	1

#	Article	IF	CITATIONS
19	Marker-Free CRISPR-Cas9 Based Genetic Engineering of the Phytopathogenic Fungus, <i>Penicillium expansum</i> . SSRN Electronic Journal, 0, , .	0.4	0
20	More than a Virulence Factor: Patulin Is a Non-Host-Specific Toxin that Inhibits Postharvest Phytopathogens and Requires Efflux for <i>Penicillium</i> Tolerance. Phytopathology, 2022, 112, 1165-1174.	1.1	8
21	Marker-free CRISPR-Cas9 based genetic engineering of the phytopathogenic fungus, Penicillium expansum. Fungal Genetics and Biology, 2022, 160, 103689.	0.9	7
22	Characterization and sources of volatile organic compounds produced by postharvest pathogenic fungi colonized fruit. Postharvest Biology and Technology, 2022, 188, 111903.	2.9	16
23	Penicillium: Species causing blue mold on stored apple fruits. Biljni Lekar, 2022, 50, 92-100.	0.0	0
24	Recent advances in research on biocontrol of postharvest fungal decay in apples. Critical Reviews in Food Science and Nutrition, 2023, 63, 10607-10620.	5.4	11
25	Potential of Antifungal Proteins (AFPs) to Control Sliced Bread Spoilage by Fungi. SSRN Electronic Journal, 0, , .	0.4	0
26	Impact of vanillin on postharvest disease control of apple. Frontiers in Microbiology, 0, 13, .	1.5	3
27	Profiling the secretomes of Penicillium expansum reveals that a serine carboxypeptidase (PeSCP) is required for the fungal virulence on apple fruit. Physiological and Molecular Plant Pathology, 2022, 122, 101897.	1.3	5
28	The Penicillium digitatum antifungal protein PdAfpB shows high activity against mycobiota involved in sliced bread spoilage. Food Microbiology, 2023, 109, 104142.	2.1	1
29	Natural compound/green nanoemulsions for disease control at postharvest stage in fruits. , 2022, , 225-243.		0
30	Implication of VelB in the development, pathogenicity, and secondary metabolism of Penicillium expansum. Postharvest Biology and Technology, 2023, 195, 112121.	2.9	6
31	Dynamic Change of Carbon and Nitrogen Sources in Colonized Apples by Penicillium expansum. Foods, 2022, 11, 3367.	1.9	4
32	Antifungal activity of chitosan and its combination with the yeast <i>Debaryomyces hansenii</i> F9D for the control of <i>Penicillium expansum</i> in apples and pears stored at low temperatures. International Journal of Pest Management, 2022, 68, 339-348.	0.9	1
33	The Hydrophobin Gene Family Confers a Fitness Trade-off between Spore Dispersal and Host Colonization in Penicillium expansum. MBio, 2022, 13, .	1.8	6
34	Limiting the production of virulence factors as a mechanism of action for the control of Penicillium expansum by the Antarctic antagonistic yeast Debaryomyces hansenii F9D. Biological Control, 2023, 177, 105104.	1.4	2
35	Alterations in the proteome as a regulating mechanism for patulin stress by the antagonistic yeast Meyerozyma guilliermondii. Biological Control, 2023, 177, 105112.	1.4	1
36	Comparative Penicillium spp. Transcriptomics: Conserved Pathways and Processes Revealed in Ungerminated Conidia and during Postharvest Apple Fruit Decay. Microorganisms, 2022, 10, 2414.	1.6	6

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
37	Secondary metabolites isolated from Penicillium expansum and their chemotaxonomic value. Biochemical Systematics and Ecology, 2023, 107, 104584.	0.6	1
38	Transcriptome Analysis and Functional Characterization Reveal That Peclg Gene Contributes to the Virulence of Penicillium expansum on Apple Fruits. Foods, 2023, 12, 479.	1.9	4
39	Elicitation of Fruit Fungi Infection and Its Protective Response to Improve the Postharvest Quality of Fruits. Stresses, 2023, 3, 231-255.	1.8	8
40	Blue LED light treatment inhibits virulence and patulin biosynthesis in Penicillium expansum. Postharvest Biology and Technology, 2023, 200, 112340.	2.9	1
41	Ultrastructural observation and transcriptome analysis provide insights into mechanisms of Penicillium expansum invading apple wounds. Food Chemistry, 2023, 414, 135633.	4.2	5
42	Endophytes: Saviour of apples from post-harvest fungal pathogens. Biological Control, 2023, 182, 105234.	1.4	1
43	The Exploitation of Microbial Antagonists against Postharvest Plant Pathogens. Microorganisms, 2023, 11, 1044.	1.6	6
44	Screening of antagonistic yeast strains for postharvest control of Penicillium expansum causing blue mold decay in table grape. Fungal Biology, 2023, 127, 901-908.	1.1	7
45	Efficacy and Mechanisms of Action of Essential Oils' Vapours against Blue Mould on Apples Caused by Penicillium expansum. International Journal of Molecular Sciences, 2023, 24, 2900.	1.8	3
46	Biocontrol Microneedle Patch: A Promising Agent for Protecting Citrus Fruits from Postharvest Infection. Pharmaceutics, 2023, 15, 1219.	2.0	1
50	Methodology of development and approbation of a test system for identification of Penicillium expansum based on polymerase chain reaction (real-time). AIP Conference Proceedings, 2023, , .	0.3	0
60	Essential Oils against Fruit Spoilage Fungi. , 2024, , 105-124.		0