Systems-Level Immunomonitoring from Acute to Record

Cell Reports Medicine 1, 100078 DOI: 10.1016/j.xcrm.2020.100078

Citation Report

#	Article	IF	CITATIONS
1	Age-Related Differences in Immunological Responses to SARS-CoV-2. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 3251-3258.	2.0	40
2	The Immunology of Multisystem Inflammatory Syndrome in Children with COVID-19. Cell, 2020, 183, 968-981.e7.	13.5	682
3	Single cell sequencing unraveling genetic basis of severe COVID19 in obesity. Obesity Medicine, 2020, 20, 100303.	0.5	12
4	Longitudinal proteomic profiling reveals increased early inflammation and sustained apoptosis proteins in severe COVID-19. Scientific Reports, 2020, 10, 20533.	1.6	66
5	Immune responses to SARS-CoV-2 in three children of parents with symptomatic COVID-19. Nature Communications, 2020, 11, 5703.	5.8	90
6	Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science, 2020, 370, 89-94.	6.0	1,036
7	Is Herd Immunity Against SARS-CoV-2 a Silver Lining?. Frontiers in Immunology, 2020, 11, 586781.	2.2	25
8	Understanding the complexities of SARS-CoV2 infection and its immunology: A road to immune-based therapeutics. International Immunopharmacology, 2020, 88, 106980.	1.7	31
9	Covid-19: Perspectives on Innate Immune Evasion. Frontiers in Immunology, 2020, 11, 580641.	2.2	113
10	Unraveling the Immune Response in Severe COVID-19. Journal of Clinical Immunology, 2020, 40, 958-959.	2.0	8
11	Development of a 43 color panel for the characterization of conventional and unconventional Tâ€cell subsets, B cells, <scp>NK</scp> cells, monocytes, dendritic cells, and innate lymphoid cells using spectral flow cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, , .	1.1	40
12	Progress and applications of mass cytometry in sketching immune landscapes. Clinical and Translational Medicine, 2020, 10, e206.	1.7	27
13	The global impact of the COVIDâ€19 pandemic on the management and course of chronic urticaria. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 816-830.	2.7	58
14	T cell immunobiology and cytokine storm of COVIDâ€19. Scandinavian Journal of Immunology, 2021, 93, e12989.	1.3	77
15	A Cytometrist's Guide to Coordinating and Performing Effective COVID â€19 Research. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 11-18.	1.1	2
16	Transcriptomic similarities and differences in host response between SARS-CoV-2 and other viral infections. IScience, 2021, 24, 101947.	1.9	70
17	Immune determinants of COVID-19 disease presentation and severity. Nature Medicine, 2021, 27, 28-33.	15.2	490
18	A distinct innate immune signature marks progression from mild to severe COVID-19. Cell Reports Medicine, 2021, 2, 100166.	3.3	102

#	Article	IF	CITATIONS
19	Acute Immune Signatures and Their Legacies in Severe Acute Respiratory Syndrome Coronavirus-2 Infected Cancer Patients. Cancer Cell, 2021, 39, 257-275.e6.	7.7	93
20	Altered Blood Cell Traits Underlie a Major Genetic Locus of Severe COVID-19. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, e147-e154.	1.7	12
21	Characterizing Highly Cited Papers in Mass Cytometry through H-Classics. Biology, 2021, 10, 104.	1.3	6
22	The COVID-19 immune landscape is dynamically and reversibly correlated with disease severity. Journal of Clinical Investigation, 2021, 131, .	3.9	32
24	White Blood Cells and Severe COVID-19: A Mendelian Randomization Study. Journal of Personalized Medicine, 2021, 11, 195.	1.1	38
25	Altered Monocyte Subsets in Kawasaki Disease Revealed by Single-cellÂRNA-Sequencing. Journal of Inflammation Research, 2021, Volume 14, 885-896.	1.6	21
26	High dimensional profiling identifies specific immune types along the recovery trajectories of critically ill COVID19 patients. Cellular and Molecular Life Sciences, 2021, 78, 3987-4002.	2.4	13
27	Longitudinal proteomic profiling of dialysis patients with COVID-19 reveals markers of severity and predictors of death. ELife, 2021, 10, .	2.8	58
28	Anti-IL5 Drugs in COVID-19 Patients: Role of Eosinophils in SARS-CoV-2-Induced Immunopathology. Frontiers in Pharmacology, 2021, 12, 622554.	1.6	27
29	Eosinophils and COVID-19: diagnosis, prognosis, and vaccination strategies. Seminars in Immunopathology, 2021, 43, 383-392.	2.8	36
30	A panhaemocytometric approach to COVID-19: a retrospective study on the importance of monocyte and neutrophil population data on Sysmex XN-series analysers. Clinical Chemistry and Laboratory Medicine, 2021, 59, e169-e172.	1.4	11
31	Scientists set out to connect the dots on long COVID. Nature Methods, 2021, 18, 449-453.	9.0	28
33	COVID-19 and the human innate immune system. Cell, 2021, 184, 1671-1692.	13.5	524
35	Infection and Immune Memory: Variables in Robust Protection by Vaccines Against SARS-CoV-2. Frontiers in Immunology, 2021, 12, 660019.	2.2	15
36	The Systemic Immune Response in COVID-19 Is Associated with a Shift to Formyl-Peptide Unresponsive Eosinophils. Cells, 2021, 10, 1109.	1.8	11
37	Longitudinal proteomic analysis of severe COVID-19 reveals survival-associated signatures, tissue-specific cell death, and cell-cell interactions. Cell Reports Medicine, 2021, 2, 100287.	3.3	183
38	Immune profiling of COVID-19: preliminary findings and implications for the pandemic. , 2021, 9, e002550.		15
39	Delayed production of neutralizing antibodies correlates with fatal COVID-19. Nature Medicine, 2021, 27, 1178-1186.	15.2	183

ARTICLE IF CITATIONS # Emerging Evidence for Pleiotropism of Eosinophils. International Journal of Molecular Sciences, 2021, 1.8 18 40 22, 7075. Lipofection with Synthetic mRNA as a Simple Method for T-Cell Immunomonitoring. Viruses, 2021, 13, 1.5 1232. To Trap a Pathogen: Neutrophil Extracellular Traps and Their Role in Mucosal Epithelial and Skin 42 1.8 16 Diseases. Cells, 2021, 10, 1469. Clinical Characteristics and Survival Analysis in Frequent Alcohol Consumers With COVID-19. Frontiers in Nutrition, 2021, 8, 689296. Eosinophils and Bacteria, the Beginning of a Story. International Journal of Molecular Sciences, 2021, 44 1.8 18 22, 8004. Neutrophilia, lymphopenia and myeloid dysfunction: a living review of the quantitative changes to innate and adaptive immune cells which define COVID-19 pathology. Oxford Open Immunology, 2021, 2, . 1.2 Monocyte-driven atypical cytokine storm and aberrant neutrophil activation as key mediators of 47 5.8 170 COVID-19 disease severity. Nature Communications, 2021, 12, 4117. Bifidobacteria-mediated immune system imprinting early in life. Cell, 2021, 184, 3884-3898.e11. 13.5 312 Comprehensive Analysis of the Systemic Transcriptomic Alternations and Inflammatory Response 49 during the Occurrence and Progress of COVID-19. Oxidative Medicine and Cellular Longevity, 2021, 1.9 13 2021, 1-17. Natural killer cells and unconventional T cells in COVID-19. Current Opinion in Virology, 2021, 49, 2.6 28 176-182. Ruling Out Coronavirus Disease 2019 in Patients with Pneumonia: The Role of Blood Cell Count and 52 3 1.0 Lung Ultrasound. Journal of Clinical Medicine, 2021, 10, 3481. Rapid generation of mouse model for emerging infectious disease with the case of severe COVID-19. 2.1 PLoS Pathogens, 2021, 17, e1009758. Unsupervised machine learning reveals key immune cell subsets in COVID-19, rhinovirus infection, and 54 2.8 16 cancer therapy. ELife, 2021, 10, . Serological responses to SARS-CoV-2 following non-hospitalised infection: clinical and ethnodemographic features associated with the magnitude of the antibody response. BMJ Open Respiratory Research, 2021, 8, e000872. 1.2 Immune Responses against SARS-CoV-2â€"Questions and Experiences. Biomedicines, 2021, 9, 1342. 57 10 1.4 Eosinophils as Drivers of Severe Eosinophilic Asthma: Endotypes or Plasticity?. International Journal 1.8 of Molecular Sciences, 2021, 22, 10150. High-dimensional profiling reveals phenotypic heterogeneity and disease-specific alterations of 60 granulocytes in COVID-19. Proceedings of the National Academy of Sciences of the United States of 3.3 52 Ămerica, 2021, 118, . Innate immunology in COVID-19â€"a living review. Part II: dysregulated inflammation drives 1.2 immunopathology. Oxford Open Immunology, 2020, 1, iqaa005.

	Сіта	TION REPORT	
#	Article	IF	CITATIONS
63	T cell phenotypes in COVID-19 - a living review. Oxford Open Immunology, 2021, 2, iqaa007.	1.2	19
71	Hallmarks of immune response in COVID-19: Exploring dysregulation and exhaustion. Seminars in Immunology, 2021, 55, 101508.	2.7	37
72	HMG-CoA reductase inhibitors and COVID-19 mortality in Stockholm, Sweden: A registry-based cohort study. PLoS Medicine, 2021, 18, e1003820.	3.9	29
73	Basophils and Mast Cells in COVID-19 Pathogenesis. Cells, 2021, 10, 2754.	1.8	40
74	Triple jeopardy in ageing: COVID-19, co-morbidities and inflamm-ageing. Ageing Research Reviews, 2022 73, 101494.	<u>2</u> , 5.0	11
75	Complete blood count alterations in COVID-19 patients. Biochemia Medica, 2021, 31, 403-415.	1.2	63
77	Screening HLA-A-restricted T cell epitopes of SARS-CoV-2 and the induction of CD8+ T cell responses in HLA-A transgenic mice. Cellular and Molecular Immunology, 2021, 18, 2588-2608.	4.8	12
79	Mutations of SARS-CoV-2 spike protein: Implications on immune evasion and vaccine-induced immunity Seminars in Immunology, 2021, 55, 101533.	. 2.7	72
80	A case report describing the immune response of an infant with congenital heart disease and severe COVID-19. Communications Medicine, 2021, 1, .	1.9	3
81	COVID â€19: Using highâ€throughput flow cytometry to dissect clinical heterogeneity. Cytometry Part the Journal of the International Society for Analytical Cytology, 2021, , .	A: 1.1	4
82	Pathogenesis of Respiratory Viral and Fungal Coinfections. Clinical Microbiology Reviews, 2022, 35, e0009421.	5.7	64
84	Single-cell immunology of SARS-CoV-2 infection. Nature Biotechnology, 2022, 40, 30-41.	9.4	78
85	Identification of Robust Protein Associations With COVID-19 Disease Based on Five Clinical Studies. Frontiers in Immunology, 2021, 12, 781100.	2.2	19
86	Immuno-proteomic profiling reveals aberrant immune cell regulation in the airways of individuals with ongoing post-COVID-19 respiratory disease. Immunity, 2022, 55, 542-556.e5.	6.6	96
87	Innate immunological pathways in COVID-19 pathogenesis. Science Immunology, 2022, 7, eabm5505.	5.6	101
88	SARS-CoV-2 infections in children: Understanding diverse outcomes. Immunity, 2022, 55, 201-209.	6.6	79
89	Respiratory viruses and eosinophilic airway inflammation. , 2022, , 204-218.		1
90	COVID-19: systemic pathology and its implications for therapy. International Journal of Biological Sciences, 2022, 18, 386-408.	2.6	27

#	Article	IF	CITATIONS
91	Guidelines for standardizing T ell cytometry assays to link biomarkers, mechanisms, and disease outcomes in type 1 diabetes. European Journal of Immunology, 2022, 52, 372-388.	1.6	10
92	Biosensors Based on Bivalent and Multivalent Recognition by Nucleic Acid Scaffolds. Applied Sciences (Switzerland), 2022, 12, 1717.	1.3	2
94	Identifying factors contributing to increased susceptibility to COVID-19 risk: a systematic review of Mendelian randomization studies. International Journal of Epidemiology, 2022, 51, 1088-1105.	0.9	25
95	Exponential magnetophoretic gradient for the direct isolation of basophils from whole blood in a microfluidic system. Lab on A Chip, 2022, 22, 1690-1701.	3.1	8
96	SARS-CoV-2 Induces Cytokine Responses in Human Basophils. Frontiers in Immunology, 2022, 13, 838448.	2.2	11
97	IFN-Î ³ Induces PD-L1 Expression in Primed Human Basophils. Cells, 2022, 11, 801.	1.8	13
99	cyCombine allows for robust integration of single-cell cytometry datasets within and across technologies. Nature Communications, 2022, 13, 1698.	5.8	33
100	Risk Factors Associated With COVID-19 Symptoms and Potential Vertical Transmission During Pregnancy: A Retrospective Cohort Study. Cureus, 2022, 14, e22900.	0.2	4
101	Infiltration of inflammatory macrophages and neutrophils and widespread pyroptosis in lung drive influenza lethality in nonhuman primates. PLoS Pathogens, 2022, 18, e1010395.	2.1	23
102	A composite ranking of risk factors for COVID-19 time-to-event data from a Turkish cohort. Computational Biology and Chemistry, 2022, 98, 107681.	1.1	3
103	Longitudinal Cytokine Profile in Patients With Mild to Critical COVID-19. Frontiers in Immunology, 2021, 12, 763292.	2.2	50
104	Elucidating T Cell and B Cell Responses to SARS-CoV-2 in Humans: Gaining Insights into Protective Immunity and Immunopathology. Cells, 2022, 11, 67.	1.8	7
105	Prolonged activation of nasal immune cell populations and development of tissue-resident SARS-CoV-2-specific CD8+ T cell responses following COVID-19. Nature Immunology, 2022, 23, 23-32.	7.0	74
106	Assessment of changes in immune status linked to COVID-19 convalescent and its clinical severity in patients and uninfected exposed relatives. Immunobiology, 2022, 227, 152216.	0.8	2
107	T helper cell subsets and related target cells in acute COVID-19. Russian Journal of Infection and Immunity, 2022, 12, 409-426.	0.2	4
108	Immunouniverse of SARS-CoV-2. Immunological Medicine, 2022, 45, 186-224.	1.4	8
110	Tâ€cell recovery and evidence of persistent immune activation 12 months after severe <scp>COVID</scp> â€19. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 2468-2481.	2.7	20
111	Role of Basophils in a Broad Spectrum of Disorders. Frontiers in Immunology, 0, 13, .	2.2	15

#	Article	IF	CITATIONS
112	Dysregulated Immune Responses in SARS-CoV-2-Infected Patients: A Comprehensive Overview. Viruses, 2022, 14, 1082.	1.5	20
113	The Potential Use of Carnosine in Diabetes and Other Afflictions Reported in Long COVID Patients. Frontiers in Neuroscience, 0, 16, .	1.4	5
114	Predictive role of blood eosinophils in adult varicella patients. Epidemiology and Infection, 0, , 1-18.	1.0	1
115	Single-cell profiling of the antigen-specific response to BNT162b2 SARS-CoV-2 RNA vaccine. Nature Communications, 2022, 13, .	5.8	28
116	Cellular immunity in patients with COVID-19: molecular biology, pathophysiology, and clinical implications. Journal of Clinical Practice, 2022, 13, 66-87.	0.2	1
117	Reply to correspondence: Basophil reactivity to BNT162b2 in COVIDâ€19 convalescence. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 2266-2267.	2.7	1
118	Estrogen hormone is an essential sex factor inhibiting inflammation and immune response in COVID-19. Scientific Reports, 2022, 12, .	1.6	25
119	The deciphering of the immune cells and marker signature in COVIDâ€19 pathogenesis: An update. Journal of Medical Virology, 2022, 94, 5128-5148.	2.5	12
120	Neutrophil and Eosinophil Responses Remain Abnormal for Several Months in Primary Care Patients With COVID-19 Disease. Frontiers in Allergy, 0, 3, .	1.2	10
121	Exosomal Vaccine Loading T Cell Epitope Peptides of SARS-CoV-2 Induces Robust CD8+ T Cell Response in HLA-A Transgenic Mice. International Journal of Nanomedicine, 0, Volume 17, 3325-3341.	3.3	4
122	COVID-19 and fibrosis: Mechanisms, clinical relevance, and future perspectives. Drug Discovery Today, 2022, 27, 103345.	3.2	6
123	Low quantity and quality of anti-spike humoral response is linked to CD4 T-cell apoptosis in COVID-19 patients. Cell Death and Disease, 2022, 13, .	2.7	5
124	A comprehensive review of BBV152 vaccine development, effectiveness, safety, challenges, and prospects. Frontiers in Immunology, 0, 13, .	2.2	7
125	Combined protein and transcript single-cell RNA sequencing in human peripheral blood mononuclear cells. BMC Biology, 2022, 20, .	1.7	12
126	Molnupiravir as an Early Treatment for COVID-19: A Real Life Study. Pathogens, 2022, 11, 1121.	1.2	9
127	Recent advances in understanding the role of eosinophils. Faculty Reviews, 0, 11, .	1.7	5
128	A complete blood count-based multivariate model for predicting the recovery of patients with moderate COVID-19: a retrospective study. Scientific Reports, 2022, 12, .	1.6	4
129	Predictive models for COVID-19 detection using routine blood tests and machine learning. Heliyon, 2022, 8, e11185.	1.4	7

#	Article	IF	CITATIONS
130	A comprehensive assessment of four whole blood stabilizers for flow ytometric analysis of leukocyte populations. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2023, 103, 313-324.	1.1	2
131	Transcriptional reprogramming of infiltrating neutrophils drives lung pathology in severe COVID-19 despite low viral load. Blood Advances, 2023, 7, 778-799.	2.5	11
132	High frequency of low-count monoclonal B-cell lymphocytosis in hospitalized COVID-19 patients. Blood, 0, , .	0.6	2
133	Non-Conventional Flow Cytometry. , 2022, , 497-522.		0
134	Cellular immune states in SARS-CoV-2-induced disease. Frontiers in Immunology, 0, 13, .	2.2	1
135	Multi-omics identify falling LRRC15 as a COVID-19 severity marker and persistent pro-thrombotic signals in convalescence. Nature Communications, 2022, 13, .	5.8	13
136	Titration of 124 antibodies using CITE-Seq on human PBMCs. Scientific Reports, 2022, 12, .	1.6	4
137	Hyperactive immature state and differential CXCR2 expression of neutrophils in severe COVID-19. Life Science Alliance, 2023, 6, e202201658.	1.3	9
138	COVIDâ€19 plasma proteome reveals novel temporal and cellâ€specific signatures for disease severity and highâ€precision disease management. Journal of Cellular and Molecular Medicine, 2023, 27, 141-157.	1.6	6
140	Intensive care nurseâ€led point of care ultrasound in the assessment and management of the critically ill <scp>COVID</scp> â€19 patient: A single centre case series. Nursing in Critical Care, 2023, 28, 781-788.	1.1	2
141	Innate immune responses in COVID-19. , 2023, , 63-128.		0
142	Alterations in the immune system persist after one year of convalescence in severe COVID-19 patients. Frontiers in Immunology, 0, 14, .	2.2	3
143	The Role of Immunity in the Pathogenesis of SARS-CoV-2 Infection and in the Protection Generated by COVID-19 Vaccines in Different Age Groups. Pathogens, 2023, 12, 329.	1.2	3
144	Subsets of Eosinophils in Asthma, a Challenge for Precise Treatment. International Journal of Molecular Sciences, 2023, 24, 5716.	1.8	4
145	Immune Dynamics Involved in Acute and Convalescent COVID-19 Patients. Immuno, 2023, 3, 86-111.	0.6	1
146	Complete Blood Count and saliva parameters as an indicator for infected patients with coronavirus covid-19. Journal of Baghdad College of Dentistry, 2023, 35, 76-85.	0.1	0
158	Focusing on the cytokine storm in the battle against COVID-19: the rising role of mesenchymal-derived stem cells. , 2024, , 191-207.		0