Drying kinetic, quality, energy and exergy performance green peas using adaptive neuro-fuzzy inference system

Food and Bioproducts Processing 124, 168-183 DOI: 10.1016/j.fbp.2020.08.011

Citation Report

#	Article	IF	CITATIONS
1	Impact of different drying methods on the drying time, energy, and quality of green peas. Journal of Food Processing and Preservation, 2021, 45, e15503.	2.0	28
2	The Quality of Infrared Rotary Dried Terebinth (Pistacia atlantica L.)-Optimization and Prediction Approach Using Response Surface Methodology. Molecules, 2021, 26, 1999.	3.8	12
3	Combined Hot Air, Microwave, and Infrared Drying of Hawthorn Fruit: Effects of Ultrasonic Pretreatment on Drying Time, Energy, Qualitative, and Bioactive Compounds' Properties. Foods, 2021, 10, 1006.	4.3	30
4	Sawdust drying process in a large-scale pellets facility: An energy and exergy analysis. Cleaner Environmental Systems, 2021, 2, 100037.	4.2	4
5	Ultrasound, infrared and its assisted technology, a promising tool in physical food processing: A review of recent developments. Critical Reviews in Food Science and Nutrition, 2023, 63, 1587-1611.	10.3	8
6	Effect of Pretreatments on Convective and Infrared Drying Kinetics, Energy Consumption and Quality of Terebinth. Applied Sciences (Switzerland), 2021, 11, 7672.	2.5	22
7	Optimisation of microwave-rotary drying process and quality parameters of terebinth. Biosystems Engineering, 2021, 208, 113-130.	4.3	21
8	Exergy and Energy Analyses of Microwave Dryer for Cantaloupe Slice and Prediction of Thermodynamic Parameters Using ANN and ANFIS Algorithms. Energies, 2021, 14, 4838.	3.1	16
9	Thermodynamic Evaluation of the Forced Convective Hybrid-Solar Dryer during Drying Process of Rosemary (Rosmarinus officinalis L.) Leaves. Energies, 2021, 14, 5835.	3.1	17
10	Whey and soy proteins as wall materials for spray drying rosemary: Effects on polyphenol composition, antioxidant activity, bioaccessibility after in vitro gastrointestinal digestion and stability during storage. LWT - Food Science and Technology, 2021, 149, 111901.	5.2	19
11	Comprehensive exergy transfer analysis of a cyclonic furnace integrated recirculating mixed flow grain dryer. Applied Thermal Engineering, 2022, 200, 117637.	6.0	3
12	Energy and exergy analysis during drying in rotary dryers from finite control volumes: Applications to the drying of olive stone. Applied Thermal Engineering, 2022, 200, 117699.	6.0	4
13	Modeling and Design of a Solar Rotary Dryer Bench Test for Phosphate Sludge. Modelling and Simulation in Engineering, 2022, 2022, 1-11.	0.7	2
14	Application of Artificial Neural Networks, Support Vector, Adaptive Neuro-Fuzzy Inference Systems for the Moisture Ratio of Parboiled Hulls. Applied Sciences (Switzerland), 2022, 12, 1771.	2.5	13
15	Investigating the effect of the tractor driving system type on soil compaction using different methods of ANN, ANFIS and step wise regression. Soil and Tillage Research, 2022, 222, 105444.	5.6	7
16	Comparison of two artificial intelligence methods (<scp>ANNs</scp> and <scp>ANFIS</scp>) for estimating the energy and exergy of drying cantaloupe in a hybrid infraredâ€convective dryer. Journal of Food Processing and Preservation, 2022, 46, .	2.0	8
17	Energetic and exergetic performances during drying of freshly harvested peanut with industrial mixed-flow dryer. Energy Reports, 2022, 8, 7457-7467.	5.1	5
18	Experimental and numerical analysis of thermodynamic performance of microwave dryer of onion. Journal of Food Process Engineering, 0, , .	2.9	6

CITATION REPORT

#	Article	IF	CITATIONS
19	Enhancing the Stability of Bacteriophages Using Physical, Chemical, and Nano-Based Approaches: A Review. Pharmaceutics, 2022, 14, 1936.	4.5	10
20	Mathematical Model ofÂPreparing Process ofÂBulk Cargo forÂTransportation byÂVessel. Lecture Notes on Data Engineering and Communications Technologies, 2023, , 42-60.	0.7	0
21	Characteristic simulation and working parameter optimization of the aggregate dryer. Drying Technology, 0, , 1-15.	3.1	1
22	Performance evaluation of a multi-magnetron microwave rotary dryer for tomyum spices processing. AIP Conference Proceedings, 2022, , .	0.4	Ο
23	Comparison of the energy and exergy parameters in cantaloupe (Cucurbita maxima) drying using hot air. Smart Agricultural Technology, 2023, 4, 100198.	5.4	6
24	Comparison of different pretreatments on drying characteristics, physical properties, nutritional compounds and antioxidant activity of heat pumpâ€dried longan pulp. International Journal of Food Science and Technology, 2023, 58, 3889-3901.	2.7	1
25	Thermodynamics and non-uniformity in convective reversing drying wheat. Applied Thermal Engineering, 2023, 231, 120948.	6.0	1
26	Identification of machine learning neural-network techniques for prediction of interfacial tension reduction by zein based colloidal particles. Materials Today Communications, 2023, 36, 106546.	1.9	Ο
27	Azolla processing technologies for an alternative feed raw material. Results in Engineering, 2023, 19, 101313.	5.1	0
28	READY-TO-EAT CHICKPEA PURÉE POWDER BY DRUM DRYING; PHYSICOCHEMICAL AND RHEOLOGICAL PROPERTIES OF POWDER PRODUCT. Gıda, 2023, 48, 846-860.	0.4	Ο
29	Evaluating Kinetics of Convection Drying and Microstructure Characteristics of Asian Seabass Fish Skin without and with Ultrasound Pretreatment. Foods, 2023, 12, 3024.	4.3	3
30	Energy efficiency analysis of a rotating-drum dryer using hot steel balls for converter sludge. Case Studies in Thermal Engineering, 2023, 49, 103389.	5.7	Ο
31	A comprehensive assessment of energetic and exergetic performance for the dehumidification system of a processed pistachio production unit. Journal of Food Process Engineering, 2023, 46, .	2.9	0
32	Prediction of the capacitance of the corn drying process parameter using adaptive- neuro-fuzzy intelligent technique with experimental validation. Drying Technology, 2024, 42, 90-113.	3.1	Ο
33	Gas sensor-based machine learning approaches for characterizing tarragon aroma and essential oil under various drying conditions. Sensors and Actuators A: Physical, 2024, 365, 114827.	4.1	2
34	Comparison of ANN and ANFIS modeling for predicting drying kinetics of <i>Stevia rebaudiana</i> leaves in a hot-air dryer and characterization of dried powder. International Journal of Food Properties, 2023, 26, 3356-3375.	3.0	0
35	Performance evaluation of a flighted rotary dryer for lateritic ore in concurrent configuration. Heliyon, 2023, 9, e21345.	3.2	0
36	Ultrasound assisted phytochemical extraction of red cabbage by using deep eutectic solvent: Modelling using ANFIS and optimization by genetic algorithms. Ultrasonics Sonochemistry, 2024, 102, 106762.	8.2	0

#	Article	IF	CITATIONS
37	Experimental and numerical study of thermal performance of a solar rotary dryer with thermal storage mechanism. Journal of Energy Storage, 2024, 82, 109843.	8.1	0
38	Discrete Element Method-Based Hybrid Compartment Model of a Rotary Dryer for Fertilizer Production. Industrial & Engineering Chemistry Research, 0, , .	3.7	0

CITATION REPORT