A Mouse-Adapted SARS-CoV-2 Induces Acute Lung Inju Laboratory Mice

Cell 183, 1070-1085.e12

DOI: 10.1016/j.cell.2020.09.050

Citation Report

#	Article	IF	CITATIONS
1	Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends in Immunology, 2020, 41, 1100-1115.	2.9	794
2	Severe acute respiratory syndrome coronavirusâ€2 natural animal reservoirs and experimental models: systematic review. Reviews in Medical Virology, 2021, 31, e2196.	3.9	24
3	SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science, 2020, 370, 1464-1468.	6.0	808
4	Replication, pathogenicity, and transmission of SARS-CoV-2 in minks. National Science Review, 2021, 8, nwaa291.	4.6	72
5	Considerations for the use and study of exogenous surfactant in respiratory disease from COVID-19. Canadian Journal of Respiratory, Critical Care, and Sleep Medicine, 2021, 5, 51-53.	0.2	0
6	Variants in SARS-CoV-2 associated with mild or severe outcome. Evolution, Medicine and Public Health, 2021, 9, 267-275.	1.1	24
10	Possible host-adaptation of SARS-CoV-2 due to improved ACE2 receptor binding in mink. Virus Evolution, 2021, 7, veaa094.	2.2	50
11	Understanding the Host Innate Immune Responses against SARS-CoV-2 Infection and COVID-19 Pathogenesis. Immune Network, 2021, 21, e1.	1.6	9
12	SARS-CoV-2: vaccines in the pandemic era. Military Medical Research, 2021, 8, 1.	1.9	104
13	Distinct mechanisms for TMPRSS2 expression explain organ-specific inhibition of SARS-CoV-2 infection by enzalutamide. Nature Communications, 2021, 12, 866.	5 . 8	73
14	Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice. Science, 2021, 371, 735-741.	6.0	305
16	Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody. Science, 2021, 371, 823-829.	6.0	285
17	Early humoral defence: Contributing to confining COVIDâ€19 to conducting airways?. Scandinavian Journal of Immunology, 2021, 93, e13024.	1.3	10
18	SARS-CoV-2 Infections in Animals: Reservoirs for Reverse Zoonosis and Models for Study. Viruses, 2021, 13, 494.	1.5	63
19	Pathogen Dose in Animal Models of Hemorrhagic Fever Virus Infections and the Potential Impact on Studies of the Immune Response. Pathogens, 2021, 10, 275.	1,2	3
20	Animal Hosts and Experimental Models of SARS-CoV-2 Infection. Chemotherapy, 2021, 66, 1-9.	0.8	13
21	Vaccines: Underlying Principles of Design and Testing. Clinical Pharmacology and Therapeutics, 2021, 109, 987-999.	2.3	2
26	Mechanisms of SARSâ€CoVâ€2â€induced lung vascular disease: potential role of complement. Pulmonary Circulation, 2021, 11, 1-14.	0.8	34

#	Article	IF	CITATIONS
29	The variant gambit: COVID-19's next move. Cell Host and Microbe, 2021, 29, 508-515.	5.1	305
30	Critical ACE2 Determinants of SARS-CoV-2 and Group 2B Coronavirus Infection and Replication. MBio, 2021, 12, .	1.8	8
31	COVID19 therapeutics: Expanding the antiviral arsenal. EBioMedicine, 2021, 66, 103289.	2.7	4
33	Bridging animal and clinical research during SARS-CoV-2 pandemic: A new-old challenge. EBioMedicine, 2021, 66, 103291.	2.7	15
34	Intranasal versus intratracheal exposure to lipopolysaccharides in a murine model of acute respiratory distress syndrome. Scientific Reports, 2021, 11, 7777.	1.6	22
35	Current Status of Putative Animal Sources of SARS-CoV-2 Infection in Humans: Wildlife, Domestic Animals and Pets. Microorganisms, 2021, 9, 868.	1.6	38
36	Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection. Cell, 2021, 184, 1804-1820.e16.	13.5	297
37	The olfactory nerve is not a likely route to brain infection in COVID-19: a critical review of data from humans and animal models. Acta Neuropathologica, 2021, 141, 809-822.	3.9	94
39	Convergent evolution of SARS-CoV-2 in human and animals. Protein and Cell, 2021, 12, 832-835.	4.8	15
42	Influenza virus and SARS-CoV-2: pathogenesis and host responses in the respiratory tract. Nature Reviews Microbiology, 2021, 19, 425-441.	13.6	202
43	Cell-Type Apoptosis in Lung during SARS-CoV-2 Infection. Pathogens, 2021, 10, 509.	1.2	47
45	SARS-CoV-2 evolution in an immunocompromised host reveals shared neutralization escape mechanisms. Cell, 2021, 184, 2605-2617.e18.	13.5	151
46	Prevalent, protective, and convergent IgG recognition of SARS-CoV-2 non-RBD spike epitopes. Science, 2021, 372, 1108-1112.	6.0	210
48	SARS-CoV-2 Rapidly Adapts in Aged BALB/c Mice and Induces Typical Pneumonia. Journal of Virology, 2021, 95, .	1.5	43
49	Q493K and Q498H substitutions in Spike promote adaptation of SARS-CoV-2 in mice. EBioMedicine, 2021, 67, 103381.	2.7	102
51	Noninvasive Measurement of Pulmonary Function in Experimental Mouse Models of Airway Disease. Lung, 2021, 199, 255-261.	1.4	13
53	Cross-reactive coronavirus antibodies with diverse epitope specificities and Fc effector functions. Cell Reports Medicine, 2021, 2, 100313.	3.3	56
55	Platforms for Personalized Polytherapeutics Discovery in COVID-19. Journal of Molecular Biology, 2021, 433, 166945.	2.0	4

#	ARTICLE	IF	Citations
57	Psychosocial Risk Factors, Noncommunicable Diseases, and Animal Models for COVID-19. Biological Psychiatry, 2021, 89, e67-e71.	0.7	1
58	COVID-19-related cardiac complications from clinical evidences to basic mechanisms: opinion paper of the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2021, 117, 2148-2160.	1.8	26
59	Shutting the gate before the horse has bolted: is it time for a conversation about SARS-CoV-2 and antiviral drug resistance?. Journal of Antimicrobial Chemotherapy, 2021, 76, 2230-2233.	1.3	17
60	Exploration of the Function of Ginsenoside RD Attenuates Lipopolysaccharide-Induced Lung Injury: A Study of Network Pharmacology and Experimental Validation. Shock, 2022, 57, 212-220.	1.0	6
62	SARS-CoV-2 RBD trimer protein adjuvanted with Alum-3M-052 protects from SARS-CoV-2 infection and immune pathology in the lung. Nature Communications, 2021, 12, 3587.	5.8	71
63	Control of Innate Immune Activation by Severe Acute Respiratory Syndrome Coronavirus 2 and Other Coronaviruses. Journal of Interferon and Cytokine Research, 2021, 41, 205-219.	0.5	5
64	Animal models for SARS-CoV-2. Current Opinion in Virology, 2021, 48, 73-81.	2.6	52
65	Towards Goals to Refine Prophylactic and Therapeutic Strategies Against COVID-19 Linked to Aging and Metabolic Syndrome. Cells, 2021, 10, 1412.	1.8	6
66	Aging and respiratory viral infection: from acute morbidity to chronic sequelae. Cell and Bioscience, 2021, 11, 112.	2.1	20
68	Reinvestigating the Coughing Rat Model of Pertussis To Understand <i>Bordetella pertussis</i> Pathogenesis. Infection and Immunity, 2021, 89, e0030421.	1.0	8
69	Quantitative proteomics of hamster lung tissues infected with SARSâ€CoVâ€2 reveal host factors having implication in the disease pathogenesis and severity. FASEB Journal, 2021, 35, e21713.	0.2	22
71	Structural Evaluation of the Spike Glycoprotein Variants on SARS-CoV-2 Transmission and Immune Evasion. International Journal of Molecular Sciences, 2021, 22, 7425.	1.8	69
73	On the origin of SARS-CoV-2â€"The blind watchmaker argument. Science China Life Sciences, 2021, 64, 1560-1563.	2.3	18
74	Sex and age bias viral burden and interferon responses during SARS-CoV-2 infection in ferrets. Scientific Reports, 2021, 11, 14536.	1.6	14
75	ACE2-lentiviral transduction enables mouse SARS-CoV-2 infection and mapping of receptor interactions. PLoS Pathogens, 2021, 17, e1009723.	2.1	28
76	Innate immune and inflammatory responses to SARS-CoV-2: Implications for COVID-19. Cell Host and Microbe, 2021, 29, 1052-1062.	5.1	185
77	Toward Understanding COVID-19 Recovery: National Institutes of Health Workshop on Postacute COVID-19. Annals of Internal Medicine, 2021, 174, 999-1003.	2.0	65
78	Expression of the ACE2 Virus Entry Protein in the Nervus Terminalis Reveals the Potential for an Alternative Route to Brain Infection in COVID-19. Frontiers in Cellular Neuroscience, 2021, 15, 674123.	1.8	16

#	ARTICLE	IF	CITATIONS
80	Prevention and therapy of SARS-CoV-2 and the B.1.351 variant in mice. Cell Reports, 2021, 36, 109450.	2.9	38
84	InÂvitro and inÂvivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell, 2021, 184, 4203-4219.e32.	13.5	228
85	COVID-19 vaccine mRNA-1273 elicits a protective immune profile in mice that is not associated with vaccine-enhanced disease upon SARS-CoV-2 challenge. Immunity, 2021, 54, 1869-1882.e6.	6.6	59
86	Sex Differences in Lung Imaging and SARS-CoV-2 Antibody Responses in a COVID-19 Golden Syrian Hamster Model. MBio, 2021, 12, e0097421.	1.8	69
88	Neurochemical biomarkers to study CNS effects of COVIDâ \in 19: A narrative review and synthesis. Journal of Neurochemistry, 2021, 159, 61-77.	2.1	21
89	Respiratory epithelial cell responses to SARS-CoV-2 in COVID-19. Thorax, 2022, 77, 203-209.	2.7	90
90	An Overview of Vaccines against SARS-CoV-2 in the COVID-19 Pandemic Era. Pathogens, 2021, 10, 1030.	1.2	33
92	Chimeric spike mRNA vaccines protect against Sarbecovirus challenge in mice. Science, 2021, 373, 991-998.	6.0	144
94	Animal Models for COVID-19: Hamsters, Mouse, Ferret, Mink, Tree Shrew, and Non-human Primates. Frontiers in Microbiology, 2021, 12, 626553.	1.5	90
95	Long-Term Acute Care Hospital Outcomes of Mechanically Ventilated Patients With Coronavirus Disease 2019*. Critical Care Medicine, 2022, 50, 256-263.	0.4	13
96	Fc-engineered antibody therapeutics with improved anti-SARS-CoV-2 efficacy. Nature, 2021, 599, 465-470.	13.7	129
97	Broad cross-reactivity across sarbecoviruses exhibited by a subset of COVID-19 donor-derived neutralizing antibodies. Cell Reports, 2021, 36, 109760.	2.9	80
98	Tissue factor expression, extracellular vesicles, and thrombosis after infection with the respiratory viruses influenza A virus and coronavirus. Journal of Thrombosis and Haemostasis, 2021, 19, 2652-2658.	1.9	29
99	Live imaging of SARS-CoV-2 infection in mice reveals that neutralizing antibodies require Fc function for optimal efficacy. Immunity, 2021, 54, 2143-2158.e15.	6.6	155
102	A universal bacteriophage T4 nanoparticle platform to design multiplex SARS-CoV-2 vaccine candidates by CRISPR engineering. Science Advances, 2021, 7, eabh1547.	4.7	44
103	Characterization and structural basis of a lethal mouse-adapted SARS-CoV-2. Nature Communications, 2021, 12, 5654.	5.8	89
104	The viral phoenix: enhanced infectivity and immunity evasion of SARS-CoV-2 variants. Environmental Chemistry Letters, 2022, 20, 1539-1544.	8.3	6
105	SARS-CoV-2 Subgenomic RNAs: Characterization, Utility, and Perspectives. Viruses, 2021, 13, 1923.	1.5	38

#	Article	IF	CITATIONS
107	Protective Efficacy of Rhesus Adenovirus COVID-19 Vaccines against Mouse-Adapted SARS-CoV-2. Journal of Virology, 2021, 95, e0097421.	1.5	12
108	Novel virus-like nanoparticle vaccine effectively protects animal model from SARS-CoV-2 infection. PLoS Pathogens, 2021, 17, e1009897.	2.1	49
111	The origins of SARS-CoV-2: A critical review. Cell, 2021, 184, 4848-4856.	13.5	330
113	COVID-19 Animal Models and Vaccines: Current Landscape and Future Prospects. Vaccines, 2021, 9, 1082.	2.1	8
115	Kinetic Multi-omic Analysis of Responses to SARS-CoV-2 Infection in a Model of Severe COVID-19. Journal of Virology, 2021, 95, e0101021.	1.5	21
116	Importance of non-pharmaceutical interventions in lowering the viral inoculum to reduce susceptibility to infection by SARS-CoV-2 and potentially disease severity. Lancet Infectious Diseases, The, 2021, 21, e296-e301.	4.6	57
117	Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines. Cell, 2021, 184, 5432-5447.e16.	13.5	131
118	SARS-CoV-2, COVID-19 and the aging immune system. Nature Aging, 2021, 1, 769-782.	5.3	208
119	Potential Therapeutic Applications of Pulmonary Surfactant Lipids in the Host Defence Against Respiratory Viral Infections. Frontiers in Immunology, 2021, 12, 730022.	2.2	16
120	COVID-19–Associated Acute Respiratory Distress Syndrome. Critical Care Clinics, 2021, 37, 777-793.	1.0	6
121	Adenovirus transduction to express human ACE2 causes obesity-specific morbidity in mice, impeding studies on the effect of host nutritional status on SARS-CoV-2 pathogenesis. Virology, 2021, 563, 98-106.	1.1	6
122	Animal models of SARS-CoV-2 and COVID-19 for the development of prophylactic and therapeutic interventions., 2021, 228, 107931.		18
134	Age-related susceptibility to coronavirus infections: role of impaired and dysregulated host immunity. Journal of Clinical Investigation, 2020, 130, 6204-6213.	3.9	59
135	Immunology of SARS-CoV-2 infections and vaccines. Advances in Immunology, 2021, 151, 49-97.	1.1	12
136	Mouse Models for the Study of SARS-CoV-2 Infection. Comparative Medicine, 2021, 71, 383-397.	0.4	11
137	Cross-protective immunity following coronavirus vaccination and coronavirus infection. Journal of Clinical Investigation, $2021, 131, \ldots$	3.9	51
138	Stabilized coronavirus spike stem elicits a broadly protective antibody. Cell Reports, 2021, 37, 109929.	2.9	64
139	SARS-CoV-2 Causes Lung Infection without Severe Disease in Human ACE2 Knock-In Mice. Journal of Virology, 2022, 96, JVI0151121.	1.5	58

#	Article	IF	CITATIONS
140	Emerging SARS-CoV-2 variants expand species tropism to murines. EBioMedicine, 2021, 73, 103643.	2.7	127
141	Distinct Roles of Type I and Type III Interferons during a Native Murine \hat{I}^2 Coronavirus Lung Infection. Journal of Virology, 2022, 96, JVI0124121.	1.5	10
142	Update on and Future Directions for Use of Anti–SARS-CoV-2 Antibodies: National Institutes of Health Summit on Treatment and Prevention of COVID-19. Annals of Internal Medicine, 2022, 175, 119-126.	2.0	13
143	Male Sex and Age Biases Viral Burden, Viral Shedding, and Type 1 and 2 Interferon Responses During SARS-CoV-2 Infection in Ferrets. SSRN Electronic Journal, 0 , , .	0.4	1
144	The K18-Human ACE2 Transgenic Mouse Model Recapitulates Non-severe and Severe COVID-19 in Response to an Infectious Dose of the SARS-CoV-2 Virus. Journal of Virology, 2022, 96, JVI0096421.	1.5	84
145	An oral SARS-CoV-2 M ^{pro} inhibitor clinical candidate for the treatment of COVID-19. Science, 2021, 374, 1586-1593.	6.0	1,074
146	Mouse-adapted SARS-CoV-2 protects animals from lethal SARS-CoV challenge. PLoS Biology, 2021, 19, e3001284.	2.6	54
147	Using <i>in vivo</i> animal models for studying SARS-CoV-2. Expert Opinion on Drug Discovery, 2022, 17, 121-137.	2.5	5
148	Mutation Y453F in the spike protein of SARS-CoV-2 enhances interaction with the mink ACE2 receptor for host adaption. PLoS Pathogens, 2021, 17, e1010053.	2.1	43
149	A broadly cross-reactive antibody neutralizes and protects against sarbecovirus challenge in mice. Science Translational Medicine, 2022, 14, eabj7125.	5.8	93
150	Syrian hamsters as a model of lung injury with SARS-CoV-2 infection: Pathologic, physiologic, and detailed molecular profiling. Translational Research, 2022, 240, 1-16.	2.2	33
152	Increased morbidity of obese mice infected with mouse-adapted SARS-CoV-2. Cell Discovery, 2021, 7, 74.	3.1	1
153	Immune dysregulation and immunopathology induced by SARS-CoV-2 and related coronaviruses — are we our own worst enemy?. Nature Reviews Immunology, 2022, 22, 47-56.	10.6	118
155	Animal models for SARSâ€CoVâ€2 infection and pathology. MedComm, 2021, 2, 548-568.	3.1	19
157	Neurological complications and infection mechanism of SARS-CoV-2. Signal Transduction and Targeted Therapy, 2021, 6, 406.	7.1	76
158	Treatment with Fluticasone Propionate Increases Antibiotic Efficacy during Treatment of Late-Stage Primary Pneumonic Plague. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0127521.	1.4	2
160	"But Mouse, You Are Not Alone†On Some Severe Acute Respiratory Syndrome Coronavirus 2 Variants Infecting Mice. ILAR Journal, 2021, 62, 48-59.	1.8	10
161	Immune responses to human respiratory coronaviruses infection in mouse models. Current Opinion in Virology, 2022, 52, 102-111.	2.6	5

#	Article	IF	CITATIONS
162	Increased morbidity of obese mice infected with mouse-adapted SARS-CoV-2. Cell Discovery, 2021, 7, 74.	3.1	10
163	Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature, 2022, 603, 587-598.	13.7	216
164	Lipopolysaccharide induces acute lung injury and alveolar haemorrhage in association with the cytokine storm, coagulopathy and ATIR/JAK/STAT augmentation in a rat modelÂthat mimics moderate and severe Covidâ€19 pathology. Clinical and Experimental Pharmacology and Physiology, 2022, 49, 483-491.	0.9	18
167	Pro108Ser mutation of SARS-CoV-2 3CLpro reduces the enzyme activity and ameliorates the clinical severity of COVID-19. Scientific Reports, 2022, 12, 1299.	1.6	15
168	A lethal mouse model for evaluating vaccine-associated enhanced respiratory disease during SARS-CoV-2 infection. Science Advances, 2022, 8, eabh3827.	4.7	27
169	Administration of aerosolized SARS-CoV-2 to K18-hACE2 mice uncouples respiratory infection from fatal neuroinvasion. Science Immunology, 2022, 7, .	5.6	61
170	SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature, 2022, 603, 687-692.	13.7	475
171	ACE2 is the critical in vivo receptor for SARS-CoV-2 in a novel COVID-19 mouse model with TNF- and IFN \hat{I}^3 -driven immunopathology. ELife, 2022, 11, .	2.8	42
172	COVID-19, Influenza and RSV: Surveillance-informed prevention and treatment – Meeting report from an isirv-WHO virtual conference. Antiviral Research, 2022, 197, 105227.	1.9	19
173	Type I interferons and SARS-CoV-2: from cells to organisms. Current Opinion in Immunology, 2022, 74, 172-182.	2.4	49
174	ExÂvivo and inÂvivo suppression of SARS-CoV-2 with combinatorial AAV/RNAi expression vectors. Molecular Therapy, 2022, 30, 2005-2023.	3.7	10
175	Animal models for SARS-CoV-2 and SARS-CoV-1 pathogenesis, transmission and therapeutic evaluation. World Journal of Virology, 2022, 11, 40-56.	1.3	9
176	SARS-CoV-2 infection triggers paracrine senescence and leads to a sustained senescence-associated inflammatory response. Nature Aging, 2022, 2, 115-124.	5.3	43
177	SARSâ€CoVâ€2 Omicron emergence urges for reinforced Oneâ€Health surveillance. EMBO Molecular Medicine, 2022, , e15558.	3.3	10
178	Advances and gaps in SARS-CoV-2 infection models. PLoS Pathogens, 2022, 18, e1010161.	2.1	61
179	The Tissue Distribution of SARS-CoV-2 in Transgenic Mice With Inducible Ubiquitous Expression of hACE2. Frontiers in Molecular Biosciences, 2021, 8, 821506.	1.6	7
180	An aluminum hydroxide:CpG adjuvant enhances protection elicited by a SARS-CoV-2 receptor binding domain vaccine in aged mice. Science Translational Medicine, 2022, 14, .	5.8	57
183	Characterization of Two Heterogeneous Lethal Mouse-Adapted SARS-CoV-2 Variants Recapitulating Representative Aspects of Human COVID-19. Frontiers in Immunology, 2022, 13, 821664.	2.2	22

#	Article	IF	CITATIONS
184	An adjuvant strategy enabled by modulation of the physical properties of microbial ligands expands antigen immunogenicity. Cell, 2022, 185, 614-629.e21.	13.5	40
185	Respiratory mucosal delivery of next-generation COVID-19 vaccine provides robust protection against both ancestral and variant strains of SARS-CoV-2. Cell, 2022, 185, 896-915.e19.	13.5	189
186	Oral Nirmatrelvir/Ritonavir Therapy for COVID-19: The Dawn in the Dark?. Antibiotics, 2022, 11, 220.	1.5	66
187	Qingwenzhike Prescription Alleviates Acute Lung Injury Induced by LPS via Inhibiting TLR4/NF-kB Pathway and NLRP3 Inflammasome Activation. Frontiers in Pharmacology, 2021, 12, 790072.	1.6	32
188	Evidence for a mouse origin of the SARS-CoV-2 Omicron variant. Journal of Genetics and Genomics, 2021, 48, 1111-1121.	1.7	206
189	Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature, 0, , .	13.7	101
190	Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature, 2022, 602, 664-670.	13.7	917
195	Structural basis of SARS-CoV-2 Omicron immune evasion and receptor engagement. Science, 2022, 375, 864-868.	6.0	394
197	An aluminum hydroxide:CpG adjuvant enhances protection elicited by a SARS-CoV-2 receptor-binding domain vaccine in aged mice. Science Translational Medicine, 2021, , eabj5305.	5.8	4
198	Administration of aerosolized SARS-CoV-2 to K18-hACE2 mice uncouples respiratory infection from fatal neuroinvasion. Science Immunology, 2021, , eabl9929.	5.6	3
199	Infection of wild-type mice by SARS-CoV-2 B.1.351 variant indicates a possible novel cross-species transmission route. Signal Transduction and Targeted Therapy, 2021, 6, 420.	7.1	46
204	Fatal Neurodissemination and SARS-CoV-2 Tropism in K18-hACE2 Mice Is Only Partially Dependent on hACE2 Expression. Viruses, 2022, 14, 535.	1.5	47
205	Porcine Respiratory Coronavirus as a Model for Acute Respiratory Coronavirus Disease. Frontiers in Immunology, 2022, 13, 867707.	2.2	11
206	Molecular variants of SARS-CoV-2: antigenic properties and current vaccine efficacy. Medical Microbiology and Immunology, 2022, 211, 79-103.	2.6	9
208	Comparative characterization of SARS oVâ€⊋ variants of concern and mouseâ€adapted strains in mice. Journal of Medical Virology, 2022, 94, 3223-3232.	2.5	12
209	Eicosanoid signalling blockade protects middle-aged mice from severe COVID-19. Nature, 2022, 605, 146-151.	13.7	82
210	Infection with the SARS-CoV-2 B.1.351 variant is lethal in aged BALB/c mice. Scientific Reports, 2022, 12, 4150.	1.6	9
212	Mice infected with Mycobacterium tuberculosis are resistant to acute disease caused by secondary infection with SARS-CoV-2. PLoS Pathogens, 2022, 18, e1010093.	2.1	24

#	Article	IF	CITATIONS
213	Characterization of SARS-CoV-2 Variants B.1.617.1 (Kappa), B.1.617.2 (Delta), and B.1.618 by Cell Entry and Immune Evasion. MBio, 2022, 13, e0009922.	1.8	22
214	Innate lymphoid cells and COVID-19 severity in SARS-CoV-2 infection. ELife, 2022, 11, .	2.8	37
215	Spatial Transcriptome Uncovers the Mouse Lung Architectures and Functions. Frontiers in Genetics, 2022, 13, 858808.	1.1	3
216	SARS-CoV-2 infection of airway cells causes intense viral and cell shedding, two spreading mechanisms affected by IL-13. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119680119.	3.3	53
217	Therapeutic treatment with an oral prodrug of the remdesivir parental nucleoside is protective against SARS-CoV-2 pathogenesis in mice. Science Translational Medicine, 2022, 14, eabm3410.	5.8	49
218	A modified vaccinia Ankara vaccine expressing spike and nucleocapsid protects rhesus macaques against SARS-CoV-2 Delta infection. Science Immunology, 2022, 7, eabo0226.	5.6	22
219	Interstitial pneumonia and diffuse alveolar damage in domestic animals. Veterinary Pathology, 2022, 59, 586-601.	0.8	6
220	SARS-CoV-2 pathogenesis. Nature Reviews Microbiology, 2022, 20, 270-284.	13.6	404
221	Review of selected animal models for respiratory coronavirus infection and its application in drug research. Journal of Medical Virology, 2022, , .	2.5	5
222	Mutations of Omicron Variant at the Interface of the Receptor Domain Motif and Human Angiotensin-Converting Enzyme-2. International Journal of Molecular Sciences, 2022, 23, 2870.	1.8	18
223	Animal models in SARS-CoV-2 research. Nature Methods, 2022, 19, 392-394.	9.0	51
226	mRNA COVID-19 Vaccines and Long-Lived Plasma Cells: A Complicated Relationship. Vaccines, 2021, 9, 1503.	2.1	23
227	SARS-CoV-2 Variants of Concern Infect the Respiratory Tract and Induce Inflammatory Response in Wild-Type Laboratory Mice. Viruses, 2022, 14, 27.	1.5	21
228	Modeling of experimental acute bronchopneumonia with pulmonary fibrosis. Experimental and Clinical Physiology and Biochemistry, 2022, 2021, .	0.2	0
229	Inactivated SARS-CoV-2 induces acute respiratory distress syndrome in human ACE2-transgenic mice. Signal Transduction and Targeted Therapy, 2021, 6, 439.	7.1	18
232	Patho-Physiology of Aging and Immune-Senescence: Possible Correlates With Comorbidity and Mortality in Middle-Aged and Old COVID-19 Patients. Frontiers in Aging, 2021, 2, .	1.2	12
233	An antibody class with a common CDRH3 motif broadly neutralizes sarbecoviruses. Science Translational Medicine, 2022, 14, eabn6859.	5.8	31
236	Microgliosis and neuronal proteinopathy in brain persist beyond viral clearance in SARS-CoV-2 hamster model. EBioMedicine, 2022, 79, 103999.	2.7	48

#	Article	IF	CITATIONS
237	SARS-CoV-2 Infection: Host Response, Immunity, and Therapeutic Targets. Inflammation, 2022, 45, 1430-1449.	1.7	16
238	Animal models for studying COVID-19, prevention, and therapy: Pathology and disease phenotypes. Veterinary Pathology, 2022, 59, 516-527.	0.8	5
239	Intranasal Lentiviral Vector-Mediated Antibody Delivery Confers Reduction of SARS-CoV-2 Infection in Elderly and Immunocompromised Mice. Frontiers in Immunology, 2022, 13, 819058.	2.2	1
241	Potential for a Plant-Made SARS-CoV-2 Neutralizing Monoclonal Antibody as a Synergetic Cocktail Component. Vaccines, 2022, 10, 772.	2.1	10
243	Immunity to enteric viruses. Immunity, 2022, 55, 800-818.	6.6	20
244	<scp>PF</scp> â€07321332 (Nirmatrelvir) does not interact with human <scp>ENT1</scp> or <scp>ENT2</scp> : Implications for <scp>COVID</scp> â€19 patients. Clinical and Translational Science, 2022, 15, 1599-1605.	1.5	12
245	A glucose-like metabolite deficient in diabetes inhibits cellular entry of SARS-CoV-2. Nature Metabolism, 2022, 4, 547-558.	5.1	14
246	Insights Gained Into the Treatment of COVID19 by Pulmonary Surfactant and Its Components. Frontiers in Immunology, 2022, 13, 842453.	2.2	4
248	COVID-19 vaccine development: milestones, lessons and prospects. Signal Transduction and Targeted Therapy, 2022, 7, 146.	7.1	153
249	Heterogeneous Infectivity and Pathogenesis of SARS-CoV-2 Variants Beta, Delta and Omicron in Transgenic K18-hACE2 and Wildtype Mice. Frontiers in Microbiology, 2022, 13, .	1.5	39
250	Characterization and antiviral susceptibility of SARS-CoV-2 Omicron BA.2. Nature, 2022, 607, 119-127.	13.7	174
251	Inhibition of IRAK4 dysregulates SARS-CoV-2 spike protein-induced macrophage inflammatory and glycolytic reprogramming. Cellular and Molecular Life Sciences, 2022, 79, 301.	2.4	9
252	Caspase-4/11 exacerbates disease severity in SARS–CoV-2 infection by promoting inflammation and immunothrombosis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2202012119.	3.3	25
255	Phage-like particle vaccines are highly immunogenic and protect against pathogenic coronavirus infection and disease. Npj Vaccines, 2022, 7, .	2.9	8
256	Immune-Mediated Mechanisms of COVID-19 Neuropathology. Frontiers in Neurology, 2022, 13, .	1.1	9
257	Structural and biochemical mechanism for increased infectivity and immune evasion of OmicronÂBA.2 variant compared to BA.1 and their possible mouse origins. Cell Research, 2022, 32, 609-620.	5.7	63
258	Up or down: where comes Omicron?. Cell Research, 2022, 32, 601-602.	5.7	5
259	Differential Pathogenesis of SARS-CoV-2 Variants of Concern in Human ACE2-Expressing Mice. Viruses, 2022, 14, 1139.	1.5	21

#	ARTICLE	IF	CITATIONS
260	Effects of Spike Mutations in SARS-CoV-2 Variants of Concern on Human or Animal ACE2-Mediated Virus Entry and Neutralization. Microbiology Spectrum, 2022, 10, .	1.2	24
262	Nonhuman primate models for evaluation of SARS-CoV-2 vaccines. Expert Review of Vaccines, 2022, 21, 1055-1070.	2.0	1
264	Targeted isolation of diverse human protective broadly neutralizing antibodies against SARS-like viruses. Nature Immunology, 2022, 23, 960-970.	7.0	39
267	SARS-CoV-2 Omicron Variants Reduce Antibody Neutralization and Acquire Usage of Mouse ACE2. Frontiers in Immunology, 0, 13, .	2.2	10
268	Influenza Virus-like Particle-Based Hybrid Vaccine Containing RBD Induces Immunity against Influenza and SARS-CoV-2 Viruses. Vaccines, 2022, 10, 944.	2.1	5
269	Recombinant ACE2 protein protects against acute lung injury induced by SARS-CoV-2 spike RBD protein. Critical Care, 2022, 26, .	2.5	8
271	Hallmarks of Severe COVID-19 Pathogenesis: A Pas de Deux Between Viral and Host Factors. Frontiers in Immunology, 0, 13, .	2.2	10
272	Animal Models for COVID-19 Therapeutic Development: Where We Are and Where We Need to Go. Frontiers in Microbiology, 0, 13 , .	1.5	7
273	The nervous system during <scp>COVID</scp> â€19: Caught in the crossfire. Immunological Reviews, 2022, 311, 90-111.	2.8	9
274	LncRNA MALAT1 Participates in Protection of High-Molecular-Weight Hyaluronan against Smoke-Induced Acute Lung Injury by Upregulation of SOCS-1. Molecules, 2022, 27, 4128.	1.7	2
275	Development of a novel human CD147 knock-in NSG mouse model to test SARS-CoV-2 viral infection. Cell and Bioscience, 2022, 12, .	2.1	7
276	Cell and Animal Models for SARS-CoV-2 Research. Viruses, 2022, 14, 1507.	1.5	9
277	Animal models for COVID-19: advances, gaps and perspectives. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	40
278	A Multitrait Locus Regulates Sarbecovirus Pathogenesis. MBio, 2022, 13, .	1.8	11
279	Characterization of SARS-CoV-2 Spike mutations important for infection of mice and escape from human immune sera. Nature Communications, 2022, 13, .	5.8	19
280	Engineered ACE2-Fc counters murine lethal SARS-CoV-2 infection through direct neutralization and Fc-effector activities. Science Advances, 2022, 8, .	4.7	27
281	SARS-CoV-2 infection produces chronic pulmonary epithelial and immune cell dysfunction with fibrosis in mice. Science Translational Medicine, 2022, 14, .	5.8	55
283	Genome-wide bidirectional CRISPR screens identify mucins as host factors modulating SARS-CoV-2 infection. Nature Genetics, 2022, 54, 1078-1089.	9.4	61

#	Article	IF	CITATIONS
284	A Bacteriophage-Based, Highly Efficacious, Needle- and Adjuvant-Free, Mucosal COVID-19 Vaccine. MBio, 2022, 13, .	1.8	17
285	Hetero-bivalent nanobodies provide broad-spectrum protection against SARS-CoV-2 variants of concern including Omicron. Cell Research, 2022, 32, 831-842.	5 . 7	16
286	Evolution of ACE2-independent SARS-CoV-2 infection and mouse adaption after passage in cells expressing human and mouse ACE2. Virus Evolution, 2022, 8, .	2.2	14
287	SARS-CoV-2 prefusion spike protein stabilized by six rather than two prolines is more potent for inducing antibodies that neutralize viral variants of concern. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	28
288	Characterization of Entry Pathways, Species-Specific Angiotensin-Converting Enzyme 2 Residues Determining Entry, and Antibody Neutralization Evasion of Omicron BA.1, BA.1.1, BA.2, and BA.3 Variants. Journal of Virology, 2022, 96, .	1.5	12
289	Structural bases for the higher adherence to ACE2 conferred by the SARS-CoV-2 spike Q498Y substitution. Acta Crystallographica Section D: Structural Biology, 2022, 78, 1156-1170.	1.1	2
290	Acquisition of Furin Cleavage Site and Further SARS-CoV-2 Evolution Change the Mechanisms of Viral Entry, Infection Spread, and Cell Signaling. Journal of Virology, 2022, 96, .	1.5	7
291	PIKfyve-specific inhibitors restrict replication of multiple coronaviruses in vitro but not in a murine model of COVID-19. Communications Biology, 2022, 5, .	2.0	7
292	Tracing the origin of Severe acute respiratory syndrome Coronavirusâ€⊋ (SARS oVâ€⊋): A systematic review and narrative synthesis. Journal of Medical Virology, 0, , .	2.5	3
293	Cellular Imaging Analysis Algorithm-Based Assessment and Prediction of Disease in Patients with Acute Lung Injury. Contrast Media and Molecular Imaging, 2022, 2022, 1-11.	0.4	1
294	Understanding COVID-19-associated coagulopathy. Nature Reviews Immunology, 2022, 22, 639-649.	10.6	137
295	COVID-19: A Veterinary and One Health Perspective. Journal of the Indian Institute of Science, 2022, 102, 689-709.	0.9	2
298	SARSâ€CoVâ€2 does not infect pigs, but this has to be verified regularly. Xenotransplantation, 2022, 29, .	1.6	3
299	Common human genetic variants of APOE impact murine COVID-19 mortality. Nature, 2022, 611, 346-351.	13.7	29
300	Impaired immune response drives age-dependent severity of COVID-19. Journal of Experimental Medicine, 2022, 219, .	4.2	26
301	Spike protein-independent attenuation of SARS-CoV-2 Omicron variant in laboratory mice. Cell Reports, 2022, 40, 111359.	2.9	23
302	Mouse models of COVID-19 recapitulate inflammatory pathways rather than gene expression. PLoS Pathogens, 2022, 18, e1010867.	2.1	17
303	ZBTB7A promotes virus-host homeostasis during human coronavirus 229E infection. Cell Reports, 2022, 41, 111540.	2.9	9

#	Article	IF	CITATIONS
304	Immunogenicity and protective efficacy of a rhesus adenoviral vaccine targeting conserved COVID-19 replication transcription complex. Npj Vaccines, 2022, 7, .	2.9	2
305	TLR7 controls myeloid-derived suppressor cells expansion and function in the lung of C57BL6 mice infected with Schistosoma japonicum. PLoS Neglected Tropical Diseases, 2022, 16, e0010851.	1.3	0
306	COVID-19 Vaccines and the Virus: Impact on Drug Metabolism and Pharmacokinetics. Drug Metabolism and Disposition, 2023, 51, 130-141.	1.7	11
307	Early pathogenesis profiles across SARS-CoV-2 variants in K18-hACE2 mice revealed differential triggers of lung damages. Frontiers in Immunology, 0, 13 , .	2.2	1
308	Breadth of SARS-CoV-2 neutralization and protection induced by a nanoparticle vaccine. Nature Communications, 2022, 13 , .	5.8	31
310	Structural basis for mouse receptor recognition by SARS-CoV-2 omicron variant. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	26
311	LRRC15 inhibits SARS-CoV-2 cellular entry in trans. PLoS Biology, 2022, 20, e3001805.	2.6	10
312	Characteristics of animal models for COVIDâ€19. Animal Models and Experimental Medicine, 2022, 5, 401-409.	1.3	7
313	Rapalogs downmodulate intrinsic immunity and promote cell entry of SARS-CoV-2. Journal of Clinical Investigation, 2022, 132, .	3.9	15
314	Anti-SARS-CoV-2 Activity of Adamantanes In Vitro and in Animal Models of Infection. Covid, 2022, 2, 1551-1563.	0.7	2
315	Advances and challenges in using nirmatrelvir and its derivatives against SARS-CoV-2 infection. Journal of Pharmaceutical Analysis, 2023, 13, 255-261.	2.4	7
316	Anti-inflammatory potential of turmeric, amla, and black pepper mixture against sepsis-induced acute lung injury in rats. Journal of Food Science and Technology, 2023, 60, 252-261.	1.4	1
317	SARS-CoV-2 infection of sustentacular cells disrupts olfactory signaling pathways. JCI Insight, 2022, 7,	2.3	16
318	A minimally-edited mouse model for infection with multiple SARS-CoV-2 strains. Frontiers in lmmunology, 0, 13 , .	2.2	3
320	Multivalent S2-based vaccines provide broad protection against SARS-CoV-2 variants of concern and pangolin coronaviruses. EBioMedicine, 2022, 86, 104341.	2.7	20
321	Glycyrrhiza uralensis polysaccharides ameliorate acute lung injury by inhibiting the activation of multiple inflammasomes. Journal of Functional Foods, 2023, 100, 105386.	1.6	3
322	Phenothiazines inhibit SARS-CoV-2 cell entry via a blockade of spike protein binding to neuropilin-1. Antiviral Research, 2023, 209, 105481.	1.9	13
323	Immunosenescence and inflamm-ageing in COVID-19. Ageing Research Reviews, 2023, 84, 101818.	5.0	18

#	Article	IF	CITATIONS
325	SARS-CoV-2 Spike triggers barrier dysfunction and vascular leak via integrins and TGF- \hat{l}^2 signaling. Nature Communications, 2022, 13, .	5.8	18
326	Influenza A virus modulates ACE2 expression and SARS-CoV-2 infectivity in human cardiomyocytes. IScience, 2022, 25, 105701.	1.9	1
328	Immune response and protective efficacy of the SARS-CoV-2 recombinant spike protein vaccine S-268019-b in mice. Scientific Reports, 2022, 12, .	1.6	2
329	Animal Models to Test SARS-CoV-2 Vaccines: Which Ones Are in Use and Future Expectations. Pathogens, 2023, 12, 20.	1.2	4
331	Upregulation of Robo4 expression by SMAD signaling suppresses vascular permeability and mortality in endotoxemia and COVID-19 models. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	4
333	Severe respiratory viral infections: T-cell functions diverging from immunity to inflammation. Trends in Microbiology, 2023, 31, 644-656.	3.5	7
334	A C57BL/6 Mouse Model of SARS-CoV-2 Infection Recapitulates Age- and Sex-Based Differences in Human COVID-19 Disease and Recovery. Vaccines, 2023, 11, 47.	2.1	6
335	Mouse Adapted SARS-CoV-2 (MA10) Viral Infection Induces Neuroinflammation in Standard Laboratory Mice. Viruses, 2023, 15, 114.	1.5	7
337	Animal models of COVID-19 and complications. , 2023, , 623-636.		0
340	Characterization of a Vesicular Stomatitis Virus-Vectored Recombinant Virus Bearing Spike Protein of SARS-CoV-2 Delta Variant. Microorganisms, 2023, 11, 431.	1.6	1
341	Tight junction protein occludin is an internalization factor for SARS-CoV-2 infection and mediates virus cell-to-cell transmission. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	3
342	Does viral inoculum play a role in disease severity in COVIDâ€19?. Journal of Medical Virology, 2023, 95, .	2.5	0
343	Respiratory viruses: New frontiersâ€"a Keystone Symposia report. Annals of the New York Academy of Sciences, 2023, 1522, 60-73.	1.8	0
344	Mouse-Adapted SARS-CoV-2 MA10 Strain Displays Differential Pulmonary Tropism and Accelerated Viral Replication, Neurodissemination, and Pulmonary Host Responses in K18-hACE2 Mice. MSphere, 2023, 8, .	1.3	3
345	Cell-autonomous requirement for ACE2 across organs in lethal mouse SARS-CoV-2 infection. PLoS Biology, 2023, 21, e3001989.	2.6	6
346	Carbohydrate fatty acid monosulphate: oil-in-water adjuvant enhances SARS-CoV-2 RBD nanoparticle-induced immunogenicity and protection in mice. Npj Vaccines, 2023, 8, .	2.9	3
347	Broadly neutralizing anti-S2 antibodies protect against all three human betacoronaviruses that cause deadly disease. Immunity, 2023, 56, 669-686.e7.	6.6	43
348	Human ACE2 expression, a major tropism determinant for SARS-CoV-2, is regulated by upstream and intragenic elements. PLoS Pathogens, 2023, 19, e1011168.	2.1	8

#	Article	IF	CITATIONS
349	Inhibition of the mitochondrial pyruvate carrier simultaneously mitigates hyperinflammation and hyperglycemia in COVID-19. Science Immunology, 2023, 8, .	5.6	7
350	SARSâ€CoVâ€2â€related bat virus behavior in humanâ€relevant models sheds light on the origin of COVIDâ€19. EMBO Reports, 2023, 24, .	2.0	4
351	Interferonâ€induced transmembrane protein 3 (IFITM3) limits lethality of SARS oVâ€2 in mice. EMBO Reports, 2023, 24, .	2.0	13
352	Prime-Pull Immunization of Mice with a BcfA-Adjuvanted Vaccine Elicits Sustained Mucosal Immunity That Prevents SARS-CoV-2 Infection and Pathology. Journal of Immunology, 2023, 210, 1257-1271.	0.4	5
353	Divalent siRNAs are bioavailable in the lung and efficiently block SARS-CoV-2 infection. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	9
354	A Critical Analysis of the Evidence for the SARS-CoV-2 Origin Hypotheses. MBio, 2023, 14, .	1.8	3
355	A Critical Analysis of the Evidence for the SARS-CoV-2 Origin Hypotheses. MSphere, 2023, 8, .	1.3	0
356	A Critical Analysis of the Evidence for the SARS-CoV-2 Origin Hypotheses. Journal of Virology, 2023, 97,	1.5	9
357	SARS-CoV-2 Omicron (B.1.1.529) shows minimal neurotropism in a double-humanized mouse model. Antiviral Research, 2023, 212, 105580.	1.9	2
359	Recombinant measles virus expressing prefusion spike protein stabilized by six rather than two prolines is more efficacious against SARSâ€CoVâ€2 infection. Journal of Medical Virology, 2023, 95, .	2.5	1
360	Potent NKT cell ligands overcome SARS-CoV-2 immune evasion to mitigate viral pathogenesis in mouse models. PLoS Pathogens, 2023, 19, e1011240.	2.1	6
362	Fc-mediated pan-sarbecovirus protection after alphavirus vector vaccination. Cell Reports, 2023, 42, 112326.	2.9	13
363	Evolution of Immune Evasion and Host Range Expansion by the SARS-CoV-2 B.1.1.529 (Omicron) Variant. MBio, 2023, 14, .	1.8	9
364	Enhanced inhibition of MHC-I expression by SARS-CoV-2 Omicron subvariants. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	15
365	1- <i>O</i> -Octadecyl-2- <i>O</i> -benzyl- <i>sn</i> -glyceryl-3- <i>phospho</i> -GS-441524 (V2043). Evaluation of Oral V2043 in a Mouse Model of SARS-CoV-2 Infection and Synthesis and Antiviral Evaluation of Additional Phospholipid Esters with Enhanced Anti-SARS-CoV-2 Activity. Journal of Medicinal Chemistry, 2023, 66, 5802-5819.	2.9	3
399	Animal models to study the neurological manifestations of the post-COVID-19 condition. Lab Animal, 2023, 52, 202-210.	0.2	2
451	Pathogenesis of viral infection. , 2024, , 2187-2207.		0
467	Histopathology assay of the lung after intratracheal injection of SARS-CoV-2 spike protein recombinant in mice: A preliminary study. AIP Conference Proceedings, 2024, , .	0.3	0

Article IF Citations